## TS82420K - 10W CW, Broadband SP4T GaN RF Switch

#### 1.0 Features

Low insertion loss: 0.2 @ 800MHzLow insertion loss: 0.3 @ 2700MHz

High isolation: 40 @ 800MHzHigh isolation: 25 @ 2700MHz

• P0.1dB: 40dBm CW, 45dBm Peak Power

• No external DC blocking capacitors on RF lines

Versatile 2.6-5.25V power supply

Operating frequency: 30 MHz to 5.0 GHz

## 2.0 Applications

- Private mobile radio handsets
- Public safety handsets
- Cellular infrastructure
- Small cells
- LTE relays and microcells
- Satellite terminals

## 3.0 Description

The TS82420K is a symmetrical reflective Single Pole Four Throws (SP4T) switch designed for broadband, high power switching applications. Its broadband behavior from 30 MHz to 5.0 GHz frequencies makes the TS82420K an excellent switch for all applications requiring low insertion loss, high isolation, and high linearity within a small package size. This part has the internal charge pump disabled to eliminate the charge pump spurs. A -18V supply is needed on the VCP pin

The TS82420K is packaged into a compact Quad Flat No lead (QFN) 3x3mm 16 leads plastic package.



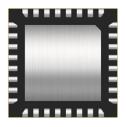



Figure 1 Device Image (16 Pin 3x3x0.8mm QFN Package)



# RoHS/REACH/Halogen Free Compliance

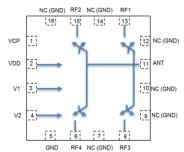



Figure 2 Function Block Diagram (Top View)



# 4.0 Ordering Information

## **Table 1a Ordering Information**

| Device Part Number | Package Type         | Eval Board Part Number |
|--------------------|----------------------|------------------------|
| TS82420K           | 16 Pin 3x3x0.8mm QFN | TS82420K-EVB           |

## **Table 1b Tape and Reel Information**

| Form          | Quantity | Reel Diameter | Reel Width |  |
|---------------|----------|---------------|------------|--|
| Tape and Reel | 3,000    | 13" (330mm)   | 18mm       |  |

# 5.0 Pin Description

#### **Table 2 Pin Definition**

| Pin Number        | Pin Name | Description                             |
|-------------------|----------|-----------------------------------------|
| 1                 | VCP      | Negative Voltage Supply, -18V           |
| 2                 | VDD      | DC power supply                         |
| 3                 | V1       | Switch control input 1                  |
| 4                 | V2       | Switch control input 2                  |
| 6                 | RF4      | RF port 4                               |
| 5,7,9,10,12,14,16 | NC       | No internal connection, can be grounded |
| 8                 | RF3      | RF port 3                               |
| 11                | ANT      | Antenna port                            |
| 13                | RF1      | RF port 1                               |
| 15                | RF2      | RF port 2                               |

**Note:** The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias to ensure proper operation and thermal management.

# 6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @TA=+25°C Unless Otherwise Specified

| Parameter                                           | Symbol            | Value       | Unit |  |  |  |
|-----------------------------------------------------|-------------------|-------------|------|--|--|--|
| Electrical Rat                                      | ings              |             |      |  |  |  |
| Power Supply Voltage                                | VDD               | 5.25        | V    |  |  |  |
| Storage Temperature Range                           | T <sub>st</sub>   | -55 to +125 | °C   |  |  |  |
| Operating Temperature Range                         | T <sub>op</sub>   | -40 to +85  | °C   |  |  |  |
| Maximum Junction Temperature                        | TJ                | +140        | °C   |  |  |  |
| Maximum RF input power                              | RFx/ANT           | 40          | dBm  |  |  |  |
| Thermal Ratings                                     |                   |             |      |  |  |  |
| Thermal Resistance (junction-to-case) – Bottom side | R <sub>eJC</sub>  | 30          | °C/W |  |  |  |
| Thermal Resistance (junction-to-top)                | Rejt              | 39          | °C/W |  |  |  |
| Soldering Temperature                               | T <sub>SOLD</sub> | 260         | °C   |  |  |  |



| ESD Ratings                                    |          |       |   |  |  |
|------------------------------------------------|----------|-------|---|--|--|
| Human Body Model (HBM) Level 1B 500 to <1000 V |          |       |   |  |  |
| Charged Device Model (CDM)                     | Level C3 | ≥1000 | V |  |  |
| Moisture Rating                                |          |       |   |  |  |
| Moisture Sensitivity Level MSL 1 -             |          |       |   |  |  |

#### Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

# 7.0 Electrical Specifications

**Table 4 Electrical Specifications** @T<sub>A</sub>=+25°C Unless Otherwise Specified; VDD=+3.3V; 50Ω Source/Load.

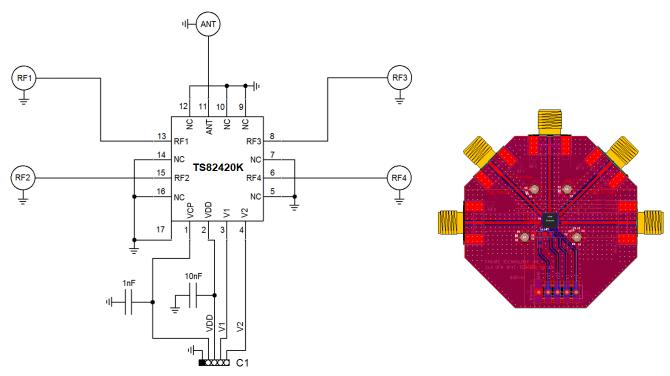
| Parameter                   | Condition                                                                 | Minimum | Typical | Maximum | Unit |
|-----------------------------|---------------------------------------------------------------------------|---------|---------|---------|------|
| Operating Frequency         |                                                                           | 30      |         | 5000    | MHz  |
| Insertion Loss, RFx         | 400MHz                                                                    |         | 0.2     |         |      |
|                             | 800MHz                                                                    |         | 0.2     |         |      |
|                             | 1.95GHz                                                                   |         | 0.3     |         |      |
|                             | 4.0GHz                                                                    |         | 0.5     |         |      |
| Isolation ANT-RFx           | 400MHz                                                                    |         | 45      |         |      |
|                             | 800MHz                                                                    |         | 40      |         | ٩D   |
|                             | 1.95GHz                                                                   |         | 30      |         | dB   |
|                             | 4.0GHz                                                                    |         | 20      |         |      |
| Return Loss ANT-            | 400MHz                                                                    |         | 28      |         |      |
| RFx                         | 800MHz                                                                    |         | 24      |         |      |
|                             | 1.95GHz                                                                   |         | 24      |         |      |
|                             | 4.0GHz                                                                    |         | 18      |         |      |
|                             | Harmonic distortion                                                       | •       |         |         |      |
| H2                          | 800MHz, CW, Pin=40dBm                                                     |         | 86      |         | dBc  |
| H3                          | 800MHz, CW, Pin=40dBm                                                     |         | 89      |         | dBc  |
| IIP3                        | 800MHz                                                                    |         | 74      |         | dBm  |
| CW P0.1dB <sup>[1]</sup>    | 800MHz                                                                    | 40      | 43      |         | dBm  |
| Peak P0.1dB <sup>[1]</sup>  | 800MHz, Duty cycle 1%, Period 1 mS                                        | 45      | 46      |         | dBm  |
| VCP                         | lload of 10uA                                                             | -19     | -18     | -17     | V    |
| VCP Sourcing<br>Current     | Sourcing current of external VCP supply                                   | 100     |         |         | uA   |
| Switching Time              | 50% ctrl to 10/90% of the RF value is settled. C1=1nF (refer to Figure 3) |         | 0.6     |         | μS   |
| Control Voltage             | Power supply VDD                                                          | 2.6     | 3.3     | 5.25    | V    |
|                             | All control pins high, V <sub>ih</sub>                                    | 1.0     | 3.3     | 5.25    | V    |
|                             | All control pins low, Vii                                                 | -0.3    |         | 0.5     | V    |
| Control Current             | All control pins low, Iii                                                 |         | 0       |         | μΑ   |
|                             | All control pins high, Iih                                                |         |         | 7.5     | μΑ   |
| Current<br>Consumption, IDD | Active mode                                                               |         | 50      | 75      | μΑ   |

## Note:

- [1] P0.1dB is a figure of merit.
- [2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.



