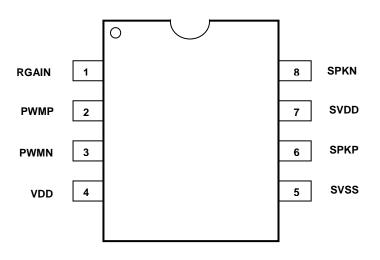


## 1. General Descriptions

TRA1309AP is a speaker amplifier that can accept PWM signal and doesn't need any external device for these input signals. PWM input supports mainly for TRITAN'S PWM output. The TRA1309AP contains advanced de-pop circuitry which eliminates pops during chip enable and disable. The gain can be adjusted by connecting a resistor between RGAIN and SPKN to determine gain. Internal sound processing is added for better sound quality.


#### 2. Features

- Accept PWM and doesn't need any external devices for these input signals.
- Mute function
- Wide operation voltage : 2.4V~5.5V
- sound processing for better sound quality
- Auto power ON/OFF
- Low standby current : 2u A, typical.
- High output power Pout = 0.8W (VDD=5.5V, THD=1%)

#### 3. Ordering Information

| Part Number | Package Type | Description                                                        |
|-------------|--------------|--------------------------------------------------------------------|
| TRA1309AP-P | DIP 8        | Plastic dual in-line package; 8 leads (300mil); PWM mode           |
| TRA1309AP-S | SO 8         | Plastic small outline package; 8 leads; body with 3.9 mm; PWM mode |

#### 4.1 Pin Configuration



• This chip only applicable for Tritan's SPEECH series PWM and TRD16P101/102/201 PWM



# 4.2 Packaging and Pads Information

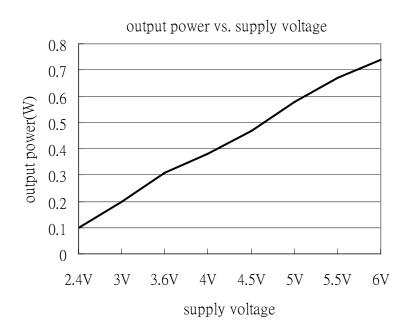
| Signal Name | Pin Type | Signal Description           |
|-------------|----------|------------------------------|
| SVDD        |          | Speaker driver power input   |
| SVSS        |          | Speaker driver ground input  |
| VDD         | I        | Internal circuit power input |
| PWMP        | I        | PWMP signal input            |
| PWMN        | I        | PWMN signal input            |
| RGAIN       | I        | Gain adjust pad              |
| SPKP        | 0        | Positive speaker output      |
| SPKN        | 0        | Negative speaker output      |

# 5. ELECTRICAL CHARACTERISTICS

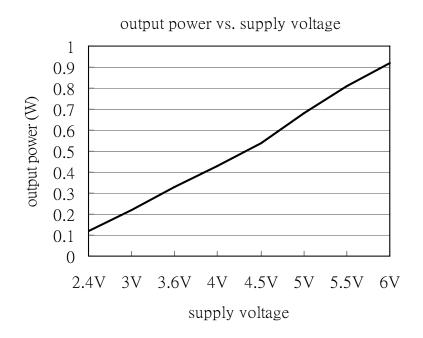
# 5.1 Absolute Maximum Ratings

| Parameters                  | Symbol | Value           | Unit |
|-----------------------------|--------|-----------------|------|
| DC Supply Voltage           | VDD    | -0.5 to 5.5     | V    |
| Input Voltage               | Vi     | -0.5 to Vdd+0.5 | V    |
| Operating Temperature Range | Та     | -20 to 75       | °C   |
| Storage Temperature Range   | Tstg   | -40 to 150      | °C   |

### **5.2 DC/AC Characteristics**


#### Ta=25°C unless otherwise noted

| Parameter        | rs         | Symbol  | Minimum | Typical       | Maximum |                                                            |
|------------------|------------|---------|---------|---------------|---------|------------------------------------------------------------|
| Power supply I   | range      | VDD     | 2.4 V   | -             | 5.5 V   |                                                            |
| Operating curr   | ent        | lop     |         | 6mA           |         | VDD=5.5V                                                   |
| Standby currer   | nt         | Imute   |         | 2uA           |         | PWMP=floating<br>PWMN=floating                             |
| Input high volta | age        | Vih     | 1V      |               |         | VDD=2.4V~5.5V                                              |
| Input low volta  | ge         | Vil     |         |               | 0.5V    | VDD=2.4V~5.5V                                              |
| Input current    |            | lc      |         |               | 5 uA    | When PWMP or PWMN connect to<br>VSS will sink this current |
| Pull up resistor |            | Rpull-h |         | 2Meg<br>ohm   |         | VDD=3.3V<br>PWMP & PWMN                                    |
| Output power     | SOP<br>DIP | Pout    |         | 0.6W<br>0.8W  |         | VDD=5.5V,THD=1%, $R_L=8\Omega$                             |
| Mute time        |            | Mt      |         | 30mS<br>200mS |         | T <sub>on</sub><br>T <sub>off</sub>                        |
| THD+Noise        |            | THD+N   |         | 1%            |         | VDD=5V,Pout=0.6W,R <sub>L</sub> =8Ω,Gain=2                 |




