

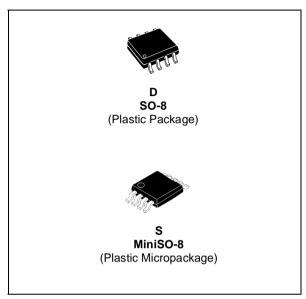
Low Consumption Voltage and Current Controller for Battery Chargers and Adaptors

PRELIMINARY DATA

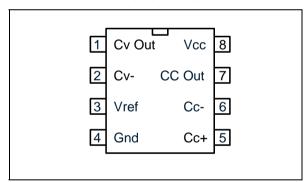
- Constant voltage and constant current control
- **■** Low consumption
- Low voltage operation
- Low external component count
- Current sink output stage
- **■** Easy compensation
- High ac mains voltage rejection

Voltage Reference:

- Fixed output voltage reference 1.25V
- 0.5% and 1% Voltage precision


Description

TSM1015 is a highly integrated solution for SMPS applications requiring CV (constant voltage) and CC (constant current) mode.


TSM1015 integrates one voltage reference and two operational amplifiers.

The voltage reference combined with one operational amplifier makes it an ideal voltage controller. The other operational, combined with few external resistors and the voltage reference, can be used as a current limiter.

TSM1015 is pin to pin compatible with TSM103 and represents an enhanced version low consumption.

Pin Connections (top view)

Applications

Adapters

Battery chargers

Order Codes

Part Number	Temperature Range	Package	Packaging	VRef (%)	Marking
TSM1015ID			Tube	1	M1015
TSM1015IDT	-40 to 105°C	SO-8	Tape & Reel	1	M1015
TSM1015AID			Tube	0.5	M1015A
TSM1015AIDT			Tape & Reel	0.5	M1015A
TSM1015IST			Tape & Reel	1	M810
TSM1015AIST		1111111 30-0	Tape & Reel	0.5	M811

1 Absolute Maximum Ratings

Table 1: Key parameters and their absolute maximum ratings

www.DataSheet4U.com

Symbol	DC Supply Voltage	Value	Unit
Vcc	DC Supply Voltage (50mA =< lcc)	-0.3V to Vz	V
Vi	Input Voltage	-0.3 to Vcc	V
PT	Power dissipation		W
Tstg	Storage temperature	-55 to 150	°C
Tj	Junction temperature	150	°C
Iref	Voltage reference output current	2.5	mA
ESD	Electrostatic Discharge	2	kV
Rthja	Thermal Resistance Junction to Ambient Mini SO8 package	180	°C/W
Rthja	Thermal Resistance Junction to Ambient SO8 package	175	°C/W

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
Vcc	DC Supply Conditions	4.5 to Vz	V
Toper	Operational temperature	-40 to 105	°C

Table 3: Pin description - SO-8 and Mini SO-8 pin out

Name	Pin #	Туре	Function
CVOUT	1	Analog Output	Output of the operational amplifier
CV-	2	Analog Input	Input pin of the operational amplifier
Vref	3	Analog Output	Voltage Reference
Gnd	4	Power Supply	Ground Line. 0V Reference For All Voltages
CC+	5	Analog Input	Input pin of the operational amplifier
CC-	6	Analog Input	Input pin of the operational amplifier
CCOUT	7	Analog Output	Output of the operational amplifier
Vcc	8	Power Supply	Power supply line.

2 Electrical Characteristics

www.DataSheet4U.com

Table 4: Electrical characteristics Tamb = 25°C and Vcc = +18V (unless otherwise specified)

