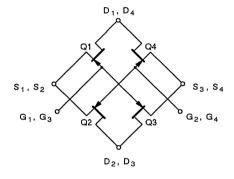
U350




## N-Channel JFET Ring Demodulator

The U350 is a set of four matched n-channel JFETs connected as a ring demodulator. The matched set of JFETs has low  $r_{DS(ON)}$ , high 9 fs, and square law operation which gives high conversion gain and a very high intermodulation intercept point. Best device performance is in the HF-VHF frequency range. The hermetic TO-99 package shields the die set as well as lending itself to military processing.

| PART<br>NUMBER | V <sub>(BR) GSS</sub><br>MIN<br>(V) | g fs<br>MIN<br>(mS) | l <sub>GSS</sub><br>MAX<br>(nA) | NF<br>TYP<br>(dB) |
|----------------|-------------------------------------|---------------------|---------------------------------|-------------------|
| U350           | -25                                 | 10                  | -1                              | 7                 |

TO-99 (TO-78)

BOTTOM VIEW

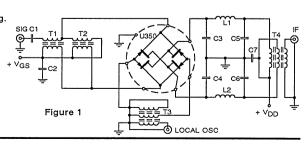






1 GATE 1, GATE 3 2 DRAIN 1, DRAIN 4 3 SOURCE 1, SOURCE 2 4 GND & CASE 5 SOURCE 3, SOURCE 4 6 DRAIN 2, DRAIN 3 7 GATE 2, GATE 4

## ABSOLUTE MAXIMUM RATINGS ( $T_A = 25 \,^{\circ}$ C unless otherwise noted)


| PARAMETERS/TEST CONDITIONS                           | SYMBOL           | LIMIT      | UNITS |  |
|------------------------------------------------------|------------------|------------|-------|--|
| Gate-Drain Voltage                                   | V <sub>GD</sub>  | -25        | - v   |  |
| Gate-Source Voltage                                  | V <sub>GS</sub>  | -25        |       |  |
| Forward Gate Current                                 | ۱ <sub>G</sub>   | 25         | mA    |  |
| Power Dissipation                                    | PD               | 1          | w     |  |
| Power Derating                                       |                  | 8          | mW/°C |  |
| Operating Junction Temperature                       | Tj               | –55 to 150 |       |  |
| Storage Temperature                                  | T <sub>stg</sub> | -65 to 150 | °C    |  |
| Lead Temperature<br>(1/16" from case for 10 seconds) | TL               | 300        |       |  |



| ELECTRICAL CHARACTERISTICS <sup>1</sup>                   |                                          |                                                                                                                 |                                                        | LIMITS           |      |     |      |
|-----------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|------|-----|------|
|                                                           |                                          |                                                                                                                 |                                                        |                  | U350 |     |      |
| PARAMETER                                                 | SYMBOL                                   | TEST CONDITIONS                                                                                                 |                                                        | TYP <sup>2</sup> | MIN  | МАХ | UNIT |
| STATIC                                                    |                                          |                                                                                                                 |                                                        |                  |      |     |      |
| Gate-Source<br>Breakdown Voltage                          | V <sub>(BR)GSS</sub>                     | $I_{G} = -1 \mu A$ , $V_{DS} = 0 V$                                                                             |                                                        | -35              | -25  |     | v    |
| Gate-Source<br>Cutoff Voltage <sup>4</sup>                | V <sub>GS(OFF)</sub>                     | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 nA                                                                   |                                                        | -3               | -2   | -6  |      |
| Saturation Drain<br>Current <sup>3,4</sup>                | I <sub>DSS</sub>                         | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0 V                                                                   |                                                        | 45               | 24   | 60  | mA   |
| Gate Reverse<br>Current <sup>4</sup>                      | I <sub>GSS</sub>                         | V <sub>GS</sub> = -15 V                                                                                         |                                                        |                  |      | -1  | nA   |
|                                                           |                                          | V <sub>DS</sub> = 0 V                                                                                           | T <sub>A</sub> =125°C                                  | -0.001           |      | -1  | ALL  |
| Gate-Source<br>Forward Voltage <sup>4</sup>               | V <sub>GS(F)</sub>                       | I <sub>G</sub> = 1 mA, V <sub>D</sub>                                                                           | I <sub>G</sub> = 1 mA, V <sub>DS</sub> = 0 V           |                  |      | 1   | V    |
| DYNAMIC                                                   |                                          |                                                                                                                 |                                                        |                  |      |     |      |
| Common-Source<br>Forward<br>Transconductance <sup>4</sup> | g <sub>fs</sub>                          | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 10 mA<br>f = 1 kHz                                                     |                                                        | 15               | 10   | 18  | mS   |
| Common-Source<br>Output Conductance <sup>4</sup>          | g <sub>os</sub>                          |                                                                                                                 |                                                        | 100              |      | 150 | зц   |
| Drain-Source<br>On-Resistance                             | r <sub>DS(ON)</sub>                      | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 0 r                                                                     | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 0 mA, f = 1kHz |                  |      | 90  | U    |
| Common-Source<br>Input Capacitance                        | C <sub>gs</sub>                          | V <sub>GS</sub> = -10 V, I <sub>D</sub> = 0 mA<br>f = 1 MHz                                                     |                                                        | 4                |      | 5   |      |
| Common-Source<br>Reverse Transfer<br>Capacitance          | C <sub>gd</sub>                          | V <sub>GD</sub> = -10 V, I <sub>S</sub> = 0 mA<br>f = 1 MHz                                                     |                                                        | 2                |      | 2.5 | pF   |
| Conversion Gain                                           | G <sub>c</sub>                           | $V_{DS} = 20 \text{ V},  V_{GS} = \frac{1}{2} V_{GS(OFF)}$<br>f = 100 MHz , R L = 1700 $\Omega$<br>See Figure 1 |                                                        | 4                |      |     | dB   |
| Noise Figure                                              | NF                                       |                                                                                                                 |                                                        | 7                |      |     |      |
| Intercept Point                                           |                                          |                                                                                                                 |                                                        | 33               |      |     | dBm  |
| MATCHING                                                  |                                          |                                                                                                                 |                                                        |                  |      |     |      |
| Saturation Drain<br>Current Ratio <sup>3</sup>            | I <sub>DSS</sub><br>I <sub>DSS</sub>     | V <sub>DS</sub> = 15 V, V <sub>C</sub>                                                                          | <sub>as</sub> = 0 V                                    | 0.95             | 0.9  | 1   |      |
| Transconductance<br>Ratio                                 | <u>g<sub>fs</sub></u><br>g <sub>fs</sub> | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 10 mA<br>f = 1 kHz                                                     |                                                        | 0.95             | 0.9  | 1   |      |
| Output Conductance Ratio                                  | g <sub>os</sub><br>g <sub>os</sub>       |                                                                                                                 |                                                        | 0.95             | 0.9  | 1   |      |
| Gate-Source Cutoff<br>Voltage Ratio                       | $\frac{V_{GS(OFF)}}{V_{GS(OFF)}}$        | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 1 nA                                                                   |                                                        | 0.95             | 0.9  | 1   |      |

NOTES:

1.  $T_A = 25 \,^{\circ}C$  unless otherwise noted. 2. For design aid only, not subject to production testing. 3. Pulse test; PW = 300 µs, duty cycle ≤ 3%. 4. Other gate terminal clamped to -8 V.

