| FOR MESSRS: | DATE: Sep. 3 rd ,2024 | |-------------|----------------------------------| |-------------|----------------------------------| # **CUSTOMER'S ACCEPTANCE SPECIFICATIONS** # TX18D200VM0EWA ### Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|------------------------------|------------| | 1 | COVER | 7B64PS 2701-TX18D200VM0EWA-4 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX18D200VM0EWA-4 | 2-1/2~2/2 | | 3 | GENERAL DATA | 7B64PS 2703-TX18D200VM0EWA-4 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX18D200VM0EWA-4 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX18D200VM0EWA-4 | 5-1/2~2/2 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX18D200VM0EWA-4 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAME | 7B64PS 2707-TX18D200VM0EWA-4 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX18D200VM0EWA-4 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX18D200VM0EWA-4 | 9-1/7~7/7 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX18D200VM0EWA-4 | 10-1/2~2/2 | | 11 | TOUCH PANEL | 7B64PS 2711-TX18D200VM0EWA-4 | 11-1/2~2/2 | | 12 | APPEARANCE STANDARD | 7B64PS 2712-TX18D200VM0EWA-4 | 12-1/4~4/4 | | 13 | PRECAUTIONS | 7B64PS 2713-TX18D200VM0EWA-4 | 13-1/2~2/2 | | 14 | DESIGNATION OF LOT MARK | 7B64PS 2714-TX18D200VM0EWA-4 | 14-1/1 | ACCEPTED BY: _____ PROPOSED BY: Oblack Tsai | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2701-TX18D200VM0EWA-4 | PAGE | 1-1/1 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| # 2. RECORD OF REVISION | SUMMARY 10.OUTLINE DIMENSIONS Revised : 1. TP IC Component Height 1.4→1.6mm 2. TP and LCM border 4.27→4.21mm 、2.4→6.09mm | |---| | Revised : 1. TP IC Component Height 1.4→1.6mm
2. TP and LCM border 4.27→4.21mm、2.4→6.09mm | | 2. TP and LCM border 4.27→4.21mm · 2.4→6.09mm | | | | | | Company logo changed : | | | | KOE IT IEI | | | | JDI Group | | Kaohsiung Opto-Electronics Inc. Japan Display Inc. | | Company name changed: | | From "KAOHSIUNG OPTO-ELECTRONICS INC." | | to "JDI Taiwan Inc. Kaohsiung Branch" | | 3.1 DISPLAY FEATURES | | Revised | | amorphous silicon TFT → LTPS TFT | | $0.53W$ for LCD $\rightarrow 0.84W$ for LCD | | 4.62W for Backlight → 7.14W for Backlight | | 5.1 LCD CHARACTERISTICS | | Revised | | Power Supply Current Typ. 160 → 255 \ Max. 210 → 310 | | Vsync Frequency Max. 67 → - | | Hsync Frequency Max. 69 → 68.1 | | CLK Frequency Max. 160 → 150 | | Note 4 Delete | | 5.2 BACKLIGHT CHARACTERISTICS | | Revised | | LED Forward Current Typ. 385 → 595 | | Typ. 65 → 35 | | LED lifetime Typ. 70K → 100K | | 6. OPTICAL CHARACTERISTICS | | Revised | | T _a =25 °C,f _c =60H±, Vto = 3.3V. T _a =25 °C,f _c =60H±, Vto = 3.3V. | | Bass Symbol Cocotions Mar. Flyg Mass LMG Standards Bass Cocotions Max Typ Mass LMG Remarks Regimens Uniformity $\phi = \theta^2$, ϕ^2 , ϕ^2 000 000 0.00 100 - eding ² Nike 1 Regimens Uniformity $\phi = \theta^2$, ϕ^2 70 - % Nike 2.3 Engineers Uniformity $\phi = \theta^2$, ϕ^2 70 - % Nike 2.3 | | Content Flate Fla | | Vinezing Angle Ps 2 + 100 CR1-10 S S Degree Note 6 Vinezing Angle Ps 2 + 100 CR1-10 S S Degree Note 6 Ps 2 + 100 CR1-10 S S S Degree Note 6 Ps 2 + 100 CR1-10 S S S S S S S S S | | Hid X 0.60 0.65 0.70 Red X 0.63 0.68 0.73 0.22 0.37 0.22 0.39 0.34 0.28 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.3 | | Color Y 6-6', 6-0' 0.10 0.15 0.20 - Note 7 Chromotody 10 X 4-6', 6-0' 0.10 0.15 0.20 - Note 7 | | Y | | 7. BLOCK DIAGRAME | | Revised | | | | 3. RELIABILITY TESTS | | Revised Tip: 200 pF, 250 Ω \rightarrow Tip: 150 pF, 330 Ω | | 10. 100 pr , 200 22 | | | | 9.3 LVDS DATA FORMAT → 9.3 LVDS DATA FORMAT (VESA) | | 9.3 LVDS DATA FORMAT → 9.3 LVDS DATA FORMAT (VESA) | | F t 3 | | DATE | SHEET No. | SUMMARY | | | | | | | |-------------|--|--|--|--|--|--|--|--| | Sep.03, '24 | 7B64PS 2709 –
