| FOR MESSRS : | DATE : <u>Feb. 11th,2025</u> | |--------------|---| |--------------|---| # **CUSTOMER'S ACCEPTANCE SPECIFICATIONS** # TX18D211VM0BPA # Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|------------------------------|------------| | 1 | COVER | 7B64PS 2701-TX18D211VM0BPA-4 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX18D211VM0BPA-4 | 2-1/1 | | 3 | GENERAL DATA | 7B64PS 2703-TX18D211VM0BPA-4 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX18D211VM0BPA-4 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX18D211VM0BPA-4 | 5-1/2~2/2 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX18D211VM0BPA-4 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAM | 7B64PS 2707-TX18D211VM0BPA-4 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX18D211VM0BPA-4 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX18D211VM0BPA-4 | 9-1/8~8/8 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX18D211VM0BPA-4 | 10-1/2~2/2 | | 11 | APPEARANCE STANDARD | 7B64PS 2711-TX18D211VM0BPA-4 | 11-1/3~3/3 | | 12 | PRECAUTIONS | 7B64PS 2712-TX18D211VM0BPA-4 | 12-1/2~2/2 | | 13 | DESIGNATION OF LOT MARK | 7B64PS 2713-TX18D211VM0BPA-4 | 13-1/1 | ACCEPTED BY: PROPOSED BY: Mex Lec | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2701-TX18D211VM0BPA-4 | PAGE | 1-1/1 | |----------------------------------|--------------|------------------------------|------|-------| |----------------------------------|--------------|------------------------------|------|-------| # 2. RECORD OF REVISION | DATE | SHEET No. | | | SUMMARY | | | | |------------|--|--|-----------|------------------------|---------------|-----------------------|---| | Jan.3,'23 | 7B64PS 2701 –
TX18D211VM0BPA-2
Page 1-1/1 | Company logo ch | _ | _ | | | | | | 7B64PS 2713 –
TX18D211VM0BPA-2
Page 13-1/1 | JDI G Kaohsiung Opto- | roup | \rightarrow | apan 1 | JDI
Display Inc. | | | | All page | Company name changed: From "KAOHSIUNG OPTO-ELECTRONICS INC." to "JDI Taiwan Inc. Kaohsiung Branch" | | | | | | | Sep.28,'23 | 7B64 2711 –
TX18D211VM0BPA-3 | 11.3 MECHANICAL CHARACTERISTICS Revised | | | | | _ | | | Page 11-2/2 | Pen Input Pres | ssure | Specification 80g max. | \rightarrow | Specification 50~150g | | | | | Finger | 304.0 | 80g max. | | 50~150g | | | Feb.11,'25 | 7B64 2714 –
TX18D211VM0BPA-4 | 14. DESIGNATI
Added : | ION of LO | OT MARK | 1 | | | | | Page 14-1/1 | REV.No | | ITEM | | REMARKS | | | | | С | Touch pa | nel supplier chang | ed | PCN 1132 | | | | | | | | | | | # 3. GENERAL DATA ### 3.1 DISPLAY FEATURES This module is a 7" WVGA of 16:9 format LTPS TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX18D211VM0BPA | |-------------------------|--| | Module Dimensions | 167.7(W) mm x 109.5(H) mm x 10.6 (D) mm | | LCD Active Area | 152.4(W) mm x 91.44(H) mm | | Pixel Pitch | 0.1905(W) mm x 0.1905 (H) mm | | Resolution | 800 x 3(RGB)(W) x 480(H) Dots | | Color Pixel Arrangement | R, G, B Vertical Stripe | | LCD Type | Transmissive Color TFT; Normally Black | | Display Type | Active Matrix | | Number of Colors | 262k Colors (6-bit RGB) | | Backlight | Light Emitting Diode (LED) | | Weight | 271 g | | Interface | LVDS; 20 pins | | Power Supply Voltage | 3.3V for LCD; 12V for Backlight | | Power Consumption | 0.23W for LCD; 4.68W for Backlight | | Viewing Direction | Super Wide Version (In-Plane Switching) | | Touch Panel | Resistive type; Film on Glass; 4-wire type; Anti-glare Surface | # 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------|----------|------|----------------------|------|---------| | Supply Voltage | V_{DD} | -0.3 | 4.0 | ٧ | - | | Input Voltage of Logic | Vı | -0.3 | V _{DD} +0.3 | ٧ | Note 1 | | Operating Temperature | Тор | -30 | 80 | °C | Note 2 | | Storage Temperature | Tst | -40 | 90 | °C | Note 2 | | Backlight Input Voltage | VLED | - | 14 | V | - | - Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than 25 $\,^\circ\text{C}\,.