### 5.3 Output power perfomance

1. Output power vs. supply voltage (Fin = 1Khz,  $R_L = 8\Omega$ , THD=1%, normal mode)



2. Output power vs. supply voltage (Fin = 1Khz,  $R_L = 8\Omega$ , THD=1%, PB mode)





# 6. FUNCTIONAL DESCRIPTION

### 6.1 PWM signal transfer to Analog signal

The PWMP direct connect to TRA1309A's PWMP and the PWMN direct connect to TRA1309A's PWMN (Fig 7-1). No external output components are needed.

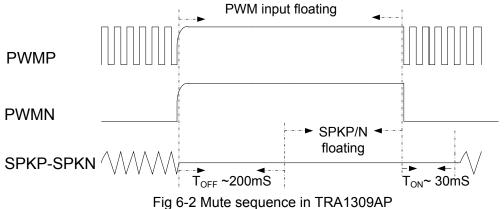
Gain can be adjusted using R1(or VR). Since PWM signal is harder to be simply defined. Power gain description is as followed :

Suppose using Tritan's 3AB/5AB, PWM is connected to 8 ohm speaker, the output power is P1.

P2 is the speaker power output using above circuit, condition is same as P1.

P2 = 1.1 x P1

This gain setting will almost assure output signal in "non-distortion" area in any VDD/SVDD. But if 3AB/5AB chip uses lower VDD and 1309AP uses higher VDD(and SVDD), then the output power gain(P2/P1) will be higher. Output power gain will increase proportionally to the ratio of these two VDDs.

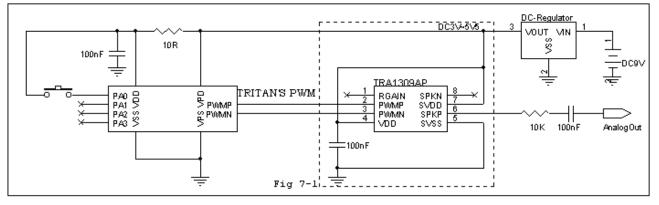

Note : Load capacitance on SPKP/SPKN must be take care of as followed :

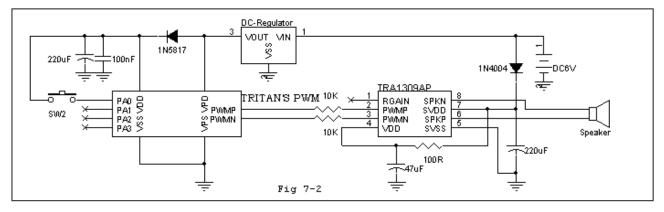
| Reisitor load between SPKP and SPKN | Maximum load capacitance |
|-------------------------------------|--------------------------|
| Open                                | 100pF                    |
| 8ohm                                | 300pF                    |

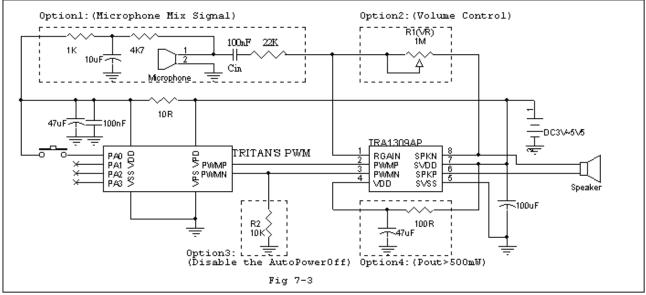
In case stability problem is found, connect a 22pF ~ 100pF capacitor between RGAIN and SPKN.

### 6.2 Mute function(AutoPowerOn/Off)

When PWM input is disabled (floating), TRA1309AP will enter standby mode automatically with mute-off sequence. SPKP/N will be floated after ~200mS. When PWM is enabled, TRA1309AP will be turned on automatically and mute-on sequence is executed (Fig 6-2). SPKP/N will work after ~30mS.



