WESTERN DIGITAL c aRPAR Δ т / Л

TR1602/TR1402/TR1863/TR1865 Universal Asynchronous Receiver/Transmitter (UART)

FFATURES

- DUAL POWER SUPPLY TR1602/TR1402 0
- SINGLE POWER SUPPLY +5VDC ON TR1863/5 0
- D.C. TO 1 MHZ (64 KB) (STANDARD PART) ^ TR1863/5
- FULL DUPLEX OR HALF DUPLEX OPERATION ^
- AUTOMATIC INTERNAL SYNCHRONIZATION • OF DATA AND CLOCK
- AUTOMATIC START BIT GENERATION
- EXTERNALLY SELECTABLE Word Length Baud Rate Even/Odd Parity (Receiver/Verification -Transmitter/Generation) Parity Inhibit

One, One and One-Half, or Two Stop Bit Generation (11/2 at 5 Bit Level for TR1602, TR1863/5)

AUTOMATIC DATA RECEIVED/TRANSMITTED STATUS GENERATION Transmission Complete Buffer Register Transfer Complete Received Data Available Parity Error Framing Error Overrun Error

- MARCH, 1981 BUFFERED RECEIVER AND TRANSMITTER 0 REGISTERS
- THREE-STATE OUTPUTS ^ **Receiver Register Outputs** Status Flags
- TTL COMPATIBLE
- TR1865 HAS PULL-UP RESISTORS ON ALL INPUTS

APPLICATIONS

- PERIPHERALS 0
- TERMINALS 0
- MINI COMPUTERS
- FACSIMILE TRANSMISSION
- MODEMS •
- CONCENTRATORS
- 0 ASYNCHRONOUS DATA MULTIPLEXERS

INCOMPANY AND INCOMPANY AND INCOMPANY

- CARD AND TAPE READERS ۰
- ۰ PRINTERS
- DATA SETS
- CONTROLLERS •
- 0 **KEYBOARD ENCODERS**
- REMOTE DATA ACQUISITION SYSTEMS
- ASYNCHRONOUS DATA • CASSETTES

TR1602/TR1402/TR1863/TR1865 BLOCK DIAGRAM

GENERAL DESCRIPTION

The ASYNCHRONOUS RECEIVER/TRANSMITTER is a general purpose, programmable MOS/LSI device for interfacing an asynchronous serial data channel of a peripheral or terminal with parallel data of a computer or terminal. The transmitter section converts parallel data into a serial word which contains the data along with start/stop bits, and optional parity. The receiver section converts a serial word with start, data, optional parity, and stop bits, into parallel data, and it verifies proper code transmission by checking parity and receipt of a valid stop bit. Both the receiver and the transmitter are double buffered. The array is compatible with bipolar logic. The array may be programmed as follows: The word length can be either 5, 6, 7, or 8 bits; parity generation and checking may be inhibited, the parity may be even or odd; and the number of stop bits may be either one or two, with one and one-half when transmitting a 5 bit code. The TR1863/5 is pin- and function-compatible to the TR1402 and TR1602 except that it is +5V only and can operate up to 3.5 MHz (218.75K Baud). The standard TR1863/5 operates at 1.0 MHz (62.5K Baud).

PIN DEFINITIONS

PIN NUMBER	NAME	SYMBOL	FUNCTION
1	V _{SS} POWER SUPPLY	VSS	+5 volts supply
2	VGG — TR1602/TR1402 NC — TR1863/5	VGG NC	-12 volts supply No Connection (open)
3	VDD POWER SUPPLY	GND	Ground = 0V
4	RECEIVER REGISTER DISCONNECT	RRD	A high level input voltage, V _{IH} , applied to this line disconnects the RECEIVER HOLDING REGISTER outputs from the RR ₁₋₈ data outputs (pins 5-12).
5-12	RECEIVER HOLDING REGISTER DATA	RR ₈ - RR ₁	The parallel contents of the RECEIVER HOLDING REGISTER appear on these lines if a low-level input voltage. $V_{ L }$ is applied to RRD. For character formats of fewer than eight bits received characters are right-justified with RR1 (pin 12) as the least significant bit and the truncated bits are forced to a low level output voltage, V_{OL} .
13	PARITY ERROR	ΡΕ	A high level output voltage, V_{OH} , on this line indicates that the received parity does not compare to that programmed by the EVEN PARITY ENABLE control line (pin 39). This output is updated each time a character is transferred to the RECEIVER HOLDING REGISTER. PE lines from a number of arrays can be bussed together since an output disconnect capability is provided by Status Flag Disconnect line (pin 16).
14	FRAMING ERROR	FE	A high-level output voltage, V_{OH} , on this line indicates that the received character has no valid stop bit, i.e., the bit (if programmed) is not a high level voltage. This output is updated each time a character is transferred to the Receiver Holding Register, FE lines from a number of arrays can be bussed together since an output disconnect capability is provided by the Status Flag Disconnect line (pin 16).
15	OVERRUN ERROR	OE	A high-level output voltage, V _{OH} , on this line indi- cates that the Data Received Flag (pin 19) was not reset before the next character was transferred to the Receiver Holding Register. OE lines from a number of arrays can be bussed together since an output disconnect capability is provided by the Status Flag Disconnect line (pin 16).
16	STATUS FLAGS DISCONNECT	SFD	A high-level input voltage, VIH, applied to this pin disconnects the PE, FE, OE, DR and THRE allowing them to be buss connected.