$ - Operating under high temperature will shorten LED lifetime. # 5. ELECTRICAL CHARACTERISTICS ### 5.1 LCD CHARACTERISTICS $$T_a = 25$$ °C, Vss = 0V | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |--|--------------------|-----------------------|------|------|------|------|---------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | Differential Input | ., | "H" level | - | - | +100 | ., | N | | Voltage for LVDS
Receiver Threshold | Vı | "L" level | -100 | - | - | mV | Note 1 | | Power Supply Current | I _{DD} | V _{DD} =3.3V | - | 70 | 130 | mA | Note 2 | | Frame Frequency | f_{Frame} | - | - | 60 | 65 | Hz | | | CLK Frequency | f_{CLK} | - | 31.5 | 33.3 | 36 | MHz | | Note 1: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. The input terminal of LVDS transmitter is terminated with 100Ω . Note 2: An all white check pattern is used when measuring I_{DD} . f_{Frame} is set to 60 Hz. Moreover, 1.0A fuse is applied in the module for I_{DD} . For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred. SHEET NO. #### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \, {}^{\circ}C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|--------------|---------------------------|------|------|------|--------|----------| | LED Input Voltage | V_{LED} | - | 11.0 | 12.0 | 13.0 | V | Note1 | | LED Forward Current | | | - | 390 | 430 | Mata O | No. to O | | (Dim Control) | Dim Control) | 3.3VDC; 100% duty | 10 | 20 | 30 | mA | Note 2 | | LED lifetime | - | I _{LED} = 390 mA | - | 50K | - | hrs | Note 3 | - Note 1: As Fig. 5.1 shown, LED current is constant, 390 mA, controlled by the LED driver when applying 12V. - Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude. - Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 390 mA at 25° C. Fig 5.1 Note 4: By applying different I_{LED}, the estimated brightness and LED life time curves are shown as Fig 5.2 and Fig 5.3 for various environment use. Fig 5.2 LED Current v.s. Brightness Fig 5.3 LED Current v.s. Lifetime Note 5: The estimated V_{LED} range is defined to obtain I_{LED}=390mA. # 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on for 30 minutes. - The ambient temperature is 25°C. - In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1. | T - 25 | °C f_ | -60 Hz | $V_{\text{DD}} = 3.3 V$ | |------------|--------------|--------------------|----------------------------| | $I_a = 23$ | C, J_{Fra} | $_{m ho}=00$ i iz, | v DD = 3.3 v | | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---|--------|--------------|---|------|------|------|-------------------|---------| | Brightness of White Brightness Uniformity | | - | | 700 | 1000 | - | cd/m ² | Note 1 | | | | - | $\phi = 0^{\circ}, \theta = 0^{\circ},$ | 70 | - | ı | % | Note 2 | | Contrast F | Ratio | CR | I _{LED} = 390 mA | 700 | 1000 | - | - | Note 3 | | Response | Time | $T_r + T_f$ | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 30 | 40 | ms | Note 4 | | NTSC R | atio | - | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 70 | - | % | - | | | | θx | $\phi = 0^{\circ}, CR \ge 10$ | - | 85 | - | | | | \/iouring A | nalo | $\theta x'$ | $\phi = 180^\circ$, CR ≥ 10 | - | 85 | - | Degree | Note 5 | | Viewing A | irigie | θ y | φ = 90°, CR ≥ 10 | - | 85 | - | | | | | | $\theta y'$ | $\phi = 270^{\circ}, CR \ge 10$ | - | 85 | - | | | | | Dod | Х | | 0.60 | 0.65 | 0.70 | | | | | Red | Υ | | 0.27 | 0.32 | 0.37 | | | | | 0 | X | | 0.27 | 0.32 | 0.37 | - | | | Color | Green | Υ | | 0.56 | 0.61 | 0.66 | | | | Chromaticity | Blue | X | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | 0.10 | 0.15 | 0.20 | | Note 6 | | | Diue | Υ | | 0.01 | 0.06 | 0.11 | | | | | White | X | | 0.26 | 0.31 | 0.36 | | | | | vviile | Υ | | 0.28 | 0.33 | 0.38 | | | Note 1: The brightness is measured from the center point of the panel, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: Brightness uniformity = $$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$ X100% which is based on the brightness values of the 9 points in active area measured by BM-5 as shown in Fig. 6.2. JDI Taiwan Inc. Kaohsiung Branch Fig 6.1 SHEET NO. 7B64PS 2706-TX18D211VM0BPA-4 PAGE 6-1/2 Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation: $$CR = \frac{Brightness\,of\,\,White}{Brightness\,of\,\,Black}$$ Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, Falling time is the period from 90% brightness falling to 10% brightness. Fig.6.3 Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction. Fig 6.4 Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. JDI Taiwan Inc. Kaohsiung Branch **PAGE** # 7. BLOCK DIAGRAM Note 1: Signals are CLK and pixel data pairs. # 8. RELIABILITY TESTS | Test Item | Condition | | | | |-----------------------------|---|---|--|--| | High Temperature | 1) Operating
2) 80 °C | 500 hrs | | | | Low Temperature | 1) Operating
2) -30 °C | 500 hrs | | | | High Temperature | 1) Storage
2) 90 °C | 500 hrs | | | | Low Temperature | 1) Storage
2) -40 °C | 500 hrs | | | | Heat Cycle | 1) Operating 2) -30°C ~80°C 3) 3hrs~1hr~3hrs | 500 hrs | | | | Thermal Shock | Non-Operating -35 °C ↔ 85 °C 0.5 hr ↔ 0.5 hr | 500 hrs | | | | High Temperature & Humidity | 1) Operating 2) 40 °C & 85%RH 3) Without condensation | 500 hrs
(Note 3) | | | | Vibration | 1) Non-Operating 2) 10~200 Hz 3) 5G 4) X, Y, and Z directions | 1 hr for each direction | | | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 80G 4) $\pm X$, $\pm Y$ and $\pm Z$ directions | Once for each direction | | | | ESD | Operating Tip: 150 pF, 330 Ω Air discharge for glass: ± 12KV Contact discharge for metal frame: ± 15KV | 1) Glass: 9 points
2) Metal frame: 8 points
(Note4) | | | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40° C, the humidity needs to be reduced as Fig. 8.1 shown. Note 4: All pins of LCD interface (CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2708- TX18D211VM0BPA-4 | PAGE | 8-1/1 | |----------------------------------|--------------|-------------------------------|------|-------| |----------------------------------|--------------|-------------------------------|------|-------| # 9. LCD INTERFACE ### 9.1 INTERFACE PIN CONNECTIONS The display interface connector (CN1) is FI-SEB20P-HF13E-E1500 made by JAE and pin assignment is as below: | Pin No. | Symbol | Signal | Pin No. | Symbol | Signal | |---------|----------|------------------------------------|---------|-----------------|-------------------| | 1 | V_{DD} | Davier Comply for Lands | 11 | IN2- | DO DE DE VO HO | | 2 | V_{DD} | Power Supply for Logic | 12 | IN2+ | B2~B5, DE, VS, HS | | 3 | LR | Horizontal Display mode
