

TS8023N - 100W CW, Broadband SPDT GaN RF Switch

1.0 Features

- Low insertion loss: 0.5dB @ 4GHz
- High isolation: 42dB @ 1.0GHz, 27dB @ 3.5GHz
- 100W CW, 200W Peak Power
- No external DC blocking capacitors on RF lines
- All RF ports OFF state
- Versatile 2.6-5.25V power supply
- Operating frequency: 30MHz to 3.5GHz

Figure 1 Device Image (32 Pin 5×5×0.85mm QFN Package)

2.0 Applications

- Private mobile and military radios
- Public safety handsets
- Cellular infrastructure
- Small cells
- LTE relays and microcells
- Satellite terminals

RoHS/REACH/Halogen Free Compliance

3.0 Description

The TS8023N is a 2nd Generation symmetrical reflective Single Pole Dual Throw (SPDT) switch designed for broadband, high power switching applications. With a simple broadband match, the TS8023N can cover 30M to 3.5GHz bandwidth and provide low insertion loss, high isolation, and high linearity within a small package size. TS8023N is an excellent switch for all applications requiring low insertion loss, high isolation, and high linearity within a small package size.

The TS8023N is packaged into a compact Quad Flat No lead (QFN) 5x5mm 32 leads plastic package.

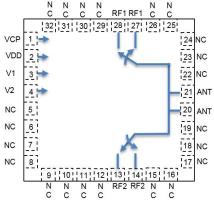


Figure 2 Function Block Diagram (Top View)

4.0 Ordering Information

Table 1a Ordering Information

Device Part Number Package Type		Eval Board Part Number	
TS8023N	32 Pin 5×5×0.85mm QFN	TS8023N-EVB	

Table 1b Tape and Reel Information

Form Quantity		Reel Diameter	Reel Width	
Tape and Reel	3,000	13" (330mm)	18mm	

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description
1	VCP	Internal charge pump voltage output. Connect a 1nF
'	VOF	capacitor to GND on this pin to improve switching time.
2	VDD	DC power supply
3	V1	Switch control input 1
4	V2	Switch control input 2
5,6,7,8,9,10,11,16,17,	NC	No internal connection, can be grounded
18,23,24,25,30,31,32	INC	No internal connection, can be grounded
12,15,19,22,26,29	NC	No internal connection. Do not connect to ground
13,14	RF2	RF port 2
20,21	ANT	Antenna port
27,28	RF1	RF port 1

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias, and adequate heat sinking must be used to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit			
Electrical Ratings						
Power Supply Voltage	VDD	5.5	V			
Storage Temperature Range	T _{st}	-55 to +125	°C			
Operating Temperature Range	Top	-40 to +85	°C			
Maximum Junction Temperature	TJ	+140	°C			
Maximum RF input power(400MHz~3500MHz)	RFx/ANT	51	dBm			
Maximum RF input power(30MHz~400MHz)	RFx/ANT	51	dBm			
Maximum RF input power (30MHz, VSWR 8:1)	RFx/ANT	47	dBm			

			Τ			
Maximum RF input Peak Voltage (30MHz, VSWR 8:1)	RFx/ANT	140	V			
Thermal Ratings						
Thermal Resistance (junction-to-case) – Bottom side	R ₀ JC	3.0	°C/W			
Thermal Resistance (junction-to-top)	R _{θJT}	≤ 26	°C/W			
Soldering Temperature	T _{SOLD}	260	°C			
ESD Ratings						
Human Body Model (HBM)	Level 1B	500 to <1000	V			
Charged Device Model (CDM)	Level C3	≥1000	V			
Moisture Rating						
Moisture Sensitivity Level	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications $@T_A = +25^{\circ}C$ Unless Otherwise Specified; VDD=+3.3V; 50Ω Source/Load.

Parameter	Condition	Minimum		Maximum	Unit
Operating frequency		30		3500	MHz
	400MHz		0.15	0.35	
Insertion loss, RFx	1.0GHz		0.22		dB
	2.0GHz		0.35		
	3.5GHz		0.4		
	400MHz		50		
Isolation ANT-RFx	1.0GHz		42		dB
	2.0GHz		33		
	3.5GHz		27		
	400MHz		30		
Return loss ANT,	1.0GHz		20		dB
RFx	2.0GHz		14		
	3.5GHz		18		
Harmonic distortion					
H2	800MHz, Pin=47dBm		-88		dBc
H3	800MHz, Pin=47dBm		-85		dBc
IIP3	800MHz		TBD		dBm
P0.1dB ^[1]	800MHz, CW		51		dBm
P0.1dB ^[1]	30MHz, CW		51		dBm
Peak P0.1dB ^[1]	800MHz, 1% duty cycle, 1 mS period.		54		dBm
Switching time	50% ctrl to 10/90% of the RF value is settled. CP=1nF to ground on VCP pin.		12		μS
Control voltage	Power Supply VDD	2.6	3.3	5.25	V
	All control pins high, V _{ih}	1.0	3.3	5.25	V
	All control pins low, V _{il}	-0.3		0.5	V
Control current	All control pins low, Iii		0		μΑ
	All control pins high, l _{ih}			7.5	μΑ
Current consumption, IDD	Active mode (VDD on)		160	200	μА

Note:

^[1] P0.1dB is a figure of merit.

