HITACHI KAOHSIUNG HITACHI ELECTRONICS CO., LTD. | FOR MESSRS: | DATE: Sep.16 th , | 2010 | |-------------|------------------------------|------| | | | | ## CUSTOMER'S ACCEPTANCE SPECIFICATIONS # TX11D04VM2APA # Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|-----------------------------|-------------| | 1 | COVER | 7B64PS 2701-TX11D04VM2APA-1 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX11D04VM2APA-1 | 2-1/1 | | 3 | GENERAL DATA | 7B64PS 2703-TX11D04VM2APA-1 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX11D04VM2APA-1 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX11D04VM2APA-1 | 5-1/1 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX11D04VM2APA-1 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAM | 7B64PS 2707-TX11D04VM2APA-1 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX11D04VM2APA-1 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX11D04VM2APA-1 | 9-1/5~9-5/5 | | 10 | OUTLINE DIMENSIONS | 7B63PS 2710-TX11D04VM2APA-1 | 10-1/1 | | 11 | TOUCH PANEL | 7B64PS 2711-TX11D04VM2APA-1 | 11-1/2~2/2 | | 12 | APPEARANCE STANDARD | 7B64PS 2712-TX11D04VM2APA-1 | 12-1/4~4/4 | | 13 | PRECAUTIONS | 7B64PS 2713-TX11D04VM2APA-1 | 13-1/1~2/2 | | 14 | DESIGNATION OF LOT MARK | 7B64PS 2714-TX11D04VM2APA-1 | 14-1/1 | ACCEPTED BY: _____ PROPOSED BY: ______ | KAOHSIUNG HITACHI | SHEET | 7B64PS 2701-TX11D04VM2APA-1 | БАСЕ | 1 1/1 | ١ | |-----------------------|-------|-----------------------------|------|-------|---| | ELECTRONICS CO., LTD. | NO. | 7B04F3 Z701-TXTTD04VWZAFA-T | PAGE | 1-1/1 | l | # RECORD OF REVISION | DATE | SHEET No. | SUMMARY | |------|-----------|---------| ### 3. GENERAL DATA ### 3.1 DISPLAY FEATURES This module is a 4.3" WQVGA of 16:9 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX11D04VM2APA | |-------------------------|--| | Module Dimensions | 105.5(W) mm x 67.2(H) mm x 4.0(D) mm typ. | | LCD Active Area | 95.04(W) mm x 53.856(H) mm | | Dot Pitch | 0.066(W) mm x 3(R, G, B)(W) x 0.198(H) mm | | Resolution | 480 x 3(RGB)(W) x 272(H) dots | | Color Pixel Arrangement | R, G, B Vertical stripe | | LCD Type | Transmissive Color TFT; Normally White | | Display Type | Active Matrix | | Number of Colors | 16.7M Color | | Backlight | 7 LEDs serial | | Weight | (60) g (typ.) | | Interface | C-MOS; 24-bit RGB; 40 pins | | Power Supply Voltage | 3.3V for LCD; (23.1)V for Backlight | | Power Consumption | 49.5 mW for LCD; (462)mW for backlight | | Viewing Direction | 12 O'clock (The direction without image inversion and least brightness change) | | Touch Panel | Resistive type, Film on Glass; 4-wire type, Antiglare surface | ### 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------------|--------|------|---------|------|---------| | Supply Voltage | VDD | 0.3 | 5.0 | V | - | | Input Voltage of Logic | VI | -0.3 | VDD+0.3 | V | Note 1 | | Operating Temperature | Тор | -20 | 70 | °C | Note 2 | | Storage Temperature | Tst | -30 | 80 | °C | Note 2 | | LED Backlight Forward Current | IF | - | 25 | mA | Note 3 | - Note 1: The rating is defined for the signal voltages of the interface such as DTMG, Hsync, Vsync, DISP, DCLK and RGB data bus. - Note 2: The maximum rating is defined as above based on the temperature on the panel surface, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than 25 °C. - Operating under high temperature will shorten LED lifetime. Note 3: Fig. 4.1 shows the maximum rating of LED forward current against temperature. The backlight unit in this display has been set to 20 mA per LED. This is within the range when operating the display between $-20\sim70^{\circ}$ C. Fig 4.1 ### 5. ELECTRICAL CHARACTERISTICS ### 5.1 LCD CHARACTERISTICS $T_a = 25$ °C, VSS = 0V | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |------------------------|----------------------------|-----------|---------|-------|---------|------|---------| | Power Supply Voltage | VDD | - | 3.0 | 3.3 | 3.6 | V | - | | Input Voltage of Logic | VIH | "H" level | 0.7xVDD | - | VDD | \/ | Note 1 | | | VIL | "L" level | VSS | - | 0.3xVDD | V | Note 1 | | Power Supply Current | IDD | - | - | 15 | - | mA | Note 2 | | Vsync Frequency | f_{v} | - | - | 60 | 90 | Hz | - | | Hsync Frequency | $f_{\scriptscriptstyle H}$ | - | - | 17.14 | - | KHz | - | | DCLK Frequency | $f_{\it CLK}$ | - | - | 9.0 | 15.0 | MHz | - | Note 1: The rating is defined for the signal voltages of the interface such as DTMG, Hsync, Vsync, DISP DCLK and RGB data bus. Note 2: An all black check pattern is used when measuring IDD, f_v is set to 60 Hz. #### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \, ^{\circ}C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|--------|----------------|-------|--------|------|------|---------| | LED Input Voltage | VLED | Backlight Unit | - | (23.1) | ı | V | Note1 | | LED Forward Current | ILED | Backlight Unit | 10 | 20 | 20 | mA | - | | LED Lifetime | - | ILED = 20 mA | (10K) | (20K) | - | hrs | Note 2 | Note 1: Fig. 5.1 shows the LED backlight circuit. The circuit has 7 LEDs in total. Note 2: The estimated lifetime is specified as the time to reduce 50% brightness by applying 20 mA at $25\,^{\circ}$ C . Fig. 5.1 ### 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on for 30 minutes. - The ambient temperature is 25°C. - In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1. $T_a = 25 \, ^{\circ}C, f_v = 60 \, \text{Hz}, \text{VDD} = 3.3 \, \text{V}$ | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |--------------------------|------------|---|--|--------|------|--------|-------------------|---------| | Brightness o | f White | - | | 250 | 300 | - | cd/m ² | Note 1 | | Brightness Uniformity | - | $\phi = 0^{\circ}, \theta = 0^{\circ},$ | 75 | 80 | - | % | Note 2 | | | Contrast F | Ratio | CR | ILED= 20 mA | 450 | 550 | - | - | Note 3 | | Response
(Rising + Fa | | $T_r + T_f$ | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | (30) | - | ms | Note 4 | | NTSC R | atio | 1 | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | (50) | _ | % | - | | | | θ x | $\phi = 0^{\circ}, CR \ge 10$ | 50 | 70 | - | | | | Viewing Angle | مام | $\theta x'$ | $\phi = 180^{\circ}, CR \ge 10$ | 50 | 70 | - | Dograd | Note F | | | θ y | $\phi = 90^{\circ}, CR \ge 10$ | 40 | 60 | - | Degree | Note 5 | | | | | θ y' | $\phi = 270^{\circ}, CR \ge 10$ | 50 | 70 | - | | | | | Dod | х | | (0.55) | 0.60 | (0.65) | | | | | Red | у | | (0.32) | 0.37 | (0.42) | | | | | Croon | Х | | (0.30) | 0.35 | (0.40) | | | | Color | Green | у | | (0.52) | 0.57 | (0.62) | | | | Chromaticity | Dlug | х | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | (0.10) | 0.15 | (0.20) | | Note 6 | | | Blue | у | | (0.04) | 0.09 | (0.14) | | | | | White | х | | (0.26) | 0.31 | (0.36) | | | | | vviile | у | | (0.28) | 0.33 | (0.38) | | | Note 1: The brightness is measured from center point of the panel, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: Brightness uniformity = $$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$ X100% , which is based on the brightness values of the 9 points measured by BM-7 as shown in Fig. 6.2. | KAOHSIUNG HITACHI
ELECTRONICS CO., LTD. | SHEET
NO. | 7B64PS 2706-TX11D04VM2APA-1 | PAGE | 6-1/2 | |--|--------------|-----------------------------|------|-------| |--|--------------|-----------------------------|------|-------| Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation: CR = Brightness of White Brightness of Black Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 90% brightness to 10% brightness when the data is from white to black. Oppositely, falling time is the period from 10% brightness rising to 90% brightness. Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The viewing direction of this display is 12 o'clock, which means that a photograph with gray scale would not be reversed in color and the brightness change would be less from this direction. However, the best contrast peak would be located at 6 o'clock. Fig 6.4 Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. # 7. BLOCK DIAGRAM ### 8. RELIABILITY TESTS | Test Item | Condition | | |-----------------------------|---|---| | High Temperature | 1) Operating