Symbol	Parameter	er Test Condition		Тур	Max	Unit
	Total C	Current Consumption	•			
Icc	Total Supply Current, excluding current in Voltage Reference ¹ .	Vcc = 18V, no load Tmin. < Tamb < Tmax.		100	180	μA
Vz	Vcc clamp voltage	Icc = 50mA		28		V
Operator	1: Op-amp with non-inverting input co	nnected to the internal V	ref			
Vref+V _{io}	Input Offset Voltage + Voltage reference TSM1015 TSM1015A	$\begin{split} T_{amb} &= 25^{\circ}C \\ T_{min.} &\leq T_{amb} \leq T_{max.} \\ T_{amb} &= 25^{\circ}C \\ T_{min.} &\leq T_{amb} \leq T_{max.} \end{split}$		1.251	1.266 1.279 1.258 1.267	V
DV _{io}	Input Offset Voltage Drift			7		μV/°C
Operator			 			
V _{io}	Input Offset Voltage TSM1015 TSM1015A	$T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$ $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		1 0.5	4 5 2 3	mV
DV _{io}	Input Offset Voltage Drift	THE CONTRACTOR OF THE CONTRACT		7		μV/°C
I _{ib}	Input Bias Current	$T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		20 50	150 200	nA
SVR	Supply Voltage Rejection Ration	$V_{CC} = 4.5V \text{ to } 28V$	65	100		dB
Vicm	Input Common Mode Voltage Range		0		Vcc-1.5	V
CMR	Common Mode Rejection Ratio	$T_{amb} = 25$ °C $T_{min.} \le T_{amb} \le T_{max.}$	70 60	85		dB
Output st	age					
Gm	Transconduction Gain. Sink Current Only ²	$T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	0.5	1 1		mA/mV
Vol	Low output voltage at 5 mA sinking current	$T_{min.} \le T_{amb} \le T_{max.}$		250	400	mV
los	Output Short Circuit Current. Output to (Vcc-0.6V). Sink Current Only	$T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	6 5	10		mA
Voltage re	eference					
V_{ref}	Reference Input Voltage TSM1015 1% precision TSM1015A 0.5% precision	$\begin{split} T_{amb} &= 25^{\circ}C \\ T_{min.} &\leq T_{amb} \leq T_{max.} \\ T_{amb} &= 25^{\circ}C \\ T_{min.} &\leq T_{amb} \leq T_{max.} \end{split}$	1.238 1.225 1.244 1.237	1.25 1.25	1.262 1.273 1.256 1.261	V
ΔV_{ref}	Reference Input Voltage Deviation Over Temperature Range	$T_{min.} \le T_{amb} \le T_{max.}$		20	30	mV
RegLine	Reference input voltage deviation over Vcc range.	lload = 1mA			20	mV
RegLoad	Reference input voltage deviation over output current.	Vcc = 18V, 0 < Iload < 2.5mA			10	mV

¹⁾ Test conditions: pin 6 and 4 connected to GND, pin 2 and 1 connected to 1.25V, pin 5 connected to 200mV.

²⁾ The current depends on the difference voltage between the negative and the positive inputs of the amplifier. If the voltage on the minus input is 1mV higher than the positive amplifier, the sinking current at the output OUT will be increased by Gm*1mA.

Figure 1: Internal schematic

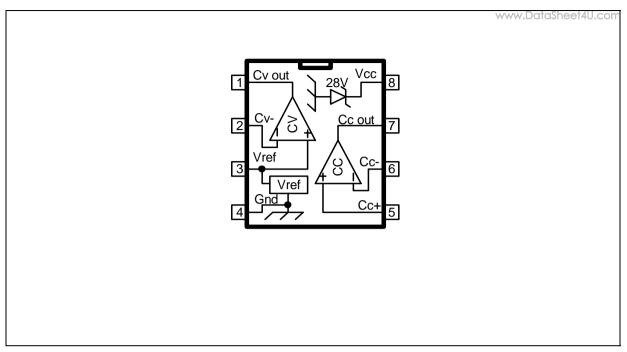
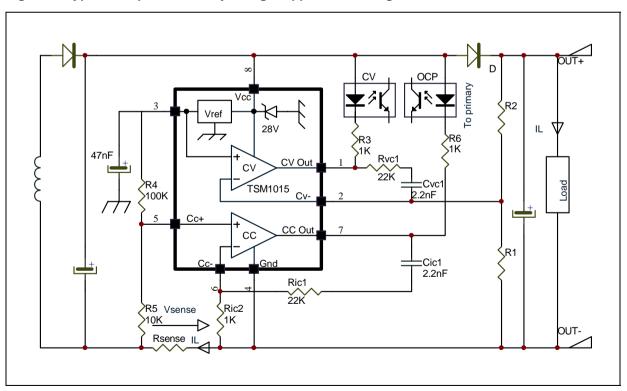



Figure 2: Typical adapter or battery charger application using TSM1015

In the above application schematic, the TSM1015 is used on the secondary side of a flyback adapter (or battery charger) to provide an accurate voltage and current control. The above feedback loop is made with optocoupler.

