

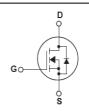
SJ-FET

TSA20N60S, TSK20N60S 600V N-Channel MOSFET

Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion inswitching mode operation for higher efficiency.


Features

- 650V @TJ = 150 ℃
- Typ. RDS(on) = 0.16Ω
- Ultra Low Gate Charge (typ. Qg = 63nC)
- 100% avalanche tested
- · Rohs Compliant

Absolute Maximum Ratings

Symbol	Parameter		TSA_K20N60S	Unit
V _{DSS}	Drain-Source Voltage		600	V
	Drain Current -Continuous (TC = 25°C) -Continuous (TC = 100°C)		20* 10*	А
I _{DM}	Drain Current - Pulsed	(Note 1)	62*	А
V _{GSS}	Gate-Source voltage		±30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	525	mJ
I _{AR}	Avalanche Current	(Note 1)	20	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	1	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation (TC = 25°C) -Derate above 25°C		151 1.67	W W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	℃
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C

Thermal Characteristics

Symbol	Parameter	TSA_K20N60S	Unit
R ₀ JC	Thermal Resistance, Junction-to-Case	0.83	°C/W
R _{0 CS}	Thermal Resistance, Case-to-Sink Typ.	0.5	°C/W
R ₀ JA	Thermal Resistance, Junction-to-Ambient	62	°C/W

Electrical Characteristics TC = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characterist	tics			1	l	
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250μA, TJ = 25°C	600			V
		VGS = 0V, ID = 250μA, TJ = 150℃		650		V
ΔBVDSS / ΔTJ	Breakdown Voltage Temperature Coefficient	ID = 250μA, Referenced to 25°C		0.6		V/°C
IDSS	Zero Gate Voltage Drain Current	VDS = 600V, VGS = 0V VDS =480V, TC = 125°C			1 10	μA μA
IGTSF	Gate-Body Leakage Current, Forward	VGS = 30V, VDS = 0V			100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -30V, VDS = 0V			-100	nA
On Characterist	tics					
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250μA	2.5		4.5	V
RDS(on)	Static Drain-Source On-Resistance	VGS = 10V, ID = 10A		0.16	0.19	Ω
gFS	Forward Transconductance	VDS = 40V, ID =5A (Note 4)		16		S
Rg	Gate Resistance	F=1MHz, open drain		4.5		Ω
Dynamic Chara	cteristics					
Ciss	Input Capacitance	VDS = 25V, VGS = 0V, f = 1.0MHz		1440		pF
Coss	Output Capacitance			300		pF
Crss	Reverse Transfer Capacitance			10		pF
Switching Char	acteristics					
td(on)	Turn-On Delay Time	VDD = 400V, ID = 10A RG =		25		ns
tr	Turn-On Rise Time	20 Ω (Note 4, 5)		55		ns
td(off)	Turn-Off Delay Time			70		ns
tf	Turn-Off Fall Time			40		ns
Qg	Total Gate Charge	VDS = 480V, ID = 20A VGS = 10V		63		nC
Qgs	Gate-Source Charge	(Note 4, 5)		7.8		nC
Qgd	Gate-Drain Charge	1		9		nC
Drain-Source D	iode Characteristics and Maximu	m Ratings		•		•
IS	Maximum Continuous Drain-Source Diode Forward Current				20	Α
ISM	Maximum Pulsed Drain-Source Diode Forward Current				60	Α
VSD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 20A			1.5	٧
trr	Reverse Recovery Time	VGS = 0V, IS = 20A dIF/dt =100A/µs (Note 4)		475		ns
Qrr	Reverse Recovery Charge	7		5.8		μC

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L=10.5mH, I_{AS} =10A, VDD=150V, Starting TJ=25 $^{\circ}$ C 3. I_{SD} \leqslant 20A, di/dt \leqslant 200A/us, V_{DD} \leqslant BV_{DSS}, Starting TJ = 25 $^{\circ}$ C 4. Pulse Test: Pulse width \leqslant 300us, Duty Cycle \leqslant 2%
- 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

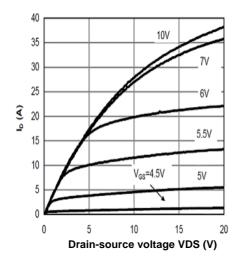
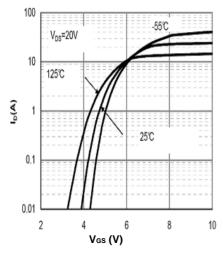



