μΑ783 ### 9 WATT AUDIO POWER AMPLIFIER #### FAIRCHILD LINEAR INTEGRATED CIRCUIT **GENERAL DESCRIPTION** — The μ A783 is high-voltage monolithic integrated circuit in a 12-pin power package. It is constructed using the Fairchild Planar* epitaxial process. It is designed for use as a low frequency Class B power amplifier and is intended primarily for 8 Ω and 16 Ω applications. It typically provides 9 W into 8 ohms and 5 W into 16 ohms from a 24 V supply. The μ A783 is provided with two pin configurations (P3 and P4). Both devices are identical electrically. The μA783 is pin for pin compatible with the TBA810S and TCA940. - THERMAL SHUTDOWN - WIDE SUPPLY VOLTAGE RANGE (4 V to 30 V) - HIGH CURRENT CAPABILITY (2.5 A) - 12-PIN POWER PACKAGE #### **ABSOLUTE MAXIMUM RATINGS** Supply Voltage Output Peak Current (Non-Repetitive) Output Current (Repetitive) Input Voltage Power Dissipation: at T_A = 70°C at T_C = 90°C Storage and Junction Temperature Pin Temperature - Soldering, 10 s 30 V 3.5 A 2.5 A 220 mVrms 1.0 W 6.0 W -40 to 150° C 260C | CHARACTERISTICS | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |-----------------------------------|--|------|--------------------------|-------|-------------| | Quiescent Output Voltage (Pin 12) | V+ = 24.0 V | 11.2 | 12.0 | 12.8 | T v | | Quiescent Drain Current (Pin 1) | | | 20.0 | 30.0 | mA | | Bias Current (Pin 8) | | | 0.4 | | μА | | Power Output | THD = 10% | 8.0 | 5.0
9.0
5.2
0.9 | | w
w
w | | Input Sensitivity | P _{OUT} = 9 W, V+ = 24.0 V
R _L = 8.0 Ω, f = 1.0 kHz
R _f = 56 Ω
R _f = 22 Ω | | 147.0
60.0 | 200.0 | mV
mV | | Input Resistance (Pin 8) | | | 5.0 | | MΩ | | Frequency Response (-3.0 dB) | $V+=24.0 V, R_L=8.0 Ω$ $C3=820 pF$ $C3=1500 pF$ | | 20-30000
20-20000 | | Hz
Hz | | Total Harmonic Distortion | $P_{OUT} = 50 \text{ mW to 5 W},$
V+ = 24.0 V
R _L = 8.0 Ω , f = 1.0 kHz | | 0.3 | | % | | Voltage Gain (Open Loop) | $V+ = 24.0 \text{ V}, \text{ R}_L = 8.0 \Omega, \text{ f} = 1.0 \text{ kHz}$ | | 70.0 | | dB | | Voltage Gain (Closed Loop) | V+ = 24.0 V, R_L = 8.0 Ω , f = 1.0 kHz | 34.0 | 36.0 | 40.0 | dB | | Input Noise Voltage | V+ = 24.0 V, R _g = 0,
BW (-3.0 dB) = 20 Hz to 20,000 Hz | | 3.0 | | μV | | Input Noise Current | V+ = 24.0 V,
BW (-3.0 dB) = 20 Hz to 20,000 Hz | - | 0.15 | | nA | | Efficiency | $P_{OUT} = 9 \text{ W, V+} = 24.0 \text{ V,}$
$R_L = 8.0 \Omega, f = 1.0 \text{ kHz}$ | | 70.0 | | % | | Supply Voltage Rejection | $V+=24.0~V,~R_L=8.0~\Omega$ fripple = 100 Hz | | 45.0 | · | dB | THERMAL DATA μΑ783P3 μA783P4 $\begin{array}{ll} \theta_{\text{JC}} & \quad \text{Thermal Resistance Junction to Case (tab)} \\ \theta_{\text{JA}} & \quad \text{Thermal Resistance Junction to Ambient} \end{array}$ MAX MAX 12° C/W 70° C/W** 10° C/W 80° C/W **Obtained with tabs soldered to print circuit with minimized copper area. #### **TEST AND APPLICATION CIRCUIT** Figure 1 ### TYPICAL CIRCUIT WITH LOAD CONNECTED TO THE SUPPLY VOLTAGE *C3 and C7 See Figure 3 Figure 2 Figure 3 ### POWER OUTPUT AS A FUNCTION OF SUPPLY VOLTAGE Figure 4 # MAXIMUM POWER DISSIPATION AS A FUNCTION OF SUPPLY VOLTAGE (SINE WAVE OPERATION) Figure 5 ### TOTAL HARMONIC DISTORTION AS A FUNCTION OF POWER OUTPUT Figure 6 ### TOTAL HARMONIC DISTORTION AS A FUNCTION OF FREQUENCY Figure 7 #### INPUT VOLTAGE AND VOLTAGE GAIN (CLOSED LOOP) AS A FUNCTION OF FEEDBACK RESISTANCE #### Figure 8 **POWER DISSIPATION AND EFFICIENCY** AS A FUNCTION OF POWER OUTPUT Figure 9 Figure 10 Figure 11 ### SUPPLY VOLTAGE REJECTION AS A FUNCTION OF FEEDBACK RESISTANCE Figure 12 ## SUPPLY VOLTAGE REJECTION AS A FUNCTION OF FEEDBACK RESISTANCE Figure 13 #### **MOUNTING INSTRUCTIONS** The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heat sink (μ A783P4C, Figure 14) or by soldering them to an area of copper on the printed circuit. (μ A783P3C, Figure 15). During soldering, the tabs temperature must not exceed 230°C and the soldering time must not be longer than 12 seconds. Figures 16a and 16b show two ways that can be used for mounting the device. Figure 14 ## MAXIMUM POWER DISSIPATION AND TOTAL THERMAL RESISTANCE AS A FUNCTION OF COPPER AREA OF PC BOARD (μ A783P3C) Figure 15 Figure 16a shows a method of mounting the μ A783P3C that is satisfactory both from the point of view of heat dissipation and from mechanical considerations. For the μ A783P4C, the desired thermal resistance is obtained attaching the hardware shown in Figure 16b, to a bracket with proper dimensions. This bracket can also act as a support for the whole printed circuit board. FIGURE 16a Figure 16b #### THERMAL SHUTDOWN The on chip design of the thermal limiting circuit offers the following advantages: - 1. An overload on the output (even if permanent) or an above-limit ambient temperature can be easily handled. - The heat sink can have a smaller factor of safety compared with that of a conventional circuit. In case of too high a junction temperature, power output, power dissipation and the supply current decrease (Figure 17) thus protecting the device. Figure 17