^[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table

Table 5 Switch Truth Table

V1	V2	Active RF Path		
0	1	All OFF		
0	0	ANT-RF1 ON		
1	0	ANT-RF2 ON		

Attention:

- [1] VDD should be applied first before V1 and V2, otherwise may cause damage to the device.
- [2] There are internal pull-downs to ground on both V1 and V2 control pins, the state at start-up without any control voltage applied will be ANT-RF1 ON.
- [3] If all OFF state is not used, the switch can be operated with single control pin V1.

9.0 Evaluation Board (matched)

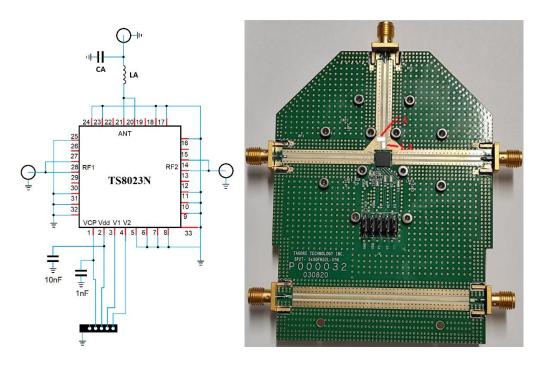


Figure 3 Evaluation Board and Schematic

Attention:

- [1] 33 refers to the center pad of the device. Multiple Plugged through hole vias should be added on this Ground Pad and adequate heat sinking should be used.
- [2] The purpose of connection between VCP and connector N1 is to monitor VCP, do not apply external voltage to VCP.
- [3] Place matching components close to pin of the part.

Table 6 Recommended Evaluation Board Component Values

Reference Designator	Value	Part #	Manufacturer
LA	1.2nH	LC 0402HP 2x2.4nH	Coilcraft
CA	0.6pF	600S0R6AW250XT	ATC

10.1 Typical Characteristics

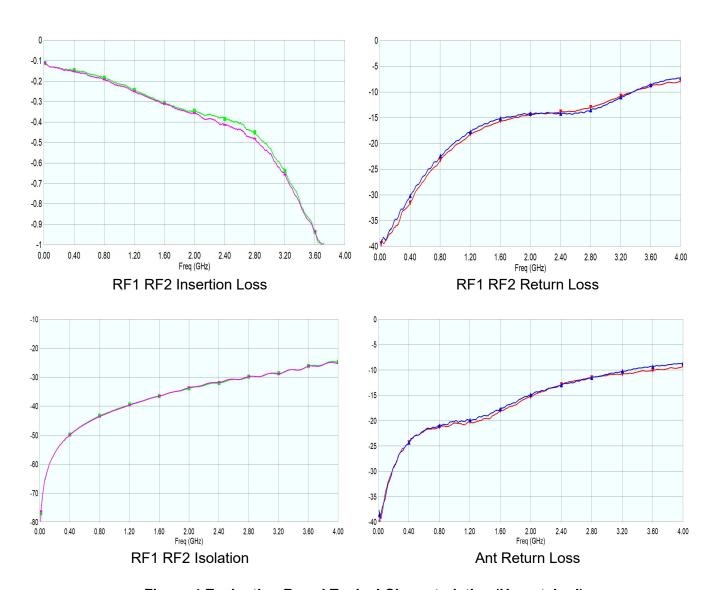


Figure 4 Evaluation Board Typical Characteristics (Unmatched)