Figure 1: On-Region Characteristics@25° C

Figure 3: Transfer Charateristics

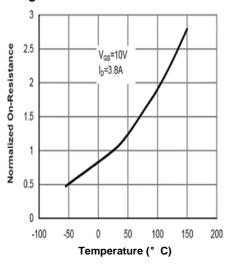


Figure 5: On-Resistance vs. Junction Temperature

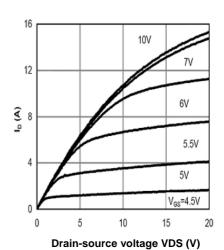


Figure 2: On-Region Characteristics@125° C

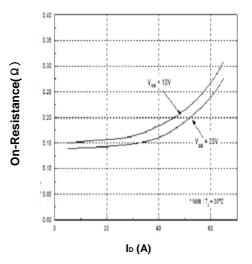


Figure 4: On-Resistance vs. Drain Current (ID)

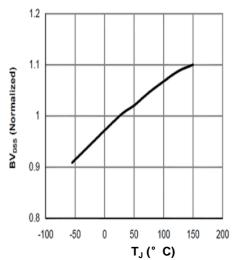


Figure 6: Break Down vs. Junction Temperature

Typical Performance Characteristics

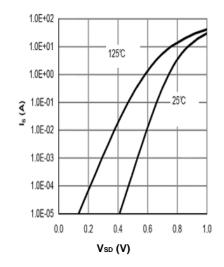


Figure 7: Body-Diode Characteristics

Figure 9: Capacitance Characteristics C=f(VDS), VGS=0V, f=1MHz

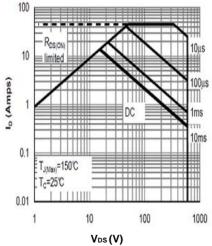


Figure 11: Maximum Forward Biased Safe Operating Area

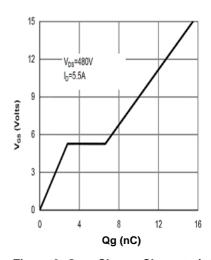


Figure 8: Gate-Charge Characteristics

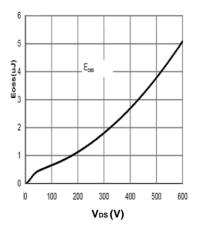


Figure 10: Coss stored Energy

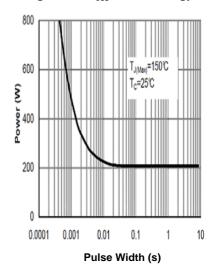


Figure 12: Single Pulse Power Rating Junction to Case

Typical Performance Characteristics

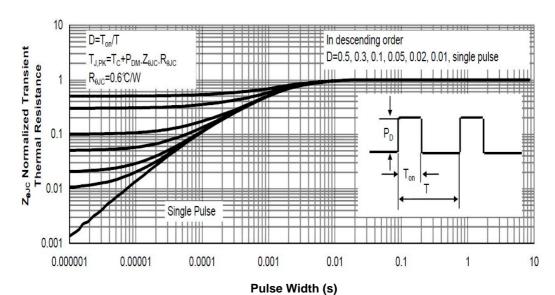
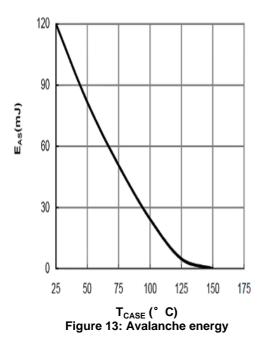
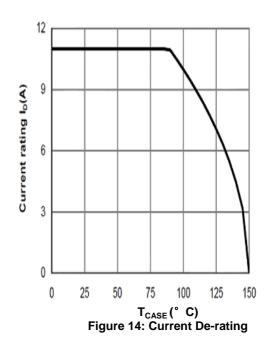
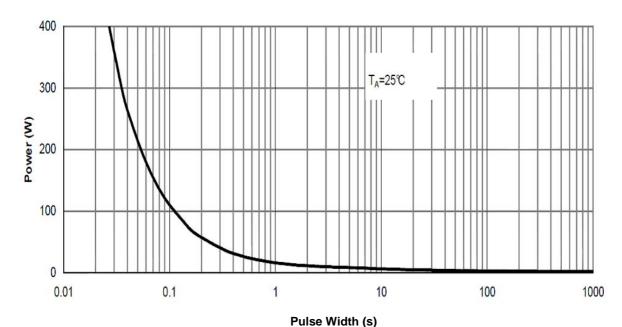
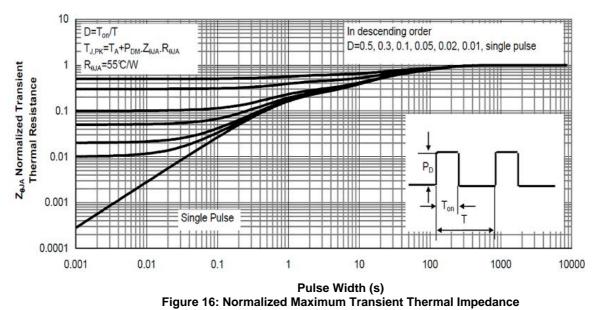
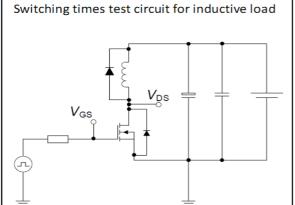
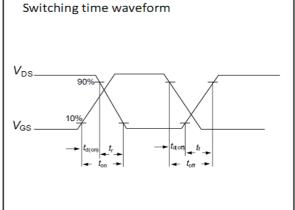
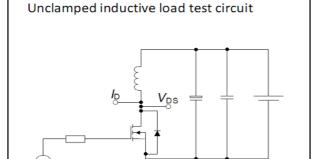
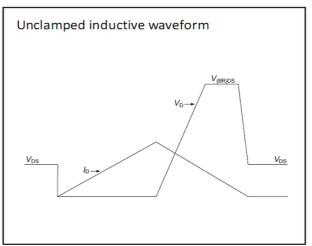