2) 70 °C | 240 hrs | | Low Temperature | 1) Operating
2) -20 °C | 240 hrs | | High Temperature | 1) Storage
2) 80 °C | 240 hrs | | Low Temperature | 1) Storage
2) -30 °C | 240 hrs | | Thermal Shock | 1) Non-Operating
2) -30 °C ↔ 80 °C
3) 0.5 hr ↔ 0.5 hr | 100 cycles | | High Temperature & Humidity | 1) Operating 2) 60 °C & 90%RH 3) Without condensation 4) Note 4 | 240 hrs | | Vibration | 1) Non-Operating 2) 10~500 Hz 3) 1.5G 4) X, Y, and Z directions | 1 hr for each direction | | Mechanical Shock | 1) Non-Operating 2) 2 ms 3) 50G 4) ±X,±Y and ±Z directions | Once for each direction | | ESD | Non-Operating Tip: 150 pF, 330 Ω Air discharge for glass: ± 8KV Contact discharge for metal frame: ± 6KV | 1) Glass: 9 points
2) Metalframe: 8 points | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: All the appearance specifications are judged before the reliability tests. - Note 4: Under the condition of high temperature & humidity, if the temperature is higher than $60^{\circ}C$, the humidity needs to be reduced as Fig. 8.1 shown. | KAOHSIUNG HITACHI
ELECTRONICS CO., LTD. | SHEET
NO. | 7B64PS 2708-TX11D04VM2APA-1 | PAGE | 8-1/1 | l | |--|--------------|-----------------------------|------|-------|---| |--|--------------|-----------------------------|------|-------|---| ### 9. LCD INTERFACE ### 9.1 INTERFACE PIN CONNECTIONS The display interface connector (CN1) is FH12 series made by Hirose (Thickness: 0.3 ± 0.05 mm; Pitch: 0.5mm) and more details of the connector are shown in the section of outline dimension. Pin assignment of LCD interface is as below: | Pin No. | Signal | Function | Pin No. | Signal | Function | |---------|--------|------------------------|---------|--------|------------------------| | 1 | VLED- | LED Ground | 21 | В0 | Blue Data Bit0 (LSB) | | 2 | VLED+ | LED Power | 22 | B1 | Blue Data Bit1 | | 3 | VSS | Ground | 23 | B2 | Blue Data Bit2 | | 4 | VDD | Power Supply for Logic | 24 | В3 | Blue Data Bit3 | | 5 | R0 | Red Data Bit0 (LSB) | 25 | B4 | Blue Data Bit4 | | 6 | R1 | Red Data Bit1 | 26 | B5 | Blue Data Bit5 | | 7 | R2 | Red Data Bit2 | 27 | В6 | Blue Data Bit6 | | 8 | R3 | Red Data Bit3 | 28 | B7 | Blue Data Bit7 (MSB) | | 9 | R4 | Red Data Bit4 | 29 | VSS | Ground | | 10 | R5 | Red Data Bit5 | 30 | DCLK | Dot Data Clock | | 11 | R6 | Red Data Bit6 | 31 | DISP | Note 1 | | 12 | R7 | Red Data Bit7 (MSB) | 32 | Hsync | Horizontal Sync Signal | | 13 | G0 | Green Data Bit0 (LSB) | 33 | Vsync | Vertical Sync Signal | | 14 | G1 | Green Data Bit1 | 34 | DTMG | Display Timing Signal | | 15 | G2 | Green Data Bit2 | 35 | NC | No Connection | | 16 | G3 | Green Data Bit3 | 36 | VSS | Ground | | 17 | G4 | Green Data Bit4 | 37 | NC | No Connection | | 18 | G5 | Green Data Bit5 | 38 | NC | No Connection | | 19 | G6 | Green Data Bit6 | 39 | NC | No Connection | | 20 | G7 | Green Data Bit7 (MSB) | 40 | NC | No Connection | Note 1: DISP = "H": input data are valid DISP = "L": input data are invalid and white display data is written automatically. The touch panel interface connector (CN2) is Molex 52207-0485(Thickness 0.3 ± 0.05 ; pitch 1.0mm) | Pin No. | Signal | Function | | | | | |---------|--------|-------------------------------------|--|--|--|--| | 1 | XT | Analog Signal form Digitizer Top | | | | | | 2 | YL | Analog Signal form Digitizer Left | | | | | | 3 | XB | Analog Signal form Digitizer Bottom | | | | | | 4 | YR | Analog Signal form Digitizer Right | | | | | ### 9.2 TIMING CHART Note 1: Data is latched by falling edge of DCLK ### 9.3 INTERFACE TIMING SPECIFICATIONS | | Item | Symbol | Min. | Тур. | Max. | Unit | | |--------|------------------------|-------------------|------|-------|------|--------|--| | | Cycle time | t _{CLK} | 66.7 | 111.1 | - | | | | DCLK | Low level Width | t _{wcL} | 26.7 | - | - | ns | | | DCLK | High level Width | t _{wch} | 26.7 | - | - | | | | | Duty | D | 0.45 | 0.5 | 0.55 | - | | | | Set up time | t _{SH} | 10 | - | - | no | | | Llauma | Hold time | t _{HH} | 10 | • | - | ns | | | Hsync | Cycle | t _{HP} | - | 525 | - | +C1 1/ | | | | Valid width | t _{WH} | 2 | 41 | - | tCLK | | | | Set up | t _{SV} | 10 | - | - | +C1 1/ | | | Varina | Hold | t _{HV} | 10 | - | - | tCLK | | | Vsync | Cycle | t _{VP} | - | 286 | - | tHP | | | | Valid width | t _{wv} | 1 | 10 | - | INP | | | | Set up time | t _{SI} | 10 | - | - | no | | | | Hold time | t _{HI} | 10 | - | - | ns | | | DTMG | Horizontal back porch | t _{HBP} | 2 | 2 | - | tCLK | | | DING | Horizontal front porch | t _{HFP} | 2 | 2 | - | ICLK | | | | Vertical back porch | $t_{\sf VBP}$ | 1 | 2 | - | tHP | | | | Vertical front porch | t _{VFP} | 1 | 2 | - | וחר | | | Data | Set up time | t _{SD} | 10 | - | - | 200 | | | Data | Hold time | t _{HD} | 10 | - | - | ns | | | DICD | Set up time | t _{DISS} | 10 | - | - | | | | DISP | Hold time | t _{DISH} | 10 | - | - | ns | | Note 1: $t_{WH} + t_{HBP} + t_{HFP} > 44$ ### 9.4 POWER SEQUENCE Note 1: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 0.1 second after the signals have been applied. The opposite is true for power Off where the backlight have to be switched off 0.1 second before the signals. ### 9.5 DATA INPUT for DISPLAY COLOR | | | Red Data | | | Red | Data | ì | | | | Green Data | | | | Blue Data | | | | | | | | | | | |-------|------------|----------|----|----|-----|------|----|----|-----|-----|------------|----|----|----|-----------|----|-----|-----|----|----|----|----|----|----|-----| | Input | | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | | colo | r | MSB | | | | | | | LSB | MSB | | | | | | | LSB | MSB | | | | | | | LSB | | | Black | 0 | | | Red(0) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Black | 0 | | | Red(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(253) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | | | : | | | Red(2) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(1) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(0) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | | | : | : | : | : | 3 | : | : | : | : | : | : | : | : | : | : | 3 | : | : | : | : | : | : | : | : | : | | | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Blue(254) | 0 | 1 | | | Blue(253) | 0 | 1 | 0 | | Blue | : | | | : | | | Blue(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | KAOHSIUNG HITACHI
ELECTRONICS CO., LTD. | SHEET
NO. | 7B64PS 2709-TX11D04VM2APA-1 | PAGE | 9-5/5 | | |--|--------------|-----------------------------|------|-------|--| |--|--------------|-----------------------------|------|-------|--| ## 10. OUTLINE DIMENSIONS ### 11. TOUCH PANEL The type of touch panel used on this display is resistive, analog, 4-wire and film on glass, and more characteristics are shown as below: #### 11.1 OPERATING CONDITIONS | Item | Specification | Remarks | | | |-------------------|---------------|---------|--|--| | Operating Voltage | DC 5V | - | | | ### 11.2 ELECTRICAL CHARACTERISTICS | Item | | Specification | Remarks | |-----------------------|---------|---------------|-------------------| | Circuit registeres | X- axis | 430~1310 Ω | | | Circuit resistance | Y-axis | 150~370 Ω | - | | Insulation Resistance | X-Y | >20M Ω | At DC 25V, 60 sec | | Lincority | X | ≤1.5% | Note 1 | | Linearity | Υ | ≤1.5% | Note 1 | | Chattering | | ≤10ms | - | Note 1: The test conditions and equipments of linearity are as below: - Material of pen: poly-acetal resin End shape: R 0.8 mmTest force: 150 gf - Test area is shown in Fig. 11.1 Fig. 11.1 #### 11.3 MECHANICAL CHARACTERISTICS | Item | ı | Specification | Remarks | |------------------|--------|---------------|--------------------| | Activation force | Finger | 20~80gf | - | | Activation force | Pen | 20~80gf | End shape: R0.8 mm | | Surface Hardness | | 3H | JIS K5400 | #### 11.4 OPTICAL CHARACTERISTICS | Item | Specification | Remarks | |---------------|---------------|-------------------| | Transmittance | Min. 80% | ASTM D1003(550nm) | ### 11.5 SAFETY AND ATTENTIONS - 1) Do not put heavy shock or stress on the touch panel. - 2) Please use soft cloth or absorbent cotton with ethanol to clean the touch panel by gently wiping. Moreover, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the touch panel's surface. - 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean the display's surface. ### 12. APPEARANCE STANDARD The appearance inspection is performed in a dark room around 600~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 35 cm. - The viewing zone is defined with angle θ shown in Fig. 12.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 12.1 #### 12.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 3 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; C zone is the area between B zone and metal frame. In terms of housing design, B zone is the recommended window area customers' housing should be located in. Fig. 12.2 ### 12.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 12.3 and Fig. 12.4. | Item | | Criteria | | | | | | | |---------------------------|--|-----------------------|---|----------------|-------------|------------------|------|--| | 2 | Length (mm) | Width (mm) | | Maximum number | | Minimum
space | | | | Scratches
on polarizer | L≦5 | W≦0.05 | | Ignored | | - | A,B | | | | L≦5 | 0.05 | 5 <w≦0.1< td=""><td>5</td><td></td><td>-</td><td></td></w≦0.1<> | 5 | | - | | | | | 5 <l< td=""><td>0.1</td><td><W</td><td>0</td><td></td><td>-</td><td></td></l<> | 0.1 | <W | 0 | | - | | | | Wrinkles in polarizer | | | Serious one | is not allowed | t | | Α | | | | Average di | amete | r (mm) | Ma | ximum n | umber | | | | Bubbles or Dater | | D≦0. | 2 | | Ignore | d | A | | | on polarizer | 0.2< | D≦0. | 3 | | 5 | | | | | | 0.3<[|) | | | 0 | | | | | | | | Filamentous | (Line shape |) | | | | | | Length (mm |) | Width (mm) | | Maxi | mum number | | | | | L≦5 | | W≦0.05 | | | Ignored | A, B | | | | L≦5 | | 0.05 <w≦0.1< td=""><td></td><td>3</td><td></td></w≦0.1<> | | | 3 | | | | 1) Stains | 5 <l< td=""><td></td><td>0.1<</td><td>W</td><td></td><td>0</td><td></td></l<> | | 0.1< | W | | 0 | | | | 2) Foreign Materials | | | | | | | | | | 3) Dark Spot | Average diame (mm) | Average diameter (mm) | | Maximum number | | imum Space | | | | | D≦0.2 | 2 | Ignored | | | - | A, B | | | | 0.2 <d≦0.5< td=""><td>5</td><td>;</td><td>3</td><td colspan="2">-</td><td></td></d≦0.5<> | 5 | ; | 3 | - | | | | | | 0.5 <d< td=""><td></td><td colspan="2">0</td><td colspan="2">-</td><td></td></d<> | | 0 | | - | | | | | | | | Ту | /pe | Maxi | mum number | | | | | | | 1 (| dot | | 2 | | | | | Bright dot-defe | ect | 2 adjad | cent dot | | 1 | | | | Dot-Defect | | | 3 adjacent of | dot or above | Not allowed | | | | | (Note 1) | | | 1 (| dot | | 3 | _ A | | | | Dark dot-defe | ct | 2 adjad | cent dot | | 1 | _ | | | | | | 3 adjacent dot or above | | Not allowed | | | | | | | In | total | | | 5 | | | Average diameter = $\frac{a+b}{2}$ Fig. 12.3 Fig. 12.4 | KAOHSIUNG HITACHI
ELECTRONICS CO., LTD. | SHEET
