

TS8728N - 400W 20% Duty Cycle 2.0ms Pulse Width Peak GaN RF Switch

1.0 Features

• Switching Time: 0.75μs

• Low TX insertion loss: 0.39dB @ 3550MHz

• High isolation: 38dB @ 3550MHz

• 400W 20% Duty Cycle 2.0ms Pulse Width

Versatile 2.6-5.5V power supply

• Operating frequency: 500MHz to 4.0GHz

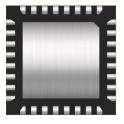


Figure 1 Device Image (32 Pin 5x5x1.25mm QFN Package)

2.0 Applications

- L-Band Radar
- S-Band Radar

3.0 Description

The TS8728N is an asymmetrical reflective Single Pole Dual Throw (SPDT) switch designed for broadband, high power switching applications. The TS8728N can cover 500MHz to 4.0GHz bandwidth and provide low insertion loss, high isolation and high linearity within a small package size.

The TS8728N is packaged into a compact Quad Flat No lead (QFN) 5x5mm 32 leads plastic package.

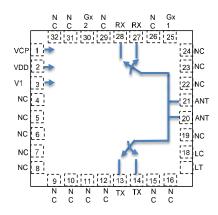


Figure 2 Function Block Diagram (Top View)

4.0 Ordering Information

Table 1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TS8728N	32 Pin 5×5×1.25mm QFN	Tape and Reel	1000	13" (330mm)	18mm	TS8728NMTRPBF
Evaluation Board						TS8728N-EVB

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description		
1	VCP	Internal charge pump voltage output. Connect a 100nF capacitor to GND on this pin.		
2	VDD	DC power supply		
3	V1	Switch control input 1		
4,5,6,7,8,9,10,11,16,23,24,31,32	NC	No internal connection, can be grounded		
12,15,19,22,25,30,26,29	NC	No internal connection. Must be left Open		
13,14	TX	TX Port		
17,18	LT, LC	Tuning Inductor		
20,21	ANT	Antenna Port		
27,28	RX	RX Port		

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias and adequate heat sinking must be used to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ratings							
Power Supply Voltage	VDD	2.6 to 5.5	V				
Storage Temperature Range	T _{st}	-55 to +125	°C				
Operating Temperature Range	Top	-40 to +85	°C				
Maximum Junction Temperature	TJ	+140	°C				
RF Input Power CW, Tcase=+85°C, 915MHz	TX, ANT	TBD	W				
Thermal Rati	ings						
Thermal Resistance (junction-to-case) – Bottom side	Rejc	3.5	°C/W				
Soldering Temperature	T _{SOLD}	260	°C				
ESD Rating	gs						
Human Body Model (HBM)	Level 1B	500 to <1000	V				
Charged Device Model (CDM)	Level C3	≥1000	V				
Moisture Rating							
Moisture Sensitivity Level	MSL	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications @T_A=+25°C Unless Otherwise Specified; VDD=+2.7V; 50Ω Source/Load.

Parameter	Condition	Min	Тур	Max	Unit	
Operating frequency		500		4000	MHz	
Lead the Lead TV	915MHz		0.27		dB	
Insertion loss, TX	3550MHz (matched)		0.39		aв	
	915MHz		0.69		dB	
Insertion loss, RX	3550MHz (matched)		0.77		uБ	
	915MHz		19		dB	
Isolation ANT-TX	3550MHz (matched)		27		uБ	
Isolation ANT-RX	915MHz		53		dB	
ISOIAUOTI AINT-RA	3550MHz (matched)		38		uБ	
Return Loss RX	915MHz		21		dB	
Retuill Loss RA	3550MHz (matched)		28		GD.	
Return Loss TX	915MHz		18		4D	
Retuin Loss 1A	3550MHz (matched)		24	dB		
P0.1dB CW	0.1dB compression point, 915MHz		>250		W	
P0.1dB Peak	Duty Cycle 20% with 2.0msec pulse width, 915MHz		>400		W	
P0.1dB Peak	Duty Cycle 20% with 2.0msec pulse width, 3500MHz		>400		W	
Conitability of times (DV/TV)	50% ctrl to 90% of RF value.		0.74 / 0.75		μS	
Switching time (RX/TX)	50% ctrl to 10% of RF value.		0.42 / 0.84		μS	
Discount Fall (in a /DV/TV)	10% to 90% of RF value.		0.36 / 0.12		μS	
Rise and Fall time (RX/TX)	90% to 10% of RF value.		0.36 / 0.73		μS	
	Power Supply VDD	2.6	3.3	5.5	V	
Control voltage	All control pins high, V _{ih}	1.0	3.3	5.25	V	
	All control pins low, V _{ii}	-0.3 0.5		0.5	V	
Control	All control pins low, Iii		0		μΑ	
Control current	All control pins high, Iih		7.5		μΑ	
Current consumption, IDD	Active mode (VDD on)		160	200	μΑ	

Note:

^[1] P0.1dB is a figure of merit.