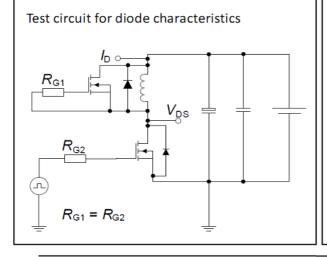
Figure 12: Normalized Maximum Transient Thermal Impedance

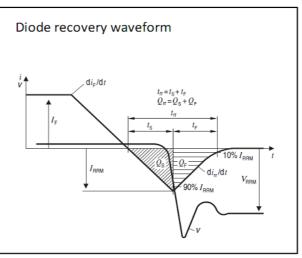




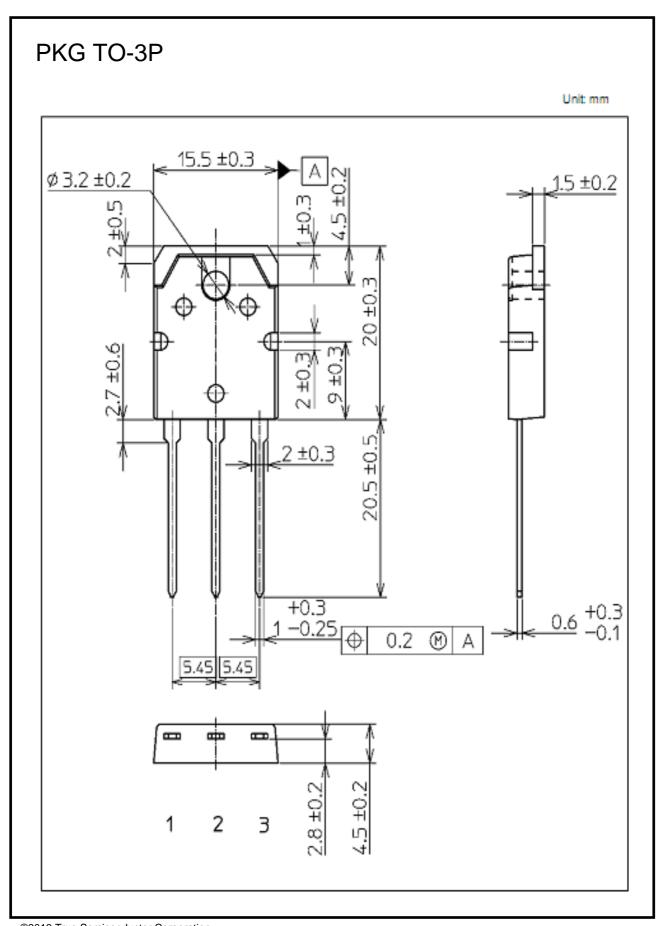

Figure 15: Single Pulse Power Rating Junction-Ambient


Test circuits


Switching times test circuit and waveform for inductive load




Unclamped inductive load test circuit and waveform





Test circuit and waveform for diode characteristics