NO. | 7B64PS 2712-TX11D04VM2APA-1 | PAGE | 12-2/4 | | |--|--------------|-----------------------------|------|--------|--| |--|--------------|-----------------------------|------|--------|--| #### Note 1: The definitions of dot defect are as below: - The defect area of the dot must be bigger than half of a dot. - For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others. - For dark dot-defect, showing red,green,blue pattern, the dot's brightness must be under 70% darker than others. - The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot. - The definition of adjacent dot is shown as Fig. 12.5. Fig. 12.5 ### 12.3 TOUCH PANEL APPEARANCE SPECIFICATION The specification as below is defined by the amount of unexpected material in different zones of touch panel. | Item | | Crit | teria | | Applied zone | |-------------------|---------------------|-------------|-----------------|----------------|--------------| | | Width (mm) | Length (mm) | | Maximum number | | | Scratches | W≧0.10 | L≧ | _≧ 10 | Not allowed | A | | Scratches | $0.10 > W \ge 0.05$ | L< | (10 | 4 pcs max. | A | | | 0.05>W | L< | 〔10 | Ignored | | | | Fi | ilamentous | (Line shap | e) | | | | Width (mm) | Length | n (mm) | Maximum number | Α | | | W>0.05 | L | >3 | Not allowed | ^ | | | 0.05≧W | L≦ | ≦3 | Ignored | | | Foreign Materials | | | | | | | (Note 1) | Average diameter | (mm) | Ма | ximum number | | | (Note 1) | D>0.3 | 3 | | Not allowed | Α | | | $0.3 \ge D > 0.2$ |)
• | | 3 pcs max. | ^ | | | $0.2 \ge D > 0.1$ | | | 5 pcs max. | | | | 0.1≧D | | | Ignored | | | | 0.5≧D | | | Ignored | В | Note 1:D=(Long ϕ + Short ϕ) / 2 The limitation of glass flaw occurred on touch panel is defined in the table as below. | Item | Specifications | | |------------------|----------------|---| | Edge flaw | Z Z | $X \leq 2.0 \text{ mm}$
$Y \leq 2.0 \text{ mm}$
$Z \leq \text{Thickness}$ | | Corner flaw | Y Y Y | $X \le 5.0 \text{ mm}$
$Y \le 1.0 \text{ mm}$
$Z \le \text{Thickness}$ | | Progressive flaw | | Not allowed | ### 13. PRECAUTIONS #### 13.1 MOUNTING PRECAUTION - 1) Please refer to Fig. 13.1 for housing the display with touch panel into applications. The Fig. 13.1 shows some points as below: - The cushion needs to be designed between housing and touch panel in order to avoid unexpected pressure to cause any wrong reactions, and the cushion should be located in the insulated area. - The housing should not cover the active area of touch panel as the figure shown. Fig 13.1 #### 13.2 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 13.3 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by using sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not stack the displays as this may damage the surface. In order to avoid any injuries, please avoid touching the edge of the glass or metal frame and wore gloves during handling. - 3) Touching the polarizer or terminal pins with bare hand should be avoided to prevent staining and poor electrical contact. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. | KAOHSIUNG HITACHI
ELECTRONICS CO., LTD. | SHEET
NO. | 7B64PS 2713-TX11D04VM2APA-1 | PAGE | 13-1/2 | |--|--------------|-----------------------------|------|--------| |--|--------------|-----------------------------|------|--------| - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanent damages. - 7) Maximum pressure to the surface of the display must be less than $^{1,96\,\mathrm{x}\,10^4}$ Pa. If the area of applied pressure is less than $^{1\,\mathrm{cm}^2}$, the maximum pressure must be less than 1.96N. #### 13.4 PRECAUTIONS OF OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV. #### 13.5 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from Hitachi, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. ### 14 DESIGNATION OF LOT MARK 1) The lot mark is showing in Fig.14.1. First 4 digits are used to represent production lot, and the last 6 digits are the serial number. Fig. 14.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2010 | 0 | | 2011 | 1 | | 2012 | 2 | | 2013 | 3 | | 2014 | 4 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | |------------|----------| | 1∼7 days | 1 | | 8~14 days | 2 | | 15~21 days | 3 | | 22~28 days | 4 | | 29~31 days | 5 | - 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. - 4) The location of the lot mark is on the back of the display shown in Fig. 14.2. Fig. 14.2