Control | 13 | V _{SS} | GND | | 4 | UD | Vertical synchronous signal | 14 | CLK IN- | Divol Clock | | 5 | INO- | D0 D5 C0 | 15 | CLK IN+ | Pixel Clock | | 6 | IN0+ | R0~R5, G0 | 16 | Vss | GND | | 7 | Vss | GND | 17 | NC | | | 8 | IN1- | C4 C5 D0 D4 | 18 | NC | No Connection | | 9 | IN1+ | G1~G5, B0~B1 | 19 | NC | | | 10 | Vss | GND | 20 | DIM | Note 2 | - Note 1: IN n- and IN n+ (n=0, 1, 2), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively. - Note 2: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWM duty. - Note 3: Please refer to <u>8.8 SCAN DIRECTION</u> for the setting methods of UD, LR function. The backlight connector (CN2) is SM02 (8.0)B-BHS-1-TB(LF)(SN), and pin assignment is as below: | Pin No. | Signal | Signal | |---------|-----------|--------| | 1 | V_{LED} | 12VDC | | 2 | GND | Ground | ### 9.2 LVDS INTERFACE Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+, -) is used in differential mode. Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module. ### 9.3 LVDS DATA FORMAT DE: Display Enable HS: Horizontal synchronous signal VS: Vertical synchronous signal ### 9.4 TIMING CHART Fig. 9.1 Horizontal Timing Note 1: CLK's falling edge is the time to latch data and count (thp + thb), therefore, data sending and Hsync's falling edge should start when CLK's rise edge. Fig. 9.2 Vertical Timing Note 2: Vsync's falling edge needs to start with Hsync's falling edge simultaneously to count (tvp + tvb). Fig. 9.3 Setup & Hold Time Fig. 9.4 Setup & Hold Time ### 9.5 TIMING TABLE The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (f_{Frame}) = 60Hz to define. If 60 Hz is not the aim to set, less than 65 Hz for f_{Frame} is recommended to apply for better performance by other parameter combination as the definitions in section 5.1. ### A. Horizontal and Vertical Timing | | Item | Symbol | Min. | Тур. | Max. | Unit | |------------|---------------|--------|------|------|------|------| | | CLK Frequency | fclk | 31.5 | 33.3 | 36 | MHz | | Horizontal | Display Data | thd | | OLIK | | | | | Cycle Time | th | 1000 | 1056 | 1144 | CLK | | Mark and | Display Line | tvd | 480 | | 1.1 | | | Vertical | Cycle Time | tv | 525 | | Н | | Note 1: The rise and fall times (tr, tf) of CLK is equal or less than 3ns. Other signals are equal or less than 10ns. Note 2: For timing of input signals, they are set using 30% and 70% of V_{DD} as the base reference ### B. CLOCK AND DATA INPUT TIMING | | Item | | Min. | Тур. | Max. | Unit | |-------|------------|------|------|------|------|------| | CLIX | High Time | Tcwh | 12 | - | - | | | CLK | Low Time | Tcwl | 12 | - | - | | | | Setup Time | Tvsu | 7 | - | - | | | Vsync | Hold Time | Tvhd | 8 | - | - | | | Harma | Setup Time | Thsu | 8 | - | - | | | Hsync | Hold Time | Thhd | 8 | - | - | ns | | Data | Setup Time | Tdsu | 7 | - | - | | | Data | Hold Time | Tdhd | 6 | - | - | | | D. | Setup Time | Tesu | 8 | - | - | | | DE | Hold Time | Tehd | 8 | - | - | | ## 9.6 LVDS RECEIVER TIMING | | Item | Symbol | Min. | Тур. | Max. | Unit | |-----------|-------------------|--------|-----------------------------|-----------------------|-----------------------------|------| | CLK | Cycle frequency | 1/tcLK | 31.5 | 33.3 | 36 | MHz | | | 0 data position | tRP0 | 1/7* t _{CLK} -0.49 | 1/7* t _{CLK} | 1/7* t _{CLK} +0.49 | | | | 1st data position | tRP1 | -0.49 | 0 | +0.49 | | | DiaV | 2nd data position | tRP2 | 6/7* t _{CLK} -0.49 | 6/7* t _{CLK} | 6/7* t _{CLK} +0.49 | | | RinX | 3rd data position | tRP3 | 5/7* t _{CLK} -0.49 | 5/7* t _{CLK} | 5/7* t _{CLK} +0.49 | ns | | (X=0,1,2) | 4th data position | tRP4 | 4/7* t _{CLK} -0.49 | 4/7* t _{CLK} | 4/7* t _{CLK} +0.49 | | | | 5th data position | tRP5 | 3/7* t _{CLK} -0.49 | 3/7* t _{CLK} | 3/7* t _{CLK} +0.49 | | | | 6th data position | tRP6 | 2/7* t _{CLK} -0.49 | 2/7* t _{CLK} | 2/7* t _{CLK} +0.49 | | 9-6/8 7B64PS 2709-TX18D211VM0BPA-4 #### 9.7 POWER SEQUENCE - Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second. - Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed. Note 3: In order to avoid high Inrush current, V_{DD} rising time need to set more than 0.5ms. #### 9.8 SCAN DIRECTION Scan direction is