TX18D200VM0EWA-4
Page 9-3/7 | 9.4 TIMING CHART Fig. 9.1 Horizontal Timing Revised Fig. 9.3 Setup & Hold Time Delete | | | | | | | | | 7B64PS 2709 –
TX18D200VM0EWA-4
Page 9-4/7 | 9.5 TIMING TABLE Revised A. DE MODE Horizontal CLK Frequency Max. 160 → 150 A. DE MODE Horizontal Cycle Time Max. 2320 → 2248 | | | | | | | | | 7B64PS 2709 –
TX18D200VM0EWA-4
Page 9-5/7 | A. DE MODE Horizontal Cycle Time Max. 2320 → 2248 9.6 LVDS RECEIVER TIMING Revised Item | | | | | | | | | 7B64PS 2712 –
TX18D200VM0EWA-4
Page 12-2/4 | 12.2 LCD APPEARANCE SPECIFICATION Revised | | | | | | | | | 7B64PS 2714 –
TX18D200VM0EWA-4 | 14. DESIGNATION OF LOT MARK Added: | | | | | | | | | Page 14-1/1 | REV. No ITEM REMARKS B Driver ICs and LCD changed PCN 1077 | | | | | | | | | | | | | | | | | # 3. GENERAL DATA ### 3.1 DISPLAY FEATURES This module is a 7" FHD of 16:9 format LTPS TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX18D200VM0EWA | |-------------------------|--| | Module Dimensions | 178.76(W) mm x 115.0(H) mm x 11.75 (D) mm typ. | | LCD Active Area | 155.52(W) mm x 87.48(H) mm | | Pixel Pitch | 0.081(W) mm x 0.081 (H) mm | | Resolution | 1920 x 3(RGB)(W) x 1080(H) dots | | Color Pixel Arrangement | R, G, B Vertical Stripe | | LCD Type | Transmissive Color TFT; Normally Black | | Display Type | Active Matrix | | Number of Colors | 16.7M Colors | | Backlight | 3 LEDs Series x 10 Parallel (30 LEDs in Total) | | Weight | 240 typ. (g) | | Interface | LVDS; 20 pins | | Power Supply Voltage | 3.3V for LCD; 12V for Backlight | | Power Consumption | 0.84W for LCD; 7.14W for Backlight | | Viewing Direction | Super Wide Version (In-Plane Switching) | | Touch Panel | Projected Capacitive type; Cover Glass on ITO Film | | SHEET | |-------| | NO. | ### 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------|----------|------|----------------------|----------|---------| | Supply Voltage | V_{DD} | -0.3 | 4.0 | V | - | | Input Voltage of Logic | Vı | -0.3 | V _{DD} +0.3 | V | Note 1 | | Operating Temperature | Тор | -20 | 70 | °C | Note 2 | | Storage Temperature | Tst | -30 | 80 | °C | Note 2 | | Backlight Input Voltage | VLED | - | 15 | V | - | - Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than 25 $\,^\circ\text{C}\,.$ - Operating under high temperature will shorten LED lifetime. ### 5. ELECTRICAL CHARACTERISTICS ### 5.1 LCD CHARACTERISTICS $T_a = 25$ °C, Vss = 0V | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |--|----------------------------|---------------|-------|-------|------|------|---------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | Differential Input | ., | "H" level | - | - | +100 | >/ | Nata | | Voltage for LVDS
Receiver Threshold | Vı | "L" level | -100 | - | - | mV | Note 1 | | Power Supply Current | I _{DD} | $V_{DD}=3.3V$ | - | 255 | 310 | mA | Note 2 | | Vsync Frequency | f_{v} | - | - | 60 | - | Hz | | | Hsync Frequency | $f_{\scriptscriptstyle H}$ | - | 66 | 67.5 | 68.1 | KHz | Note 3 | | CLK Frequency | f_{CLK} | - | 135.3 | 148.5 | 150 | MHz | | Note 1: VCM=+1.2V VCM is common mode voltage of LVDS transmitter/receiver. Note 2: An all white check pattern is used when measuring I_DD. $f_{\scriptscriptstyle V}$ is set to 60 Hz. Note 3: For LVDS transmitter input. PAGE #### 5.2 BACKLIGHT CHARACTERISTICS | T | - 25 | °C | |---------|------|----| | I_{a} | = 23 | C | | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | | |--|-----------|-------------------|------|------|------|--------|---------|--| | LED