^[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table

Table 5 Switch Truth Table

V1	Active RF Path
0	ANT-RX
1	ANT-TX

Attention:

- [1] VDD should be applied first before V1, otherwise may cause damage to the device.
- [2] There is an internal pull-down to ground on V1 control pin, the state at start-up without any control voltage applied will be ANT-RX.

9.0 Evaluation Board

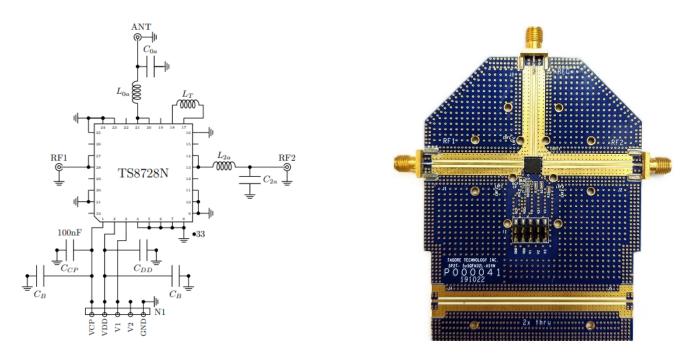


Figure 3 Evaluation Board and Schematic

Attention:

- [1] 33 refers to the center pad of the device. Multiple Plugged through hole vias should be added on this Ground Pad and adequate heat sinking should be added.
- [2] The purpose of connection between VCP and connector N1 is to monitor VCP, do not apply external voltage to VCP.

10.0 Typical Characteristics – Unmatched (<500 MHz)

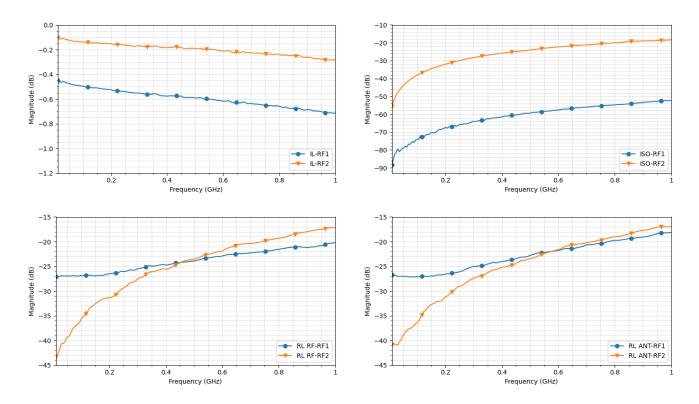


Figure 4 Typical characteristics

10.1 Typical Characteristics - Matched (3300 MHz - 3800 MHz)

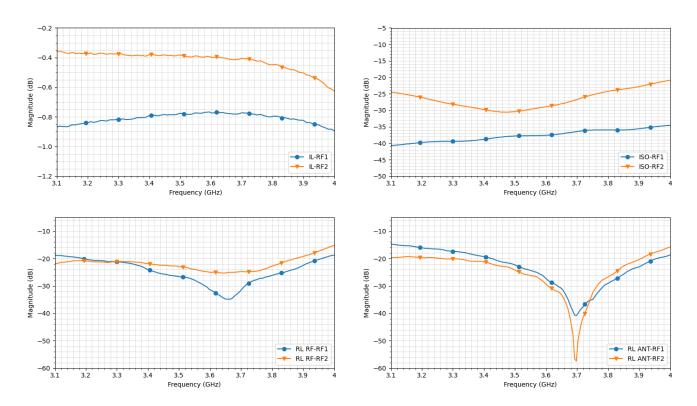
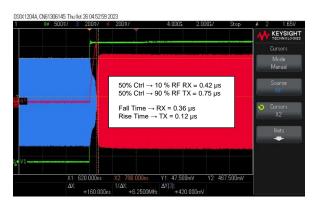



Figure 5 Typical characteristics (3300 MHz – 3800 MHz)

11.0 Typical Characteristics - Switching Time

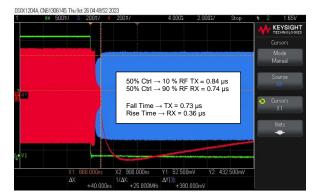


Figure 6 Switching Time

Table 6.1 Bill of Materials – Matching* (<500 MHz)

