| FOR MESSRS: | DATE : Mar. 22 nd ,202 ^d | |-------------|--| | | | # **CUSTOMER'S ACCEPTANCE SPECIFICATIONS** # TX09D202VM1CCA # Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|------------------------------|------------| | 1 | COVER | 7B64PS 2701-TX09D202VM1CCA-3 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX09D202VM1CCA-3 | 2-1/1 | | 3 | GENERAL DATA | 7B64PS 2703-TX09D202VM1CCA-3 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX09D202VM1CCA-3 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX09D202VM1CCA-3 | 5-1/1 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX09D202VM1CCA-3 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAM | 7B64PS 2707-TX09D202VM1CCA-3 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX09D202VM1CCA-3 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX09D202VM1CCA-3 | 9-1/7~7/7 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX09D202VM1CCA-3 | 10-1/1 | | 11 | TOUCH PANEL | 7B64PS 2711-TX09D202VM1CCA-3 | 11-1/2~2/2 | | 12 | APPEARANCE STANDARD | 7B64PS 2712-TX09D202VM1CCA-3 | 12-1/4~4/4 | | 13 | PRECAUTIONS | 7B64PS 2713-TX09D202VM1CCA-3 | 13-1/2~2/2 | | 14 | DESIGNATION OF LOT MARK | 7B64PS 2714-TX09D202VM1CCA-3 | 14-1/1 | ACCEPTED BY: PROPOSED BY: Mex Lec JDI Taiwan Inc. Kaohsiung Branch SHEET NO. 7B64PS 2701-TX09D202VM1CCA-3 PAGE 1-1/1 # 2. RECORD OF REVISION | DATE | SHEET No. | | SUMMARY | | | | |------------|---|--|---|----------------------|------------|--| | Mar.01,'23 | 7B64PS 2701 –
TX09D202VM1CCA-2
Page 1-1/1
7B64PS 2714 –
TX09D202VM1CCA-2
Page 14-1/1 | JDI (| changed : DE Group D-Electronics Inc. | Japan Display In |) | | | | All page | Company name changed: From "KAOHSIUNG OPTO-ELECTRONICS INC." to "JDI Taiwan Inc. Kaohsiung Branch" | | | | | | Mar.22,'24 | 7B64PS 2703 –
TX09D202VM1CCA-3
Page 3 – 1/1 | 3.1 DISPLAY FE
Revision Module | EATURES
e Dimensions: 7.6(D)→8.2(D) | | | | | | 7B64PS 2709-
TX09D202VM1CCA-3
Page 9-1/7 | Connector (CN1
FA5S040HP1R3 | 3000 made by JAE(Thickness: 0 | • | | | | | 7B64PS 2710-
TX09D202VM1CCA-3
Page 10-1/1 | 60025-4007-5001 made by TOPWISE (FPC: Thickness: 0.3±0.05mm) 10. OUTLINE DIMENSIONS The max of total thickness changed:7.9mm→8.5mm | | | | | | | 7B64PS 2714-
TX09D202VM1CCA-3
Page 14-1/1 | 13. DESIGNATI
Added :
REV.No | ON of LOT MARK ITEM | REMARKS | | | | | | A | - | - | | | | | | ВВ | Color filter changed Connector (CN1) changed | PCN 1028
PCN 1097 | | | | | | | | | | | 2-1/1 # 3. GENERAL DATA ### 3.1 DISPLAY FEATURES This module is a 3.5" QVGA of 3:4 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX09D202VM1CCA | |-------------------------|---| | Module Dimensions | 64.0(W) mm x 86.0(H) mm x 8.2(D) mm | | LCD Active Area | 53.64(W) mm x 71.52(H) mm | | Pixel Pitch | 0.2235(W) mm x 0.2235(H) mm | | Resolution | 240 x 3(RGB)(W) x 320(H) dots | | Color Pixel Arrangement | R, G, B Vertical stripe | | LCD Type | Transmissive Color TFT; Normally White | | Display Type | Active Matrix | | Number of Colors | 262k Colors (6-bit RGB) | | Backlight | Light Emitting Diode (LED) | | Weight | 46g | | Interface | C-MOS; 40 pins | | Power Supply Voltage | 3.3V (Including LCD ,Timing Controller and Backlight) | | Power Consumption | 0.42 W | | Viewing Direction | 6 O'clock (without image inversion and least brightness change) 12 O'clock (contrast peak located at) | | Touch Panel | Resistance type. The surface is anti-glare. | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2703-TX09D202VM1CCA-3 | PAGE | 3-1/1 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| ## 4. ABSOLUTE MAXIMUM RATINGS | Item | | Symbol | Min. | Max. | Unit | Remarks | |------------------|-----------------------|-----------------|------|----------------------|------|----------| | Supply Voltage | | V_{DD} | -0.3 | 4.0 | V | - | | Input Voltage of | Logic | Vı | -0.3 | V _{DD} +0.3 | V | Note 1 | | Operating Temp | Operating Temperature | | -20 | 70 | °C | Note 2 | | Storage Temper | Storage Temperature | | -30 | 80 | °C | Note 2 | | | Forward Current | l _F | - | 30 | mA | Note 3 | | LED Backlight | Pulse Forward Current | I _{FP} | - | 100 | mA | Note 4 | | | Reverse Voltage | V_R | - | 5 | V | LED unit | - Note 1: The rating is defined for the signal voltages of the interface such as DTMG, DCLK and RGB data bus. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different from 25 °C. - Operating under high temperature will shorten LED lifetime. Note 3: Fig. 4.1 shows the maximum rating of forward current based on different temperature for LED unit. Fig. 4.1 Note 4: Fig. 4.2 shows the LED characteristics of the relationship between I_{FP} vs. duty ratio, which is related to dimming control of LED backlight. Fig. 4.2 ### 5. ELECTRICAL CHARACTERISTICS ### 5.1 LCD CHARACTERISTICS $T_a = 25 \,^{\circ}C$, Vss = 0V | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |------------------------|--------------------|--|---------------------|------|---------------------|------|----------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | Input Voltage of Logic | | "H" level | 0.8 V _{DD} | - | V_{DD} | | Nictoria | | input voltage of Logic | Vı | "L" level | Vss | - | 0.2 V _{DD} | V | Note 1 | | Power Supply Current | I _{DD} | V _{DD} -V _{SS} =3.0V | - | 125 | 150 | mA | Note 2,3 | | Frame Frequency | $f_{\it Frame}$ | - | 50 | 60 | 68 | Hz | | | DCLK Frequency | f_{CLK} | - | 4.75 | 5.7 | 6.5 | MHz | - | - Note 1: The rating is defined for the signal voltages of the interface such as DTMG, DCLK and RGB data bus. - Note 2: An all black check pattern is used when measuring I_{DD} . f_{Frame} is set to 60Hz. - Note 3: 0.4A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 1.0A to start the display and break fuse once any short circuit occurred. ### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \, {}^{\circ}C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|----------------|------------------------------|------|------|------|---------|----------| | LED Input Voltage | VF | I _F =15.4mA | 3.0 | 3.3 | 3.6 | V | LED/Part | | LED Forward Current | l _F | - | - | 15.4 | 25 | mA | LED/Part | | LED Reverse Current | I _R | V _R =5V | - | - | 10 | μ A | LED/Part | | LED Current Control | Vctrl | V_{DD} - V_{SS} =3.3 V | 0 | 1.8 | 4.0 | V | Note 1,2 | Note 1: As Fig. 5.1 shown, LED current is controlled by the LED driver when applying 3.3V. Fig 5.1 Note 2: LED current depend on following conditions. LED current is calculated by Vctrl and V_{FB} when V_{FB} is controlled by Vctrl. $$I_{LED}: \frac{V_{FB}}{10}: When Vctrl > 1.8 V$$ $$I_{LED}: \frac{Vctrl}{50}: When Vctrl < 1 V.$$ | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2705-TX09D202VM1CCA-3 | PAGE | 5-1/1 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| ### 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on after 30 minutes. - The ambient temperature is 25°C. - In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1. $T_a = 25 \, ^{\circ}C, f_{Frame} = 60 \, \text{Hz}, \text{Vdd} = 3.3 \text{V}$ Remarks Item Symbol Condition Min. Тур. Max. Unit Brightness of White В 270 320 cd/m² Note 1 $\phi = 0^{\circ}, \theta = 0^{\circ}$ **Brightness Uniformity** 70 -% Note 2 15.4 mA/per LED Contrast Ratio CR 180 300 -Note 3 Response Time Tr+Tf $\phi = 0^{\circ}, \theta = 0$ -30 ms Note 4 $\theta = X$ $\phi = 0^{\circ}, CR \ge 10$ 70 $\theta = X'$ ϕ =180°, CR \geq 10 70 Viewing Angle Degree Note 5 $\theta = Y$ ϕ =90°,CR \geq 10 80 $\theta = Y'$ ϕ =270°,CR \geq 10 -60 Χ 0.54 0.59 0.64 Red Υ 0.29 0.34 0.39 Χ 0.31 0.36 0.41 Green Υ 0.51 0.56 0.61 Color ϕ =0 $^{\circ}$, θ =0 Note 6 Chromaticity Χ 0.10 0.15 0.20 Blue Υ 80.0 0.13 0.18 Χ 0.28 0.33 0.38 White 0.29 0.34 0.39 Note 1: The brightness is measured from the center point of the panel, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2. JDI Taiwan Inc. Kaohsiung Branch SHEET NO. 7B64PS 2706-TX09D202VM1CCA-3 PAGE 6-1/2 Note 3: The contrast ratio is measured from the center point of the panel, P5, and defined as the following equation: $$CR = \frac{Brightness of White}{Brightness of Black}$$ Note 4: The definition of response time is shown in Fig. 6.3. Rising time is the period from 90% brightness down to 10% brightness when the data is from white turning to black. Oppositely, Falling time is the period from 10% brightness rising to 90% brightness. Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, ϕ =270° means 6 o'clock, and ϕ =0° means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The viewing direction of this display is 6 o'clock, which means that a photograph with gray scale would not be reversed in color and the brightness change would be less from this direction. However, the contrast peak would be located at 12 o'clock. Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. # 7. BLOCK DIAGRAM Note 1: Signals are DTMG, DCLK and RGB data bus. 7-1/1 # 8. RELIABILITY TESTS | Test Item | Condition | Condition | | | |-----------------------------|---|---|--|--| | High Temperature | 1) Operating
2) 70 °C | 240 hrs | | | | Low Temperature | 1) Operating
2) -20 °C | 240 hrs | | | | High Temperature | 1) Storage
2) 80 °C | 240 hrs | | | | Low Temperature | 1) Storage
2) -30 °C | 240 hrs | | | | Heat Cycle | 1) Operating 2) -20°C ~70°C 3) 3hrs~1hr~3hrs | 240 hrs | | | | Thermal Shock | 1) Non-Operating 2) -35 °C ↔ 85 °C 3) 0.5 hr ↔ 0.5 hr | 240 hrs | | | | High Temperature & Humidity | 1) Operating 2) 40 °C & 85%RH 3) Without condensation | 240 hrs
(Note 3) | | | | Vibration | 1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions | 1 hr for each direction | | | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 50G 4) ±X, ±Y and ±Z directions | Once for each direction | | | | ESD | Operating Tip: 150 pF, 330 Ω Air discharge for glass: ± 8KV Contact discharge for metal frame: ± 8KV | 1) Glass: 9 points
2) Metal frame: 8 points
(Note4) | | | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40° C, the humidity needs to be reduced as Fig. 8.1 shown. Note 4: All pins of LCD interface(CN1) have been tested by ±100V contact discharge of ESD under non-operating condition. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2708-TX09D202VM1CCA-3 | PAGE | 8-1/1 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| # 9. LCD INTERFACE ### 9.1 INTERFACE PIN CONNECTIONS The connector of display interface is 60025-4007-5001 made by TOPWISE (FPC: Thickness: 0.3 ± 0.05 mm; Pitch: 0.5 ± 0.05 mm) and more details of the connector are shown in the section of outline dimension. Pin assignment of LCD interface is as below: | Pin No. | Signal | Function | Pin No. | Signal | Function | |---------|-----------------|------------------------|---------|--------|---------------------------| | 1 | V_{DD} | | 21 | G4 | Croon Data | | 2 | V _{DD} | Power Supply for Logic | 22 | G3 | Green Data | | 3 | V _{DD} | | 23 | Vss | GND | | 4 | DCLK | Dot Clock | 24 | G2 | | | 5 | Vss | GND | 25 | G1 | Green Data | | 6 | HSYNC | Horizontal Sync Pulse | 26 | G0 | | | 7 | Vss | GND | 27 | Vss | GND | | 8 | DTMG | Timing Signal for Data | 28 | B5 | | | 9 | Vss | GND | 29 | В4 | Blue Data | | 10 | NC | No Connection | 30 | В3 | | | 11 | Vss | GND | 31 | Vss | GND | | 12 | R5 | | 32 | B2 | | | 13 | R4 | Red Data | 33 | B1 | Blue Data | | 14 | R3 | | 34 | В0 | | | 15 | Vss | GND | 35 | PCI | Power Control In (Note 1) | | 16 | R2 | | 36 | Vctrl | LED Current Control | | 17 | R1 | Red Data | 37 | xR | Touch Panel Right Side | | 18 | R0 | | 38 | уL | Touch Panel Lower Side | | 19 | Vss | GND | 39 | xL | Touch Panel Left Side | | 20 | G5 | Green Data | 40 | уU | Touch Panel Upper Side | Note 1: Please follow the page 8-5/7 to set the PCI. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2709-TX09D202VM1CCA-3 | PAGE | 9-1/7 | |----------------------------------|--------------|------------------------------|------|-------| |----------------------------------|--------------|------------------------------|------|-------| ### 9.2 TIMING CHART SYNCHRONOUS MODE # **Horizontal** ### **Vertical** - Note 1: Data is latched negative edge trigger of DCLK. - Note 2: VSYNC is generated by internally. - Note 3: DTMG should be low during the blanking time. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2709-TX09D202VM1CCA-3 | PAGE | 9-2/7 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| ### B. CLOCK AND DATA INPUT TIMING Setup & Hold Time # 9.3 INTERFACE TIMING SPECIFICATIONS ### SYNCHRONOUS MODE | Item | | Symbol | Value | Unit | |-----------|----------------------------|--------------|-------|-------| | | CLK Frequency | fclk | 5.7 | MHz | | | Display Data | thd | 240 | | | l laves a | Cycle Time | th | 273 | | | Hsync - | Pulse Width | thp | 5 | DCLK | | | Pulse Width and Back Porch | thp + thb 22 | | | | | Front Porch | thf | 11 | | | Vsync | Display Line | tvd | 320 | | | | Cycle Time | tv | 348 | | | | Pulse Width | tvp | 1 | Hsync | | | Pulse Width and Back Porch | tvp + tvb | 26 | | | | Front Porch | t∨f | 2 | | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2709-TX09D202VM1CCA-3 | PAGE | 9-4/7 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| # 9.4 POWER SEQUENCE ### NOTE: # 9.5 DATA INPUT for DISPLAY COLOR | | Red Data | | | Green Data | | | | | Blue Data | | | | | | | | | | | |-------------|------------|-----|----|------------|----|----|-----|-----|-----------|----|----|----|-----|-----|----|----|----|----|-----| | Input | color | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | В4 | ВЗ | B2 | B1 | В0 | | | | MSE | 3 | | | | LSB | MSE | 3 | | | | LSB | MSE | 3 | | | | LSB | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic color | Blue(63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Dasic color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Red (62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Green (62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Blue (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Blue | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Blue (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | SHEET | |-------| | NO. | # 9.6 DATA ADDRESS # 10. OUTLINE DIMENSIONS Scale : NTS Unit : mm ### 11. TOUCH PANEL The type of touch panel used on this display is resistive, analog, 4-wire and film on glass, and more characteristics are shown as below: #### 11.1 OPERATING CONDITIONS | Item | Specification | Remarks | |-------------------|---------------|---------| | Operating Voltage | 5VDC | 7V MAX | ### 11.2 ELECTRICAL CHARACTERISTICS | Item | | Specification | Remarks | |-----------------------|-------|--------------------------|--------------| | Resistance | XR-XL | 100~750 Ω | | | Between Terminal | YU-YL | 310~950 Ω | - | | Insulation Resistance | X-Y | 20M Ω min. | At 25V DC | | Linearity | X | ±1.5% max. | Note | | | Y | ±1.5% max. | Note 1 | | Chattering | | 10ms max. | - | Note 1: The test conditions and equipments of linearity are as below: - Material of pen: poly-acetal resin - End shape: R 0.8 mm - Test force: 80 g - Pitch: 10 mm - Test area is shown in Fig. 11.1 Fig. 11.1 As shown in Fig. 11.2, applying voltage meter to measure Va, Vb and Vxm, where Va is the maximum voltage in the active area; Vb is the minimum voltage in the active area; Vxm is the measured voltage of point x selected by random. Afterwards, the linearity can be calculated by following equation: $$Linearity = \frac{\left|Vxi - Vxm\right|}{Va - Vb} \times 100\%,$$ where Vxi is the idea voltage of point x. The method to measure the linearity of Y-axis is the same as above. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2711-TX09D202VM1CCA-3 | PAGE | 11-1/2 | | |----------------------------------|--------------|------------------------------|------|--------|--| |----------------------------------|--------------|------------------------------|------|--------|--| ### 11.3 MECHANICAL CHARACTERISTICS | Item | Specification | Remarks | |--------------------|---------------|----------------------| | Pen Input Pressure | 20~80g | R0.8, Polyacetal Pen | | Surface Hardness | 3H min. | JIS K-5600-5-4 | ### 11.4 OPTICAL CHARACTERISTICS | Item | Specification | Remarks | |---------------|---------------|---------| | Transmittance | 80% min. | - | ### 11.5 SAFETY AND ATTENTIONS - 1) Do not put heavy shock or stress on the touch panel. - 2) Please use soft cloth or absorbent cotton with ethanol to clean the touch panel by gently wiping. Moreover, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the touch panel's surface. - 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean the display's surface. - 4) UV protection is recommended to avoid the possibility of performance degrading when touch panel is likely applied under UV environment for a long period of time. | SHEET | | |-------|--| | NO | | ### 12. APPEARANCE STANDARD The appearance inspection is performed in a room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. - The viewing zone is defined with angle θ shown in Fig. 12.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 12.1 ### 12.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 2 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area). B zone is the area between A zone and TP V.A. C zone is the TP Inking area. In terms of housing design, B zone is the recommended window area customers' housing should be located in. Fig. 12.2 ### 12.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 12.3 and Fig. 12.4. | Item | Criteria | | | Applied zone | | |------------------------|---|---|------------------------------|--------------|--| | | Length / L(mm) | Width / W(mm) | Maximum number
Acceptable | | | | Scratches | L≦2.0 | W≦0.03 | Ignored | A,B | | | | L≦2.0 | 0.03 <w≦0.05< td=""><td>4</td><td></td></w≦0.05<> | 4 | | | | | 2.0 <l< td=""><td>0.05<w< td=""><td>None</td><td></td></w<></td></l<> | 0.05 <w< td=""><td>None</td><td></td></w<> | None | | | | Dent | | Serious one is not allow | ved. | Α | | | Wrinkles in Polarizer | | Serious one is not allow | wed. | Α | | | Bubbles on Polarizer | Average dian | neter / D(mm) | Maximum number
Acceptable | | | | bubbles on Polarizer | D≦ | 0.3 | 2 | A | | | | 0.3 | < D | None | | | | | | Filamentous (Line sha | pe) | | | | | Length / L(mm) | Width / W(mm) | Maximum number
Acceptable | A,B | | | | L<2.0 | W≦0.05 | 4 | | | | | L≦1.0 | 0.05 < W ≤ 0.1 | 2 | | | | 1) Stains | Round (Dot shape) | | | | | | 2) Foreign Materials | Average diameter / D(mm) | | Maximum number | | | | 3) Dark Spot | | | acceptable | | | | | D≦0.15 | | 6 | A,B | | | | 0.15 <d≦0.2< td=""><td>4</td></d≦0.2<> | | 4 | | | | | 0.2 <d< td=""><td>None</td></d<> | | None | | | | | In total | | Filamentous + Round=9 | | | | | Those wiped out easily are a | | cceptable. | | | | | Ту | pe | Maximum number acceptable | | | | | | 1 dot | 4 | | | | | Sparkle mode | 2 dots | 2(sets) | | | | Dot-Defect
(Note 1) | | In total | 4 | | | | | | 1 dot | 4 | | | | | Black mode | 2 dots | 2(sets) | A,B | | | | | In total | 4 | | | | | Sparkle mode