3 Principles of Operation and Application Tips

3.1 Voltage control

www.DataSheet4U.com

The voltage loop is controlled via a first transconductance operational amplifier, the resistor bridge R1, R2, and the optocoupler which is directly connected to the output.

The relation between the values of R1 and R2 should be chosen as written in Equation 1.

$$R1 = R2 \times V_{Ref} / (V_{out} - V_{Ref})$$

Equation 1

Where Vout is the desired output voltage.

To avoid the discharge of the load, the resistor bridge R1, R2 should be highly resistive. For this type of application, a total value of $100K\Omega$ (or more) would be appropriate for the resistors R1 and R2.

As an example, with R2 = $100K\Omega$, Vout = 4.10V, Vref = 1.25V, then R1 = $41.9K\Omega$.

Note that if the low drop diode should be inserted between the load and the voltage regulation resistor bridge to avoid current flowing from the load through the resistor bridge, this drop should be taken into account in the above calculations by replacing Vout by (Vout + Vdrop).

3.2 Current control

The current loop is controlled via the second trans-conductance operational amplifier, the sense resistor Rsense, and the optocoupler.

Vsense threshold is achieved externally by a resistor bridge tied to the Vref voltage reference. Its middle point is tied to the positive input of the current control operational amplifier, and its foot is to be connected to lower potential point of the sense resistor as shown on the following figure. The resistors of this bridge are matched to provide the best precision possible.

The control equation verifies:

Equation 2

Vsense = R5*Vref/(R4+R5)

$$llim = R5*Vref/(R4+R5)*Rsense$$

Equation 2'

where Ilim is the desired limited current, and Vsense is the threshold voltage for the current control loop.

Note that the Rsense resistor should be chosen taking into account the maximum dissipation (Plim) through it during full load operation.

Equation 3

Therefore, for most adapter and battery charger applications, a quarter-watt, or half-watt resistor to make the current sensing function is sufficient.

The current sinking outputs of the two trans-connuctance operational amplifiers are common (to the output of the IC). This makes an ORing function which ensures that whenever the current or the voltage reaches too high values, the optocoupler is activated.

The relation between the controlled current and the controlled output voltage can be described with a square characteristic as shown in the following V/I output-power graph.

Figure 3: Output voltage versus output current

3.3 Compensation

The voltage-control trans-conductance operational amplifier can be fully compensated. Both of its output and negative input are directly accessible for external compensation components.

An example of a suitable compensation network is shown in Fig.2. It consists of a capacitor Cvc1=2.2nF and a resistor Rcv1=22K Ω in series.

The current-control trans-conductance operational amplifier can be fully compensated. Both of its output and negative input are directly accessible for external compensation components.

An example of a suitable compensation network is shown in Fig.2. It consists of a capacitor Cic1=2.2nF and a resistor Ric1=22KO in series

3.4 Start-up and short circuit conditions

Under start-up or short-circuit conditions the TSM1015 is not provided with a high enough supply voltage. This is due to the fact that the chip has its power supply line in common with the power supply line of the system.

Therefore, the current limitation can only be ensured by the primary PWM module, which should be chosen accordingly.

If the primary current limitation is considered not to be precise enough for the application, then a sufficient supply for the TSM1015 has to be ensured under any condition. It would then be necessary to add some circuitry to supply the chip with a separate power line. This can be achieved in numerous ways, including an additional winding on the transformer.