Input Voltage | V_{LED} | - | 11.7 | 12 | 12.3 | V | Note1 | | | LED Forward Current | | 0V; 0% duty | - | 595 | - | A | Nata | | | (Dim Control) | ILED | 3.3VDC; 100% duty | - | 35 | - | mA | Note 2 | | | LED lifetime - I _{LED} = 595 mA | | - | 100K | - | hrs | Note 3 | | | - Note 1: As Fig. 5.1 shown, LED current is constant, 595 mA, controlled by the LED driver when applying 12V. - Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude. - Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 595 mA at 25°C. JDI Taiwan Inc. Kaohsiung Branch 5-2/2 ### 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on for 30 minutes. - The ambient temperature is 25 °C. - In the dark room around 100 lx, the equipment has been set for the measurements as shown in Fig 6.1. $T_a = 25 \, ^{\circ}C, f_v = 60 \, \text{Hz}, \text{V}_{DD} = 3.3 \text{V}$ Remarks Condition Min. Тур. Max. Unit Item Symbol cd/m^2 Brightness of White Note 1 800 1000 $\phi = 0^{\circ}, \theta = 0^{\circ},$ **Brightness Uniformity** 70 % Note 2,3 ILED= 595 mA CR 1000 Note 4 Contrast Ratio 1300 Response Time $T_r + T_f$ $\phi = 0^{\circ}, \theta = 0^{\circ}$ 23 ms Note 5 (Rising + Falling) θx 85 $\phi = 0^{\circ}$, CR ≥ 10 $\theta x'$ $\phi = 180^{\circ}, CR \ge 10$ 85 Viewing Angle Degree Note 6 θ y $\phi = 90^{\circ}$, CR ≥ 10 85 $\theta y'$ 85 $\phi = 270^{\circ}$, CR ≥ 10 0.73 Χ 0.63 0.68 Red Υ 0.25 0.30 0.35 Χ 0.24 0.29 0.34 Green Υ 0.71 0.61 0.66 Color $\phi = 0^{\circ}, \theta = 0^{\circ}$ Note 7 Χ 0.10 0.15 0.20 Chromaticity Blue Υ 0 0.05 0.10 Χ 0.25 0.30 0.35 White Υ 0.27 0.32 0.37 **NTSC Ratio** $\phi = 0^{\circ}, \theta = 0^{\circ}$ 85 % Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: Brightness uniformity = $$\frac{\text{Min. Brightness}}{\text{Max. Brightness}} \times 100\%$$, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2. Fig. 6.2 JDI Taiwan Inc. Kaohsiung Branch SHEET NO. 7B64PS 2706-TX18D200VM0EWA-4 PAGE 6-1/2 Note 3: Continuously operating the test pattern (see below chess pattern Fig.6.3) on display for 2 hours at 25°C then switch to completely white pattern, the previous test pattern shall disappear within 2 seconds. Fig.6.3 Note 4: The contrast ratio is measured from the center point of the panel, P5, and defined as the following equation: $$CR = \frac{Brightness of \ White}{Brightness of \ Black}$$ Note 5: The definition of response time is shown in Fig. 6.4. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, falling time is the period from 90% brightness falling to 10% brightness. Fig.6.4 Note 6: The definition of viewing angle is shown in Fig. 6.5. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction. Fig 6.5 Note 7: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. | JDI | Taiwan | Inc. | Kaohsiung | Branch | |-----|---------|-------|-------------|---------| | וטנ | Talwall | IIIC. | Naurisiuriy | Diantin | # 7. BLOCK DIAGRAM Note 1: Signals are CLK and pixel data pairs. # 8. RELIABILITY TESTS | Test Item | Condition | | | | | | |--------------------------------|---|---|--|--|--|--| | High Temperature | 1) Operating
2) 70 °C | 240 hrs | | | | | | Low Temperature | 1) Operating
2) -20 °C | 240 hrs | | | | | | High Temperature | 1) Storage
2) 80 ° C | 240 hrs | | | | | | Low Temperature | 1) Storage
2) -30 °C | 240 hrs | | | | | | Heat Cycle | 1) Operating 2) -20 °C ~70 °C 3) 3hrs~1hr~3hrs | 240 hrs | | | | | | Thermal Shock | 1) Non-Operating
2) -35 °C ↔ 85 °C
3) 0.5 hr ↔ 0.5 hr | 240 hrs | | | | | | High Temperature &