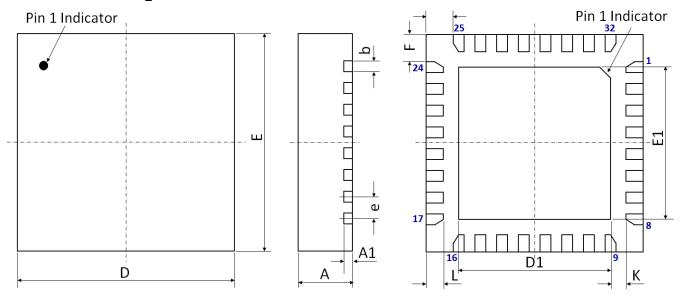

Component	Part Number	Description	Notes
Сср	GRM155R61E104KA87D	Ceramic capacitor, 0.1 µF, 25 V, ±10%.	
C_{DD}	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	
Св	UQCL2A270GAT2A	Ceramic capacitor, 27 pF, 200 V, ±2%.	Optional
L_T			DNP
L _{0a}			DNP
C _{0a}			DNP
L _{2a}			DNP
C _{2a}			DNP

Table 6.2 Bill of Materials – Matching* (3300 MHz – 3800 MHz)

Component Part Number		Description	Notes
C _{CP}	GRM155R61E104KA87D	Ceramic capacitor, 0.1 µF, 25 V, ±10%.	
C _{DD}	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	
L _T	0402DC-4N4X_R_	Ceramic core chip inductor, 4.4 nH, ± 5%.	
T _{0a} (L _{0a})	7.5 mm	PCB transmission line length.	From the IC-reference plane.
C _{0a}	0603N0R5BW251	Ceramic capacitor, 0.5 pF, 250V, ± 0.1pF.	
T _{2a} (L _{2a})	7.6 mm	PCB transmission line length.	From the IC-reference plane.
C _{2a}	0603N0R5BW251	Ceramic capacitor, 0.5 pF, 250V, ± 0.1pF.	

^{*} For additional details, please contact the Tagore Technology support team.

12.0 Device Package Information

Figure 12 Device Package Drawing

(All dimensions are in mm)

Table 7 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
Α	1.25	±0.05	Е	5.00 BSC	±0.05
A1	0.203	±0.02	E1	3.10	±0.06
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	5.00 BSC	±0.05	G	0.625	±0.05
D1	3.10	±0.06	L	0.40	±0.05
е	0.50 BSC	±0.05	K	0.50	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-003* at http://www.tagoretech.com for PCB and soldering related guidelines.

13.0 PCB Land Design

Guidelines:

- [1] 4 layer PCB is recommended.
- [2] Via diameter is recommended to be 0.2mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $5(X)\times5(Y)=25$.

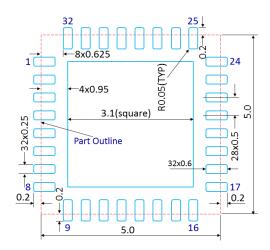


Figure 13 PCB Land Pattern (Dimensions are in mm)

Figure 14 Solder Mask Pattern (Dimensions are in mm)

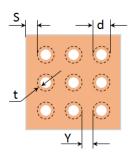


Figure 15 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.2mm; Plating Thickness t=25μm or 50μm)

14.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

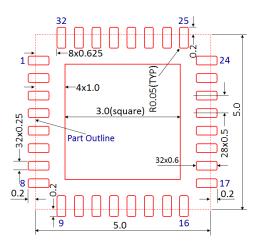


Figure 16 Stencil Openings (Dimensions are in mm)

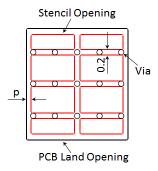
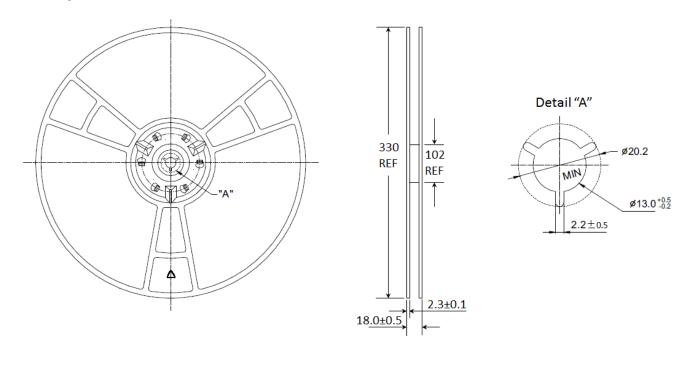



Figure 17 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

15.0 Tape and Reel Information

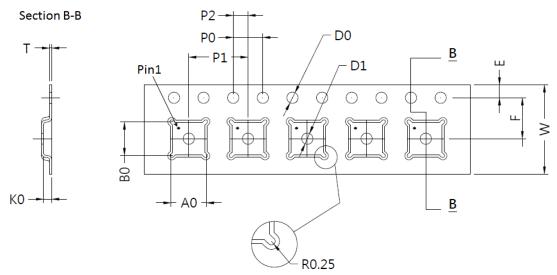


Figure 18 Tape and Reel Drawing

Table 8 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	5.35	±0.10	K0	1.10	±0.10
В0	5.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	T	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 0.1 - 2023-12-04 Published by

Tagore Technology Inc. 601 Campus Drive, Suite C1 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.