3.5 Voltage clamp

The following schematic shows how to realize a low-cost power supply for the TSM1015 (with no additional windings). Please pay attention to the fact that in the particular case presented here, this low-cost power supply can reach voltages as high as twice the voltage of the regulated line. Since the Absolute Maximum Rating of the TSM1015 supply voltage is 28V. In the aim to protect he TSM1015 against such how voltage values a internal zener clamp is integrated.

Rlimit = (Vcc-Vz)Ivz

Figure 4: Clamp voltage

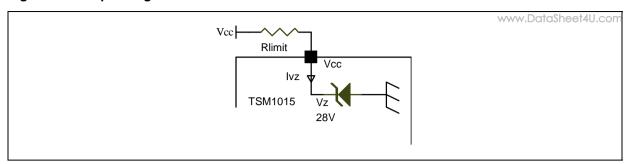
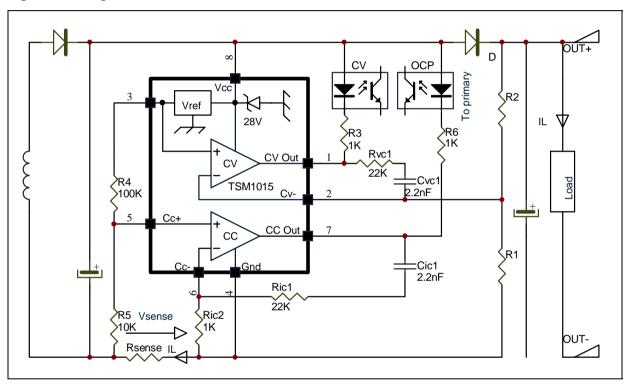
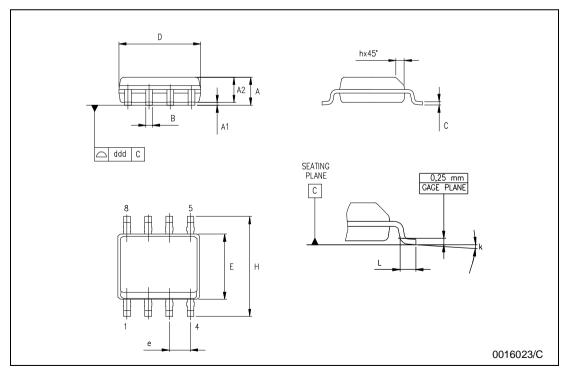



Figure 5: Voltage controller and over current detection schematic

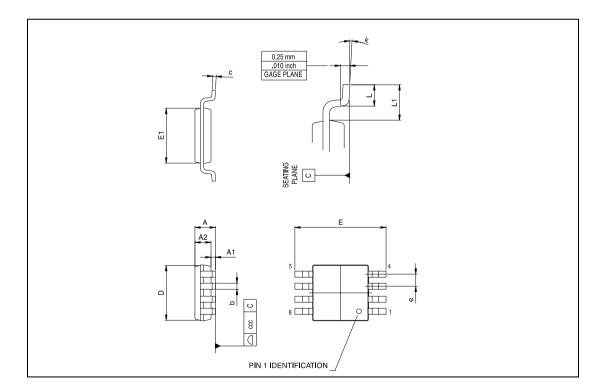


4 Package Mechanical Data

www.DataSheet4U.com

60 0	MECI		A I I	
3U-0		HANIC	4L I	DAIA

DIM.	mm.			inch		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k		8° (max.)				
ddd			0.1			0.04



Package Mechanical Data

www.DataSheet4U.com

miniSO-8	MECHAN		DATA
111111130-0	WEGHAN	IUAL	DAIA

DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.1			0.043	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.78	0.86	0.94	0.031	0.031	0.037	
b	0.25	0.33	0.40	0.010	0.13	0.013	
С	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	4.75	4.90	5.05	0.187	0.193	0.199	
E1	2.90	3.00	3.10	.0114	0.118	0.122	
е		0.65			0.026		
K	0°		6°	0°		6°	
L	0.40	0.55	0.70	0.016	0.022	0.028	
L1			0.10			0.004	

TSM1015 Revision History

5 Revision History

www.DataSheet4LLcom

Date	Revision	Description of Changes
01 Nov 2004	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com