Humidity | 1) Operating 2) 40 °C & 85%RH 3) Without condensation (Note4) | 240 hrs | | | | | | Vibration | 1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions | 1 hr for each direction | | | | | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 50G 4) \pm X, \pm Y and \pm Z directions | Once for each direction | | | | | | ESD | 1) Operating 2) Tip: 150 pF, 330 Ω 3) Air discharge for glass: \pm 8KV 4) Contact discharge for metal frame: \pm 8KV | 1) Glass: 9 points
2) Metal frame: 8 points
(Note3) | | | | | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: All pins of LCD interface (CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition. - Note 4: Under the condition of high temperature & humidity, if the temperature is higher than 40°C, the humidity needs to be reduced as Fig. 8.1 shown. JDI Taiwan Inc. Kaohsiung Branch SHEET NO. 7B64PS 2708-TX18D200VM0EWA-4 PAGE # 9. LCD INTERFACE ### 9.1 INTERFACE PIN CONNECTIONS The display interface connector (CN1) is FI-SEB20P-HF13E made by JAE and pin assignment is as below: | Pin No. | Symbol | Signal | Pin No. | Symbol | Signal | |---------|-----------------|------------------------|---------|---------|---------------------| | 1 | V_{DD} | Dower Cupply for Logic | 11 | IN2- | DO DE DE | | 2 | V_{DD} | Power Supply for Logic | 12 | IN2+ | B2~B5, DE | | 3 | Vss | CND | 13 | Vss | GND | | 4 | V _{SS} | GND | 14 | CLK IN- | Pixel Clock | | 5 | INO- | R0~R5, G0 | 15 | CLK IN+ | Pixel Clock | | 6 | IN0+ | K0~K5, G0 | 16 | Vss | GND | | 7 | Vss | GND | 17 | IN3- | DC D7 C6 C7 D6 D7 | | 8 | IN1- | G1~G5, B0~B1 | 18 | IN3+ | R6~R7, G6~G7, B6~B7 | | 9 | IN1+ | G1~G0, D0~D1 | 19 | NC | No Connection | | 10 | Vss | GND | 20 | DIM | Note 2 | Note 1: IN n- and IN n+ (n=0, 1, 2, 3), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively. Note 2: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWM duty. The backlight connector (CN2) is SM02(8.0)B-BHS-1-TB(LF)(SN) made by JST, and pin assignment is as below: | Pin No. | Signal | Signal | |---------|------------------|--------| | 1 | V _{LED} | 12VDC | | 2 | GND | Ground | The capacitive touch panel interface FPC: pitch 0.5mm 10pins, and pin assignment is as below: | Pin No. | Symbol | Signal | | | | | | |---------|----------------------|---------------|--|--|--|--|--| | 1 | NC | | | | | | | | 2 | NC | | | | | | | | 3 | NC | No Connection | | | | | | | 4 | NC | | | | | | | | 5 | NC | | | | | | | | 6 | RST | Reset | | | | | | | 7 | V _{CC} (5V) | Power Supply | | | | | | | 8 | D+ | LICP Cignal | | | | | | | 9 | D- | USB Signal | | | | | | | 10 | GND | Ground | | | | | | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2709-TX18D200VM0EWA-4 | PAGE | 9-1/7 | |----------------------------------|--------------|------------------------------|------|-------| |----------------------------------|--------------|------------------------------|------|-------| ### 9.2 LVDS INTERFACE - Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+, -) is used in differential mode. - Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module. ### 9.3 LVDS DATA FORMAT (VESA) DE: Display Enable NA: Not Available ### 9.4 TIMING CHART Fig. 9.1 Horizontal Timing Fig. 9.2 Vertical Timing ### 9.5 TIMING TABLE The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60Hz to define. ### A. DE MODE | | Item | Symbol | Min. | Тур. | Max. | Unit | |------------|---------------|--------|-------|-------|------|------| | | CLK Frequency | fclk | 135.3 | 148.5 | 150 | MHz | | Horizontal | Display Data | thd | | 01.14 | | | | | Cycle Time | th | 2050 | 2200 | 2248 | CLK | | Mantinal | Display Line | tvd | | 1.1 | | | | Vertical | Cycle Time | tv | 1100 | 1125 | 1150 | Н | ### B. CLOCK AND DATA INPUT TIMING | | Item | Symbol | Min. | Тур. | Max. | Unit | |------|------------|--------|------|------|------|------| | CLIK | Duty | Tcwh | 47.5 | 50 | 52.5 | % | | CLK | Cycle Time | Tcph | - | 6.74 | - | | | Doto | Setup Time | Tdsu | 1 | - | - | | | Data | Hold Time | Tdhd | 1 | - | - | ns | | DE | Setup Time | Tesu | 1 | - | - | | | DE | Hold Time | Tehd | 1 | - | - | | ### 9.6 LVDS RECEIVER TIMING | , | , , | , | • | | , | |---|-----|---|---|--|---| Item | Symbol Min. | | Тур. | Max. | Unit | |-------------|-------------------|-------------|-----------------------------|-----------------------|-----------------------------|------| | CLK | Cycle frequency | 1/tcLK | 1/tcLK 135.3 | | 160 | MHz | | | 0 data position | tRP0 | 1/7* t _{CLK} -0.17 | 1/7* t _{CLK} | 1/7* t _{CLK} +0.17 | | | | 1st data position | tRP1 | -0.17 | 0 | +0.17 | | | DiaV | 2nd data position | tRP2 | 6/7* t _{CLK} -0.17 | 6/7* t _{CLK} | 6/7* t _{CLK} +0.17 | | | RinX | 3rd data position | tRP3 | 5/7* t _{CLK} -0.17 | 5/7* t _{СLК} | 5/7* t _{CLK} +0.17 | ns | | (X=0,1,2,3) | 4th data position | tRP4 | 4/7* t _{CLK} -0.17 | 4/7* t _{CLK} | 4/7* t _{CLK} +0.17 | | | | 5th data position | tRP5 | 3/7* t _{CLK} -0.17 | 3/7* t _{CLK} | 3/7* t _{CLK} +0.17 | | | | 6th data position | tRP6 | 2/7* t _{CLK} -0.17 | 2/7* t _{CLK} | 2/7* t _{CLK} +0.17 | | #### 9.7 POWER SEQUENCE Fig. 9.4 Power Sequence Timing - Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second. - Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed. ### 9.8 DATA INPUT for DISPLAY COLOR | | | | | I | Red | Data | a | | | | | C | Greer | n Dat | а | | | | | | Blue | Data | l | | | |-------|------------|-----|----|----|-----|------|----|----|-----|-----|----|----|-------|-------|----|----|-----|-----|----|----|------|------|----|----|-----| | Inp | out color | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | B7 | В6 | B5 | B4 | ВЗ | B2 | B1 | В0 | | | | MSB | | | | | | | LSB | MSB | | | | | | | LSB | MSB | | | | | | | LSB | | | Black | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Black | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | | | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | | | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Blue(1) | 0 | 1 | | | Blue(2) | 0 | 1 | 0 | | Blue | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | ••• | : | : | : | : | : | : | : | | | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level. Note 2: Data Signal : 1 : High, 0 : Low | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2709-TX18D200VM0EWA-4 | PAGE | 9-7/7 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| # 10.2 RAER VIEW 169±0.5(LCM O.D) 157.2±0.3 5.9±0.3 6.09 ± 0.3 6.9±0.3 (145.5)4.21±0.3 (108)(22.6)(21.1) 0 0 CN2 CN1 Pin1 Pin1 104±0.5(LCM O.D) (85.4)90.2±0.3 (64.4) \odot Metal Plate : SUS General Tolerance:±0.5mm Scale : NTS Unit: mm SHEET JDI Taiwan Inc. Kaohsiung Branch No. # 11. TOUCH PANEL The type of touch panel used on this display is capacitive touch panel film, and more characteristics are shown as below: ### 11.1 MECHANICAL CHARACTERISTICS | Item | Specification | Remarks | | | | | |-------------------------------|-------------------------------------|--|--|--|--|--| | Thickness | 1.45 \pm 0.3 mm | Chemically Strengthened Glass | | | | | | CG Material | Soda lime | - | | | | | | Surface Hardness | ≧ 7H | - | | | | | | Input Method | Through a special stylus or finger | - | | | | | | FPC Peeling Force | 5N min. | Peeling upward by 90° Pull (F) FPC Touch panel | | | | | | FPC Bending Resistance | Meet electrical spec. after testing | Bending area Bending degree: 90 Bending radius: R1.0 mm Bending times: 3 times | | | | | | Touch Function | 10 points | - | | | | | | Connection insert/remove test | Meet electrical spec. after testing | Insert/remove touch panel FPC for 5 cycles | | | | | ### 11.2 ELECTRICAL CHARACTERISTICS | Itama | Cumah a l | Canditian | | 1.100.14 | | | |----------------------|--------------------------|-----------------------|----------------------|----------|------|------| | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | | Power supply voltage | Vcc | - | 3.5 | 5.0 | 5.5 | V | | Crystal Clock | Crystal clock | - | 1 | 12 | 1 | MHZ | | V _{IH} | Input high level voltage | V _{CC} =3.3V | V _{CC} -0.8 | - | 1 | V | | VIL | Input low level voltage | - | 1 | - | 0.8 | V | | Vон | Output high voltage | I=2mA | Vcc-0.4 | - | - | V | | V _{OL} | Output low voltage | I=2mA | - | - | 0.4 | V | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2711-TX18D200VM0EWA-4 | PAGE | 11-1/2 | |----------------------------------|--------------|------------------------------|------|--------| |----------------------------------|--------------|------------------------------|------|--------| ### 11.3 CONTROLLER CHARACTERISTICS The Capacitive Touch Panel features as below: - Controller IC is EETI EXC3132 - Interface : USB - OS: Window7, Android, Linux - Firmware information : Mode Name: SIRIUS_3723 Type Name: PCAP3132UR SERIES Version: 00_TEST1 #### 11.4 ELECTRICAL CHARACTERISTICS Fig. 11.1 Power On Sequence Diagram Fig. 11.2 Idle Sequence Diagram #### 11.5 TIMING TABLE | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | |-------------------------------|------------------------|-----------|---------|------|------|------| | Tr | Host pull low period | - | 1 | - | - | ms | | T _{RDY} | IC ready to | - | - | 65 | - | ms | | | communication | | | | | | | Та | IC active period | - | - | 5 | - | ms | | Tsus | IC suspend period | - | - | 10 | - | ms | | T _{Power-On-Delay} | Power-on delay | - | 100 | - | - | us | | T _{Power-Down-Delay} | Power-down delay | - | 0 | - | - | ms | | VIL | RST input low Voltage | - | - | - | 8.0 | V | | ViH | RST input high Voltage | - | Vcc-0.8 | - | - | V | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2711-TX18D200VM0EWA-4 | PAGE | 11-2/2 | |----------------------------------|--------------|------------------------------|------|--------| |----------------------------------|--------------|------------------------------|------|--------| ### 12. APPEARANCE STANDARD The appearance inspection is performed in a room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. - The viewing zone is defined with angle θ shown in Fig. 12.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 12.1 #### 12.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 2 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area). B zone is the area between A zone and touch panel V.A. In terms of housing design, B zone is the recommended window area customers' housing should be located in. C zone is the inking area of touch panel. Fig. 12.2 ### 12.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 12.3 and Fig. 12.4. | Item | Criteria | | | teria | | | Applied zone | |---|--|---------------------------------------|-------------------|------------------|------------------------|---------------|--------------| | | Length (mm) | Width | Width (mm) Max | | ımber | Minimum space | | | | Ignored | W≦ | 0.01 | Ignored | | - | | | | L≦40 | W≦ | 0.02 | 10 | | - | | | 0 (1 | L≦20 | W≦ | 0.04 | 10 | | - | . 