## 8.0 Switch Truth Table


**Table 5 Switch Truth Table** 

| V1 | V2 | Active RF Path |
|----|----|----------------|
| 0  | 0  | ANT-RF1        |
| 1  | 0  | ANT-RF2        |
| 0  | 1  | ANT-RF3        |
| 1  | 1  | ANT-RF4        |

#### Attention:

- [1] VDD should be applied first before VCP. Minimum time between VDD and VCP should be 50usec.
- [2] V1, or V2 can be toggled/switched after VCP has settled.

## 9.0 Evaluation Board (no match)



**Figure 3 Evaluation Board Schematic** 

Figure 4 Evaluation Board Image

## Attention:

- [1] 17 refers to the center pad of the device.
- [2] -17V needed on VCP pin
- [3] matched EVB has a series 1nH inductor, and then a shunt 0.3pF capacitor at TS82420K Ant port.

# 10.0 Typical Characteristics(matched)

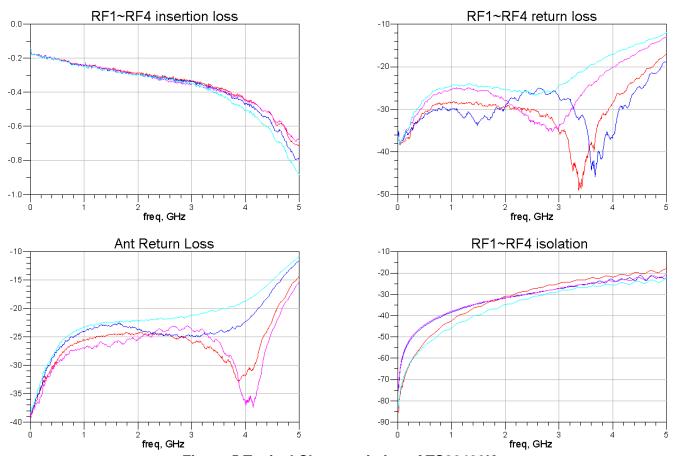



Figure 5 Typical Characteristics of TS82420K

## 11.0 Device Package Information

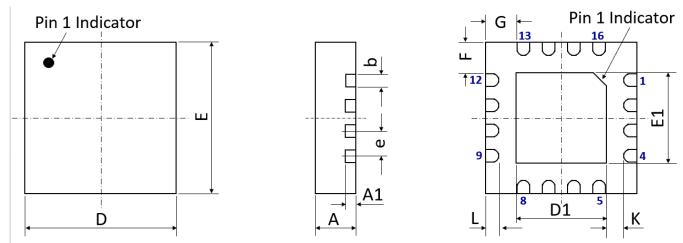



Figure 9 Device Package Drawing (All dimensions are in mm)

**Table 6 Device Package Dimensions** 

| tubio o zorioo i uonugo zimonoiono |            |                |                |            |                |  |
|------------------------------------|------------|----------------|----------------|------------|----------------|--|
| Dimension (mm)                     | Value (mm) | Tolerance (mm) | Dimension (mm) | Value (mm) | Tolerance (mm) |  |
| Α                                  | 0.80       | ±0.05          | Е              | 3.00 BSC   | ±0.05          |  |
| A1                                 | 0.203      | ±0.02          | E1             | 1.70       | ±0.05          |  |
| b                                  | 0.25       | ±0.05          | F              | 0.625      | ±0.05          |  |
| D                                  | 3.00 BSC   | ±0.05          | G              | 0.625      | ±0.05          |  |
| D1                                 | 1.70       | ±0.05          | L              | 0.25       | ±0.05          |  |
| е                                  | 0.50 BSC   | ±0.05          | K              | 0.40       | ±0.05          |  |

**Note:** Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

## Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

## 12.0 PCB Land Design

#### **Guidelines:**

- [1] 4-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.2mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is  $3(X)\times3(Y)=9$ .