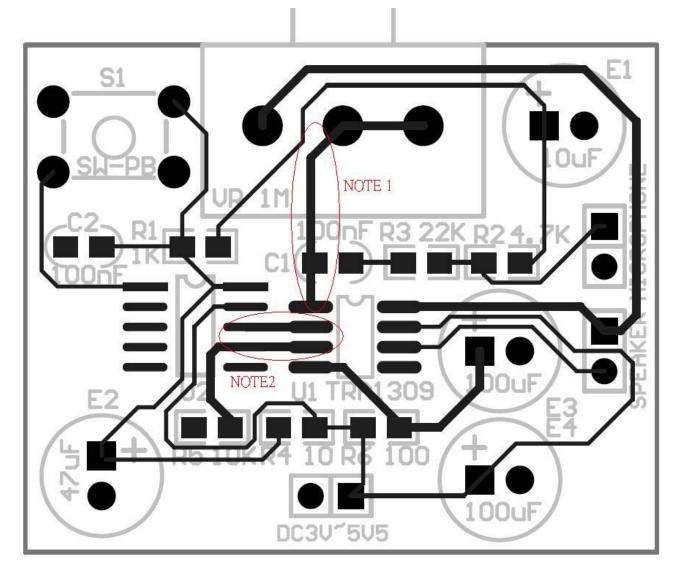


#### \*1 : PWM Input floating (Mute) must consider as below


| Parasitic capacitor (Maximum) | Rise time after PWM floating (Maximum) |
|-------------------------------|----------------------------------------|
| 50pF                          | 100uS                                  |



# 7. Application circuit





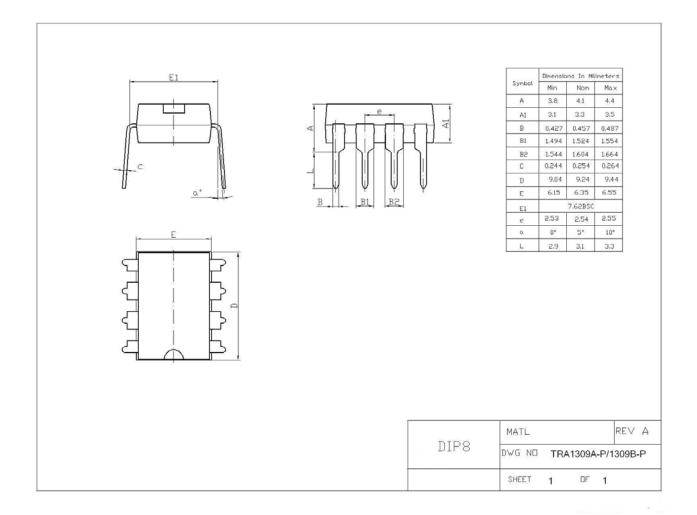



- If VR is used(Option2), 1MΩ is suggested, wire of RGAIN must be kept as short as possible
- An analog mix signal input may be used or not. (Option 1) It's gain = (VR // 250K)/Rin1 .
- If output power is small. (Output power < 0.5W) SVDD can be shorted to VDD. When high output power is needed (Output power > 0.5W). Option 4 must be used.
- R2=10Kohm(Option3) can be disable the Auto Power Off function.



# The PCB layout example of Fig 7-3

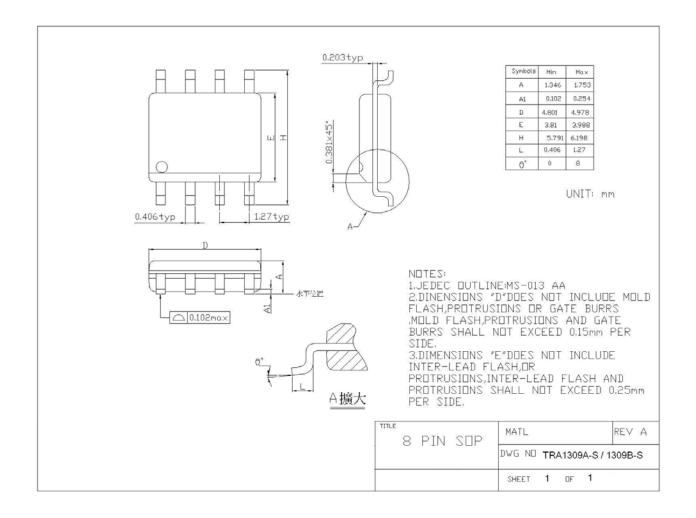



Note 1 : TRA1309AP RGAIN wire to VR and MIC input as short as possible (<2cm is needed)

Note 2: Tritan's PWM wire to TRA1309AP input as short as possible (<2cm is needed)



# 8.PACKAGE OUTLINES


# 8.1 DIP8: plastic dual in-line package; 8 leads (300mil)



TRITAN TECHNOLOGY INC.



## 8.2 SOP8: plastic small outline package; 8 leads; body width 3.9mm





# **REVISION HISTORY**

| REVISION | DESCRIPTION                                                                  | PAGE | DATE       |
|----------|------------------------------------------------------------------------------|------|------------|
| V1.0     | New created, PWM mode with package,<br>extracted/modified from TRA1309A_V1.5 |      | 2009.05.07 |
| V1.2     | Gain calculated. gain = (VR // 250K)/Rin1                                    | 5    | 2010/06/11 |
| V1.3     | The note of the applicable IC                                                | 1    | 2011/12/19 |
| V1.4     | Mute consideration and PCB layout example                                    | 4,6  | 2012/03/15 |