5 | | Scratches | | | Round ([| Oot Shape) | | | Α·Β | | | Average diameter | (mm) | Maxim | um number | Mir | nimum space | | | | D≦0.2 | | I | gnore | | - | | | | D≦0.4 | | | 10 | | - | | | Dent | | Se | rious one | is not allowed | | | Α | | Wrinkles in polarizer | | Se | rious one | is not allowed | | | Α | | | Average diam | eter (m | m) | Max | imum n | umber | | | Dubbles on polening | D≦0. | .3 | | | Ignore | d | Λ | | Bubbles on polarizer | 0.3 <d≦< td=""><td>≦0.5</td><td></td><td></td><td>10</td><td></td><td>Α</td></d≦<> | ≦0.5 | | | 10 | | Α | | | 0.5 < D≦ | ≦1.0 | | | 5 | | | | | | Filamentous (Line shape) | | | | | | | | Length (mm) | | Width (mm) | | Maximum number | | | | | Ignored | | W≦ | € 0.02 | Ignored | | Α·Β | | | L≦2.0 | | W≦ | ≤ 0.03 10 | | 10 | | | 4) Otains | L≦1.0 | | W≦ | 0.06 | | | | | 1) Stains | | | Round (Dot shape) | | | | | | 2) Foreign Materials3) Dark Spot | Average diameter (n | nm) | Maximu | m number | Min | imum Space | | | 3) Dark Spot | D≦0.3 | | lgn | ored | | - | | | | 0.3 <d≦0.5< td=""><td></td><td></td><td colspan="2">5 -</td><td>Α·Β</td></d≦0.5<> | | | 5 - | | Α·Β | | | | D>0.5 | | 0 | | 0 - | | | | | In total | | Filamentous | | Filamentous + Round=10 | | | | | | Those wiped out easily are acceptable | | | | | | | | | Type Maximum number | | | | | | | | Bright dot-defect | t | 1 | 1 dot | | 0 | | | Dot Dofoot | | | 1 | dot | | 5 | | | Dot-Defect
(Note 1) | | | 2 adja | cent dot | | 2 | Α | | (NOTE 1) | Dark dot-defect | 3 | adjacent | dot or above | Not allowed | | | | | | | De | nsity | 3(φ 20mm) | | | | | | | In | total | | 5 | | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2712-TX18D200VM0EWA-4 | PAGE | 12-2/4 | | |----------------------------------|--------------|------------------------------|------|--------|--| |----------------------------------|--------------|------------------------------|------|--------|--| Note 1: The definitions of dot defect are as below: - The defect area of the dot must be bigger than half of a dot. - For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others. - For dark dot-defect, showing white pattern, the dot's brightness must be under 70% darker than others. - The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot. - The definition of adjacent dot is shown as Fig. 12.5. - The Density of dot defect is defined in the area within diameter ϕ =20mm. ### 12.3 TOUCH PANEL APPEARANCE SPECIFICATION The specification as below is defined by the amount of unexpected material in different zones of touch panel. | Item | | Crit | eria | | Applied zone | | | | | |--|---|---|------------------------|--|--------------|---|--|--------------------|--| | | Width (mm) Length (mm) | | n (mm) | Maximum number | | | | | | | Scratches | W≦0.05 | L | .≦2 | 8; Space=5 mm min. | A,B | | | | | | Scratches | $0.05 < W \le 0.08$ | 2 <l< td=""><td>.≦8</td><td>3; Space=5 mm min.</td><td>A,D</td></l<> | .≦8 | 3; Space=5 mm min. | A,D | | | | | | | 0.08 <w< td=""><td></td><td>.>8</td><td>Not allowed</td><td></td></w<> | | .>8 | Not allowed | | | | | | | | | Round (D | ot shape) | | | | | | | | | D≦ | ≦0.15 | | Ignored | | | | | | | | 0.15 <d< td=""><td>≦0.3</td><td>10; S</td><td>pace=5 mm min.</td><td></td></d<> | ≦0.3 | 10; S | pace=5 mm min. | | | | | | | | 0.3 <d< td=""><td>≦0.5</td><td>2; Sp</td><td>pace=5 mm min.</td><td></td></d<> | ≦0.5 | 2; Sp | pace=5 mm min. | | | | | | | Foreign materials | D < | < 0.5 | | Not allowed | A,B | | | | | | and spot | Fi | Filamentous (Line shape) | | e) | ۸,۵ | | | | | | | Width (mm) | Length (mm) | | Maximum number | | | | | | | | W≦0.08 | | L≦1 8; Space=5 mm min. | | | | | | | | | $0.05 < W \le 0.08$ | 1 <l≦5< td=""><td colspan="2">1<l≦5< td=""><td colspan="2">1<l≦5< td=""><td>3; Space=5 mm min.