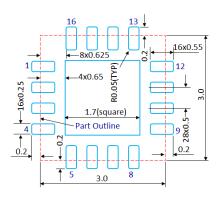



Figure 10 PCB Land Pattern

(Dimensions are in mm)

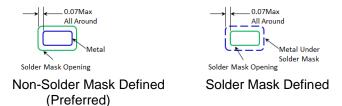



Figure 11 Solder Mask Pattern

(Dimensions are in mm)

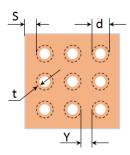



Figure 12 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.2mm; Plating Thickness t=25µm or 50µm)

# 13.0 PCB Stencil Design

#### **Guidelines:**

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

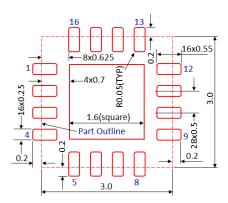



Figure 13 Stencil Openings

(Dimensions are in mm)

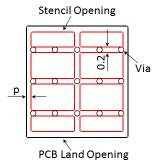



Figure 14 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

# 14.0 Tape and Reel Information

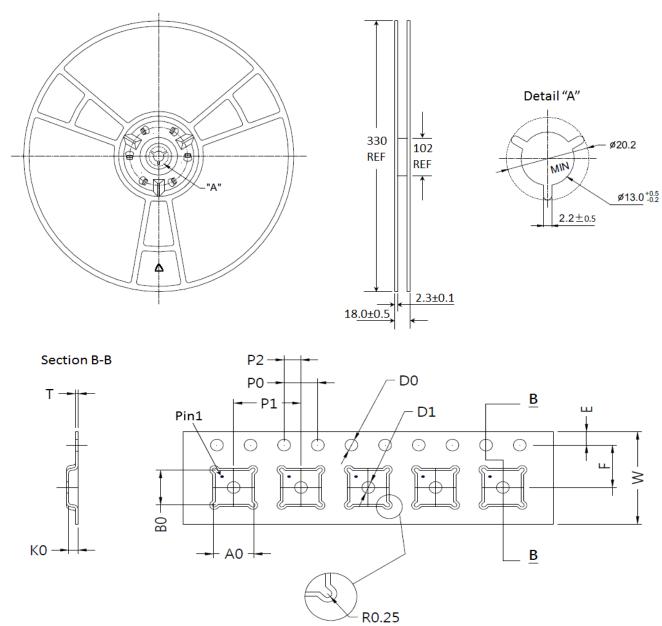



Figure 15 Tape and Reel Drawing

**Table 7 Tape and Reel Dimensions** 

| table i tape and reel billetieletie |            |                |                |            |                |  |
|-------------------------------------|------------|----------------|----------------|------------|----------------|--|
| Dimension (mm)                      | Value (mm) | Tolerance (mm) | Dimension (mm) | Value (mm) | Tolerance (mm) |  |
| A0                                  | 3.35       | ±0.10          | K0             | 1.10       | ±0.10          |  |
| В0                                  | 3.35       | ±0.10          | P0             | 4.00       | ±0.10          |  |
| D0                                  | 1.50       | +0.10/-0.00    | P1             | 8.00       | ±0.10          |  |
| D1                                  | 1.50       | +0.10/-0.00    | P2             | 2.00       | ±0.05          |  |
| Е                                   | 1.75       | ±0.10          | Т              | 0.30       | ±0.05          |  |
| F                                   | 5.50       | ±0.05          | W              | 12.00      | ±0.30          |  |



#### Edition Revision 1.0 - 2023-09-21

## **Published by**

Tagore Technology Inc. 601 Campus Drive, Suite C1 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

## **Legal Disclaimer**

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.