available to be switched as below by setting CN1's UD & LR pin. UD: L or Open; LR: L or Open UD: H; LR: L or Open UD: L or Open; LR: H UD: H; LR: H SHEET NO. # 9.9 DATA INPUT for DISPLAY COLOR | | Red Data | | | | Green Data | | | | Blue Data | | | | | | | | | | | |-------|------------|-----|----|----|------------|----|-----|-----|-----------|----|----|----|-----|-----|----|----|----|----|-----| | Inpu | ut color | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | В4 | ВЗ | B2 | В1 | В0 | | | | MSE | 3 | | | | LSB | MSE | 3 | | | | LSB | MSE | 3 | | | | LSB | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue(63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | • | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | • | | | Red (62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | • | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | • | | | Green (62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Blue (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Blue | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Blue (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level. Note 2: Data Signal : 1 : High, 0 : Low | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2709-TX18D211VM0BPA-4 | PAGE | 9-8/8 | |----------------------------------|--------------|------------------------------|------|-------| |----------------------------------|--------------|------------------------------|------|-------| ## 10.2 REAR VIEW General Tolerance: ±0.5mm Scale: NTS Unit: mm SHEET No. ## 11. TOUCH PANEL The type of touch panel used on this display is resistive, analog, 4-wire and film on glass, and more characteristics are shown as below: ### 11.1 OPERATING CONDITIONS | Item | Specification | Remarks | |-------------------|---------------|---------| | Operating Voltage | 5VDC | - | ### 11.2 ELECTRICAL CHARACTERISTICS | Item | | Specification | Remarks | |-----------------------|-------|-------------------|-----------| | Resistance | X1-X2 | 300~1500 Ω | | | Between Terminal | Y1-Y2 | 100~700 Ω | - | | Insulation Resistance | X-Y | 10M Ω min. | At 25V DC | | Line and the | X | ±1.5% max. | Note 4 | | Linearity | Υ | ±1.5% max. | Note 1 | | Chattering | | 20ms max. | - | Note 1: The test conditions and equipments of linearity are as below: - Material of pen: poly-acetal resin - End shape: R 0.8 mm - Test force: 250 gf - Pitch: 10 mm - Test area is shown in Fig. 11.1 Fig. 11.1 As shown in Fig. 11.2, applying voltage meter to measure Va, Vb and Vxm, where Va is the maximum voltage in the active area; Vb is the minimum voltage in the active area; Vxm is the measured voltage of point x selected by random. Afterwards, the linearity can be calculated by following equation: $$Linearity = \frac{|Vxi - Vxm|}{Va - Vb} \times 100\%,$$ where Vxi is the idea voltage of point x. The method to measure the linearity of Y-axis is the same as above. ### 11.3 MECHANICAL CHARACTERISTICS | Item | Specification | Remarks | |--------------------|---------------|----------------------| | Pen Input Pressure | 50~150g | R0.8, Polyacetal Pen | | Finger | 50~150g | R8.0, Silicon Rubber | | Surface Hardness | 3H min. | JIS K 5400 | #### 11.4 OPTICAL CHARACTERISTICS | Item | Specification | Remarks | |---------------|---------------|---------| | Transmittance | 80% min. | - | #### 11.5 SAFETY AND ATTENTIONS - 1) Do not put heavy shock or stress on the touch panel. - 2) Please use soft cloth or absorbent cotton with ethanol to clean the touch panel by gently wiping. Moreover, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the touch panel's surface. - 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean the display's