PIN NUMBER	NAME	SYMBOL	FUNCTION
17	RECEIVER REGISTER CLOCK	RRC	The receiver clock frequency is sixteen (16) times times the desired receiver shift rate.
18	DATA.RECEIVED RESET	DRR	A low-level input voltage, $V_{\mbox{\scriptsize IL}},$ applied to this line resets the DR line.
19	DATA RECEIVED	DR	A high-level output voltage, V _{OH} , indicates that an entire character has been received and transferred to the RECEIVER HOLDING REGISTER.
20	RECEIVER INPUT	RI	Serial input data received on this line enters the RECEIVER REGISTER at a point determined by the character length, parity, and the number of stop bits. A high-level input voltage, VIH, must be present when data is not being received.
21	MASTER RESET	MR	This line is strobed to a high-level input voltage, V_{IH} , to clear the logic. It resets the Transmitter and Receiver Holding Registers, the Transmitter Register, FE, OE, PE, DR and sets TRO, THRE, and TRE to a high-level output voltage, V_{OH} .
22	TRANSMITTER HOLDING REGISTER EMPTY	THRE	A high-level output voltage, V _{OH} , on this line indi- cates the TRANSMITTER HOLDING REGISTER has transferred its contents to the TRANSMITTER REGISTER and may be loaded with a new character.
23	TRANSMITTER HOLDING REGISTER LOAD	THRL	A low-level input voltage, V_{IL} , applied to this line enters a character into the TRANSMITTER HOLD- ING REGISTER. A transition from a low-level input voltage, V_{IL} , to a high-level input voltage, V_{IH} , trans- fers the character into the TRANSMITTER REGIS- TER if it is not in the process of transmitting a char- acter. If a character is being transmitted, the transfer is delayed until its transmission is completed. Upon completion, the new character is automatically transferred simultaneously with the initiation of the serial transmission of the new character.
24	TRANSMITTER REGISTER EMPTY	TRE	A high-level output voltage, V_{OH} , on this line indi- cates that the TRANSMITTER REGISTER has completed serial transmission of a full character including STOP bit(s). It remains at this level until the start of transmission of the next character.
25	TRANSMITTER REGISTER OUTPUT	TRO	The contents of the TRANSMITTER REGISTER (START bit, DATA bits, PARITY bit, and STOP bits) are serially shifted out on this line. When no data is being transmitted, this line will remain at a high-level output voltage, V_{OH} . Start of transmission is defined as the transition of the START bit from a high-level output voltage VOH, to a low-level output voltage, V_{OL} .
26-33	TRANSMITTER REGISTER DATA INPUTS	TR1-TR8	The character to be transmitted is loaded into the TRANSMITTER HOLDING REGISTER on these lines with the THRL Strobe. If a character of less than 8 bits has been selected (by WLS ₂ and WLS ₂), the character is right justified to the least significant bit, RR1, and the excess bits are disregarded. A high-level input voltage, V _{IH} , will cause a high-level output voltage, V _{OH} , to be transmitted.

PIN NUMBER	NAME	SYMBOL	FUNCTION
34	CONTROL REGISTER LOAD	CRL	A high-level input voltage, VI _H , on this line loads the CONTROL REGISTER with the control bits (WLS ₁ , WLS ₂ , EPE, PI, SBS). This line may be strobed or hard wired to a high-level input voltage, VI _H .
35	PARITY INHIBIT	ΡI	A high-level input voltage, V _{IH} , on this line inhibits the parity generation and verification circuits and will clamp the PE output (pin 13) to V _{OL} . If parity is inhibited, the STOP bit(s) will immediately follow the last data bit of transmission.
36	STOP BIT(S) SELECT	SBS	This line selects the number of STOP bits to be transmitted after the parity bit. A high-level input voltage VIH, on this line selects two STOP bits, and a low-level input voltage, VIL, selects a single STOP bit. The TR1602 and TR1863 generate 1½ stop bits when word length is 5 bits and SBS is High VIH.
37-38	WORD LENGTH SELECT	WLS2 -WLS1	These two lines select the character length (exclusive of parity) as follows: $\frac{WLS_2}{V_{II}} = \frac{WLS_1}{V_{II}} = \frac{Word \ Length}{5 \ bits}$
			VIL VIH 6 bits VIH VIL 7 bits VIH VIH 8 bits
39	EVEN PARITY ENABLE	EPE	This line determines whether even or odd PARITY is to be generated by the transmitter and checked by the receiver. A high-level input voltage, VIH, selects even PARITY and a low-level input voltage, Venerate and PARITY
40	TRANSMITTER REGISTER	TRC	The transmitter clock frequency is sixteen (16) times the desired transmitter shift rate.