</td><td></td></l≦5<></td></l≦5<></td></l≦5<> | | 1 <l≦5< td=""><td colspan="2">1<l≦5< td=""><td>3; Space=5 mm min.</td><td></td></l≦5<></td></l≦5<> | | 1 <l≦5< td=""><td>3; Space=5 mm min.</td><td></td></l≦5<> | | 3; Space=5 mm min. | | | | 0.08 <w< td=""><td colspan="2">L:</td><td colspan="2"></td><td>Not allowed</td><td></td></w<> | L: | | | | Not allowed | | | | | | | Round (D | ot shape) | | | | | | | | | Average diameter | (mm) | Maximum number | | | | | | | | Bubble | D≦0.15 | | Ignored | | A,B | | | | | | Dubble | 0.15 <d≦0.3< td=""><td></td><td colspan="2">10; Space=5 mm min.</td><td>۸,۵</td></d≦0.3<> | | 10; Space=5 mm min. | | ۸,۵ | | | | | | 0.3 <d< td=""><td></td><td colspan="2">2; Space=5 mm min.</td><td></td></d<> | | | 2; Space=5 mm min. | | | | | | | | | 0.5 <d< td=""><td colspan="2">Not allowed</td><td></td></d<> | | Not allowed | | | | | | | | Pin hole on | D≦0.1 | | Acceptable | | С | | | | | | printing area | D>0.1 | | ι | Jnacceptable | <u> </u> | | | | | The limitation of glass flaw occurred on touch panel is defined in the table as below. | Chip size cannot be out of specification as below 3mm A 7 <t< th=""><th>Item</th><th>Specifications</th></t<> | Item | Specifications | |--|------|---| | Glass chip Z <t 3mm="" chips:="" count="" disregard<="" of="" th=""><th></th><th>Chip size cannot be out of specification as below</th></t> | | Chip size cannot be out of specification as below | ### 13. PRECAUTIONS #### 13.1 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 13.2 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition; please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it. - 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages. - 7) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa. #### 13.3 PRECAUTIONS of OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV. #### 13.4 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long-term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from JDI, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. #### 13.5 PRECAUTIONS of IMAGE STICKING - 1) Do not display the fixed image or very frequently repeated clips in a long period of time, it may cause image sticking on display. Even a video of several minutes, which is played in a loop, is considered as repetitive. - 2) Screensaver or power saving mode is recommended to avoid image sticking effectively. Using moving images, scrolling text and alternating a fixed image with a moving image, are the ideal ways to reduce the possibility of image sticking. - 3) Additionally, it is important to avoid using static bars at image boundaries. Typically, such bars are a result of difference in aspect ratio (e.g., playing 4:3 content on a 16:9 display). ### 14. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.14.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number. Fig. 14.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2020 | 0 | | 2021 | 1 | | 2022 | 2 | | 2023 | 3 | | 2024 | 4 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | |------------|----------| | 1~7 days | 1 | | 8~14 days | 2 | | 15~21 days | 3 | | 22~28 days | 4 | | 29~31 days | 5 | 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. | REV.No | ITEM | REMARKS | |--------|----------------------------|----------| | Α | - | - | | В | Driver ICs and LCD changed | PCN 1077 | 4) The location of the lot mark is on the back of the display shown in Fig. 14.2. Label example: Fig. 14.2