10.2 Typical Characteristics (Continuous)

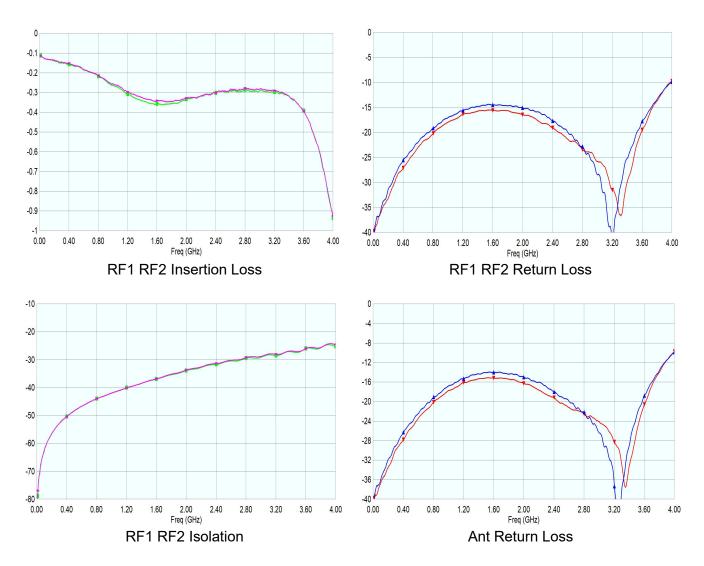


Figure 5 Evaluation Board Typical Characteristics (Matched)

11.0 Device Package Information

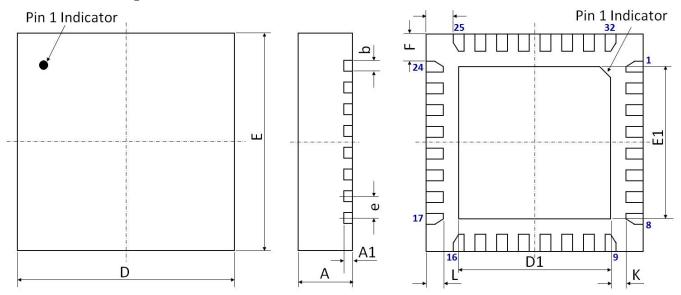


Figure 5 Device Package Drawing

(All dimensions are in mm)

Table 7 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
Α	0.85	±0.05	E	5.00 BSC	±0.05
A1	0.203	±0.02	E1	3.20	±0.06
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	5.00 BSC	±0.05	G	0.625	±0.05
D1	3.20	±0.06	L	0.40	±0.05
е	0.50 BSC	±0.05	K	0.50	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

- [1] 4-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.2mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $5(X)\times 5(Y)=25$.

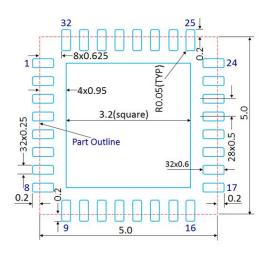


Figure 6 PCB Land Pattern

(Dimensions are in mm)

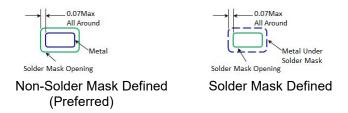
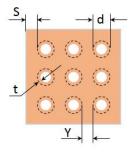



Figure 7 Solder Mask Pattern

(Dimensions are in mm)

Figure 8 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.2mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125 μm .

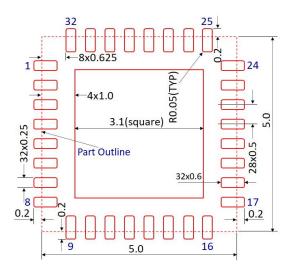


Figure 9 Stencil Openings (Dimensions are in mm)

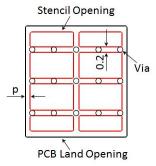
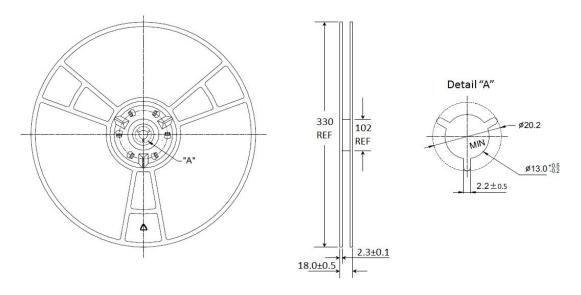



Figure 10 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

14.0 Tape and Reel Information

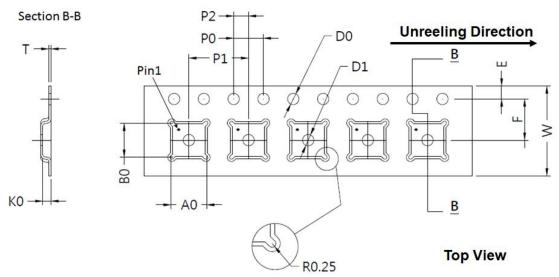


Figure 11 Tape and Reel Drawing

Table 8 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	5.35	±0.10	K0	1.10	±0.10
В0	5.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 1.2 - 2024-04-05

Published by

Tagore Technology Inc. 601 Campus Drive, Suite C1 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.