⇒ <u>ح</u>امس في

ABSOLUTE MAXIMUM RATINGS NOTE: These voltages are measured with respect to GND

Storage Temperature	-55°C to +	125°C (Plastic)
V _{CC} Supply Voltage		-0.3V to +7.0V
Input Voltage at any pin		-0.3V to +7.0V
o		

Operating Free-Air Temperature

T_A Range0° C to 70° C Lead Temperature (Soldering, 10 sec.) 300° C

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%, V_{DD} = 0V, V_{GG} = -12V \pm 5\%, TR1602/TR1402)$ $(V_{CC} = 5V \pm 5\% TR 1863/5)$

-65°C to +150°C (Ceramic)

SYMBOL	PARAMETER	TR1602/TR1402 TR186		1863/5		
	OPERATING CURRENT	MIN	MAX	MIN	MAX	CONDITIONS
ICC IGG VIH VIL VOH VOL IOC IIL	Substrate Supply Current Gate Supply Current LOGIC LEVELS Logic High Logic Low OUTPUT LOGIC LEVELS Logic High Logic Low Output Leakage Low Level Input Current	VSS — 1.5V VSS — 1.0V	60 ma - 10 ma 0.8V 0.4V 10 μa -1.6 ma	2.4V 2.4V	35 ma 0.6V 0.4V 10ua * - 1.6ma	$V_{CC} = 5.25V$ $V_{GG} = -12.6V$ $V_{CC} = 4.75V$ $V_{SS} = 4.75V$, $IOH = 100 \ \mu a$ $V_{SS} = 5.25V$, $IOL = 1.6 \ m a$ $V_{OUT} = 0V$, SFD = RRD = VIH $V_{IN} = 0.4V$
ЧН	nigh level input Current				10 μa	$^{\circ}$ IN = 3.75V, TR1865 only

SWITCHING CHARACTERISTICS

(See "Switching Waveforms")

SYMBOL	PARAMETER	MIN	MAX	CONDITIONS
fclock	Clock Frequency			$V_{CC} = 4.75V$
Olocik	TR1402	DC	320 KHz	with internal pull-ups on all inputs
	TR1602	DC	320 KHz	with internal pull-ups on all inputs
	TR1863-00	DC	1.0 MHz	
	TR1863-02	DC	2.5 MHz	
	TR1863-04	DC	3.5 MHz	with internal pull-ups on all inputs
	TR1865-00		1.0 MHz	with internal pull-ups on all inputs
	TR1865-02		2.5 MHZ	with internal pull-ups on all inputs
	Dules Mishe	00	3.3 WHZ	with internal pail-ups on an inputs
^τ pw	Pulse widths	000		
		200 ns		
		200 ns		
		200 HS		
to	Coincidence Time	200 ns		
thold	Hold Time	200 ms		
teet	Set Time	20113		
·sei	OUTPUT PROPAGATION	0		
	DELAYS			
t _{nd0}	To Low State 1602/1402		650 ns	
t _{nd1}	To High State 1602/1402		650 ns	C _L = 20 pf, plus one TTL load
tpd0	To Low State 1863/1865		250 ns	
t _{nd1}	To High State 1863/1865		250 ns	C _L = 20 pf, plus one TTL load
P21				
C.			20 nf	$f = 1$ MHz $\lambda = E \lambda$
UIN .	Outputs		20 pf	$f = 1 MH_{\pi} V_{11} = 5V$
00	Outputs		20 pi	$I = I W \square 2, V \square 2, V \square 2$

TR1602A, TR1402A, TR1863A, TR1865A CERAMIC (HERMETIC) PACKAGE

TR1602B, TR1402B, TR1863B, TR1865B PLASTIC PACKAGE

TR1865P PLASTIC PACKAGE

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation for charge said circuitry at any time without notice.

WESTERN DIGITAL

3128 REDHILL AVENUE, BOX 2180 NEWPORT BEACH, CA 92663 (714) 557-3550,TWX 910-595-1139