surface. - 4) Please pay more attention on handling and assembly due to that the touch panel size is larger than this TFT display. - 5) Please ensure housing design is able to protect touch panel when unexpected pressure adding on the edges and corners of it. - 6) UV protection is recommended to avoid the possibility of performance degrading when touch panel is likely applied under UV environment for a long period of time. | SHEET | |-------| | NO. | ## 12. APPEARANCE STANDARD The appearance inspection is performed in a dark room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. - The viewing zone is defined with angle θ shown in Fig. 12. The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 12.1 ### 12.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 2 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area between A zone and metal frame. In terms of housing design, B zone is the recommended window area customers' housing should be located in. Fig. 12.2 ## 12.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 12.3 and Fig. 12.4. | Item | Criteria | | | Applied zone | | | | |------------------------|---|--------------------|--------------|-------------------------|---------|---------------|-----| | | Length (mm) | Width | n (mm) | Maximum nu | ımber | Minimum space | | | | Ignored | , | W≦0.02 | Ignored | d | - | | | | L≦40 | 0.02< | W≦0.04 | 10 | | - | | | 0 | - | 0.04 < W Not allow | | wed - | | 4 D | | | Scratches | Round (Dot Shape) | | | | | A,B | | | | Average diamete | r (mm) | Maxim | um number Minimum space | | | | | | D≦0.2 | | I | gnore | | - | | | | D≦0.4 | | | 10 | | - | | | Dent | | Se | rious one | is not allowed | | | Α | | Wrinkles in polarizer | | Se | rious one | is not allowed | | | Α | | | Average dia | meter (m | ım) | Max | kimum r | number | | | Bubbles on polarizer | С | 0≤0.3 | | | Ignore | ed | Α | | Bubbles on polarizer | 0.3 <d≦0.5< td=""><td colspan="2">10</td><td></td><td>A</td></d≦0.5<> | | 10 | | | A | | | | 0.5 <d≦1.0 5<="" td=""><td></td><td></td></d≦1.0> | | | | | | | | | Filamentous (Line shape) | | | | | | | | | Length (mm) | | ` ' | | Max | imum number | | | | Ignored | | W≦ | €0.02 | | Ignored | A,B | | | L≦2.0 | | W≦0.03 | | 10 | | | | 1) Stains | L≦1.0 W≦ | | 60.06 | | | | | | 2) Foreign Materials | Round (Dot shape) | | | | | | | | 3) Dark Spot | Average diameter (mm) Max | | Maximu | aximum number Mir | | nimum Space | | | bark opot | D≦0.22 | | Ignored | | | - | | | | 0.22 <d≦0.33< td=""><td colspan="2">5</td><td></td><td>-</td><td>A,B</td></d≦0.33<> | | 5 | | | - | A,B | | | 0.33 < D | | 0 | | - | | | | | In total Filamentous + Round=10 | | | | | | | | | Those wiped out easily are acceptable | | | | | | | | | | | Туре | | Max | imum number | | | | Bright dot-defect | | 1 dot | | | 0 | | | Dot-Defect
(Note 1) | | | 1 dot | | | 4 | Α | | | Dark dot-defect | | 2 dots | | | 1(sets) | Α | | | | | In total | | | 4 | | | | In total | | 4 | | | | | | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2712- TX18D211VM0BPA-4 | PAGE | 12-2/4 | | |----------------------------------|--------------|-------------------------------|------|--------|--| | | ., | | | | | Note 1: The definitions of dot defect are as below: - For bright dot-defect, showing black pattern, visible with 5% ND filter is defined. - For dark dot-defect, showing white pattern, defect size over 1/2 dot area is defined. - The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot. - The definition of adjacent dot is shown as Fig. 12.5. - The Density of dot defect is defined in the area within diameter ϕ =10mm. ## 12.3 TOUCH PANEL APPEARANCE SPECIFICATION The specification as below is