& Black mode | 2 dots | 2(sets) | | | | | In t | otal | 6 | | | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2712-TX09D202VM1CCA-3 | PAGE | 12-2/4 | | |----------------------------------|--------------|------------------------------|------|--------|--| |----------------------------------|--------------|------------------------------|------|--------|--| Note 1: The definitions of dot defect are as below: - The defect area of the dot must be bigger than half of a dot. - For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others. - For dark dot-defect, showing white pattern, the dot's brightness must be under 70% darker than others. - The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot. - The definition of adjacent dot is shown as Fig. 12.5. Fig 12.5 ### 12.3 TOUCH PANEL APPEARANCE SPECIFICATION The specification as below is defined by the amount of unexpected material in different zones of touch panel. | Item | Criteria | | | Applied zone | | |-------------------|---|--|---------------------------|--------------|--| | | Length / L(mm) | Width / W(mm) | Maximum number acceptable | | | | Scratches | - | W<0.05 | Ignored | A,B | | | | 10 <l< td=""><td>0.05≦W<0.1</td><td>None</td></l<> | 0.05≦W<0.1 | None | | | | | - | 0.1≦W | None | | | | | | Filamentous (Line sha | pe) | | | | | Length / L(mm) | Width / W(mm) | Maximum number acceptable | A D | | | | - | W≦0.05 | Ignored | A,B | | | | 3 <l< td=""><td>0.05<w≦0.1< td=""><td>None</td><td></td></w≦0.1<></td></l<> | 0.05 <w≦0.1< td=""><td>None</td><td></td></w≦0.1<> | None | | | | Foreign Materials | - | 0.1≦W | None | | | | | Round (Dot shape) | | | | | | | Average diameter / D(mm) | | Maximum number acceptable | A D | | | | D≦0.25 | | Ignored | A,B | | | | 0.25 <d≦0.35< td=""><td>6</td><td></td></d≦0.35<> | | 6 | | | | | 0.35 < D | | None | | | The limitation of glass flaw occurred on touch panel is defined in the table as below. | Item | Specifications | | Maximum number | |------------------|----------------|--|----------------| | Edge flaw | X Z | $X \le 5.0 \text{ mm}$
$Y \le 3.0 \text{ mm}$
$Z \le \text{Thickness}$ | 5 | | Corner flaw | S Y Y Y | $X \le 3.0 \text{ mm}$
$Y \le 3.0 \text{ mm}$
$Z \le \text{Thickness}$ | 2 | | Progressive flaw | | Not allowed | None | | SHE | ĿΤ | |-----|----| | NO | Э. | ### 13. PRECAUTIONS #### 13.1 PRECAUTIONS of MOUNTING - 1) Please refer to Fig. 13.1 for housing the display with touch panel into applications. The Fig. 13.1 shows some points as below: - The cushion needs to be designed between housing and touch panel in order to avoid unexpected pressure to cause any wrong reactions, and the cushion should be located in the insulated area. - The housing should not cover the active area of touch panel as the figure shown. #### 13.2 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 13.3 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it. - 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2713-TX09D202VM1CCA-3 | PAGE | 13-1/2 | | |----------------------------------|--------------|------------------------------|------|--------|--| |----------------------------------|--------------|------------------------------|------|--------|--| - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages. - 7) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 cm^2 . #### 13.4 PRECAUTIONS OF OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV. #### 13.5 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long term storage temperature is between $10\,\mathrm{C}^\circ$ ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from JDI, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. # 14. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number. Fig. 14.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2020 | 0 | | 2021 | 1 | | 2022 | 2 | | 2023 | 3 | | 2024 | 4 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | |------------|----------| | 1∼7 days | 1 | | 8~14 days | 2 | | 15~21 days | 3 | | 22~28 days | 4 | | 29~31 days | 5 | 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. | REV. No | Item | Remarks | |---------|-------------------------|----------| | Α | - | 1 | | В | Color filter changed | PCN 1028 | | В | Connector (CN1) changed | PCN 1097 | 4) The location of the lot mark is on the PCB shown in Fig. 14.2. Label example: Fig. 14.2