defined by the amount of unexpected material in different zones of touch panel. | Item | Criteria | | | Applied zone | | |-------------------|--|---|----------------|----------------|---| | | Width (mm) | Length (mm) | | Maximum number | А | | | 0.1≦W | - | | Not allowed | | | | 0.03≦W<0.1 | L<10 | | 5 pcs max. | | | | W<0.03 | , | - | Ignored | | | Scratches | | Round (D | ot shape) | | | | | Average diameter | (mm) | Ma | aximum number | | | | 0.3 <d< td=""><td colspan="2">0.3<d< td=""><td>Not allowed</td><td rowspan="3">А</td></d<></td></d<> | 0.3 <d< td=""><td>Not allowed</td><td rowspan="3">А</td></d<> | | Not allowed | А | | | 0.1 < D≦0.3 | | | 5 pcs max. | | | | D≦0.1 | | | Ignored | | | | Width (mm) | Length (mm) | | Maximum number | | | | 0.1≦W | - | | Not allowed | | | Foreign Materials | 0.03≦W<0.1 | L<10 | | 5 pcs max. | A | | | W<0.03 | - | | Ignored | | | | | | | | | | | Average diameter (mm) | | Maximum number | | | | | 0.5≦D | 0.5≦D | | Not allowed | А | | | 0.2≦D<0.5 | | 5 pcs max. | | | | | D<0.2 | | Ignored | | | The limitation of glass flaw occurred on touch panel is defined in the table as below. | Item | Specifications | | | | |------------------|----------------|--|--|--| | Edge flaw | X Z | $X \le 3.0 \text{ mm}$
$Y \le 3.0 \text{ mm}$
$Z \le \text{Thickness}$ | | | | Corner flaw | Z V V | $X \le 3.0 \text{ mm}$
$Y \le 3.0 \text{ mm}$
$Z \le \text{Thickness}$ | | | | Progressive flaw | | Not allowed | | | ## 13. PRECAUTIONS #### 13.1 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 13.2 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition; please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it. - 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages. - 7) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of adding pressure is less than $1 \, \mathrm{cm}^2$, the maximum pressure must be less than $1.96 \, \mathrm{N}$. #### 13.3 PRECAUTIONS of OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV. ### 13.4 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long-term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from JDI, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. ### 13.5 PRECAUTIONS of IMAGE STICKING - 1) Do not display the fixed image or very frequently repeated clips in a long period of time, it may cause image sticking on display. Even a video of several minutes, which is played in a loop, is considered as repetitive. - 2) Screensaver or power saving mode is recommended to avoid image sticking effectively. Using moving images, scrolling text and alternating a fixed image with a moving image, are the ideal ways to reduce the possibility of image sticking. - 3) Additionally, it is important to avoid using static bars at image boundaries. Typically, such bars are a result of difference in aspect ratio (e.g., playing 4:3 content on a 16:9 display). # 14. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.14.1. First 4 digits are used to represent production lot, T represented product of JDI Taiwan, and the last 6 digits are the serial number. Fig. 14.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2021 | 1 | | 2022 | 2 | | 2023 | 3 | | 2024 | 4 | | 2025 | 5 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | |------------|----------| | 1~7 days | 1 | | 8~14 days | 2 | | 15~21 days | 3 | | 22~28 days | 4 | | 29~31 days | 5 | 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. | REV.No | ITEM | REMARKS | |--------|------------------------------|----------| | Α | - | - | | С | Touch panel supplier changed | PCN 1132 | 4) The location of the lot mark is on the back of the display shown in Fig. 14.2. ### Label example: Fig. 14.2