

UNISONIC TECHNOLOGIES CO., LTD

UA8954

LINEAR INTEGRATED CIRCUIT

4 CHANNEL BTL DRIVER FOR CD/CD-ROM

FEATURES

- * Wide dynamic range, (4.0V (typ.) at PreVcc=12V, PVcc=5V, R_L=8Ω)
- * Level shift circuit built in.
- * Thermal-shut-down circuit built in.
- * UTC UA8954 is a 4 channel driver for optical disc motor driver. Dual channel current feedback type drivers are built in, in addition to dual channel motor drivers.
- * Stand-by mode built in.
- * Separating Vcc into Pre+Power of sled motor, Power of loading motor and Power of actuator, can make better power efficiency, by low supply voltage drive.

<Actuator driver>

Current phase lag influenced load inductance is little, because this type is current feedback.

<Sled motor driver>

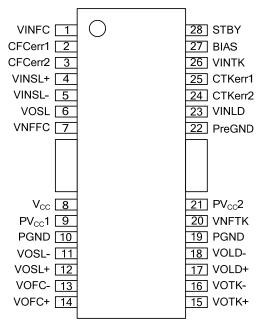
Input pins consist of (+) and (-), therefore various input types are available such as differential input.

<Loading driver>

This is a single input linear BTL driver.

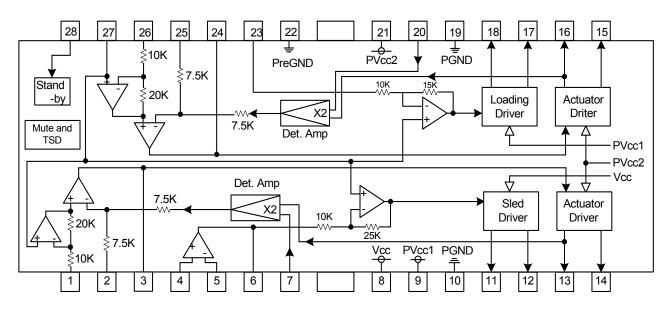
ORDERING INFORMATION

Ordering	Number	Daakaga	Dealing	
Lead Free	Halogen Free	Package	Packing	
UA8954L-SH1-T	UA8954G-SH1-T	HSOP-28	Tube	


UA8954G-SH1-T		
)Packing Type	(1) R: Tape Reel
(2))Package Type	(2) SH1: HSOP-28
(3))Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

PIN CONFIGURATION


PIN DESCRIPTION

PIN NO.	PIN NAME	FUNCTION
1	VINFC	Input for focus driver
2	CFCerr1	Connection with capacitor
3	CFCerr2	For error amplifier
4	VINSL+	Non inverting Input for OP-amp
5	VINSL-	Inverting input for OP-amp
6	VOSL	Output of OP-amp
7	VNFFC	Feedback for focus driver
8	V _{cc}	V _{CC} for pre-drive block and power block of sled
9	PV _{cc} 1	V _{cc} for power block of loading
10	PGND	GND for powr block
11	VOSL-	Inverted output of sled
12	VOSL+	Non inverted output of sled
13	VOFC-	Inverted output of focus
14	VOFC+	Non inverted output of focus
15	VOTK+	Non inverted output of tracking
16	VOTK-	Inverted output of tracking
17	VOLD+	Non inverted output of loading
18	VOLD-	Inverted output of loading
19	PGND	GND for power block
20	VNFTK	Feedback for tracking driver
21	PVcc2	V _{cc} for power block of actuator
22	PreGND	GND for pre-drive block
23	VINLD	Input for loading driver
24	CTKerr2	Connection with capacitor
25	CTKerr1	For error amplifier
26	VINTK	Input for tracking driver
27	BIAS	Input for reference voltage
28	STBY	Input for stand-by control

Notes: Pin Name of + and – (output of drivers) means polarity to input pin. (For example if voltage of pin1 is high, pin14 is high.)

BLOCK DAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC} , PV _{CC} 1/2	13.5	V
Power Dissipation	PD	1.7 (Note 2)	W
Operating Temperature	T _{OPR}	-20 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +125	°C

Notes: 1.Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied. 2. On less than 3% (percentage occupied by copper foil), 70×70mm², t=1.6mm, glass epoxy mounting.

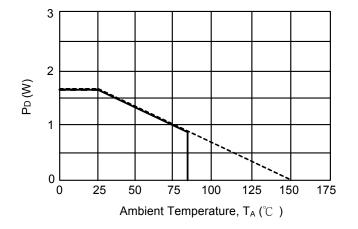
Reduce power by 13.6mW for each degree above 25°C.

GUARANTEED OPERATING RANGES

 $(T_A=25^{\circ}C, V_{CC}=5V, I_D=10mA, R_{CAL}=33K\Omega, unless otherwise specified)$

PARAMETER	SYMBOL	RATINGS	UNIT
	V _{CC}	4.3 ~ 13.2	
Supply Voltage	P V _{cc} 1	4.3 ~ V _{CC}	V
	P V _{CC} 2	4.3 ~ V _{CC}	

ELECTRICAL CHARACTERISTICS


(T_A=25°C, V_{CC}=12V, P V_{CC}1=P V_{CC}2=5V, BIAS=2.5V, R_L=8Ω, R_d=0.5Ω, C=100pF, unless otherwise specified)

<u>(1A 20 0, 100 121, 1 1001 1 1</u>		2.00, 100	pi , amooo		o opoomo	α)
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Quiescont current	Icc			18	27	mA
Stand-by quiescent current	I _{ST}				0.5	mA
Voltage for stand-by ON	V _{STON}				0.5	V
Voltage for stand-by OFF	VSTOFF		2.0			V
Actuator driver						
Output offset current	loo		-6		6	mA
Maximum output voltage	V _{OM}		3.6	4.0		V
Trans conductance	gm	V _{IN} = BIAS±0.2V	1.3	1.5	1.7	A/V
Sled motor driver/Pre OP-amp		_				
Common mode input range	VICM		-0.3		11.0	V
Input bias current	I _{BOP}			30	300	nA
Low Level output voltage	V _{OLOp}			0.1	0.3	V
Output source current	I _{SO}		0.3	0.5		mA
Output sink current	I _{ST}		1			mA
Sled motor driver					-	
Output offset voltage	VOOFSL		-100	0	100	mV
Maximum output voltage	V _{OMLD}		7.5	9.0		V
Closed loop voltage gain	G _{VSL}	$V_{IN}=\pm 0.2V$	18.0	20.0	22.0	dB
Loading motor driver					-	
Output offsct voltage	V _{OOFLD}		-50	0	50	mV
Maximum output voltage	V _{OMLD}		3.6	4.0		V
Closed loop voltage gain	G _{VLD}	V _{IN} = BIAS±0.2V	13.5	15.5	17.5	dB
Gain error by polarity	$ riangle G_{VLD}$	V _{IN} = BIAS±0.2V	0	1	2	dB

Note: This product is not designed for protection against radioactive rays.

POWER DISSIPATION/ELECTRICAL CHARACTERISTIC CURVES

 * On less than 3% (percentage occupied by copper foil), 70 $\times 70~mm^{2}$, t=1.6mm glass epoxy mounting.

SWITCH TABLE

PARAMETER	SW	INPUT VOLTAGE				CONDITIONS	MEASURE	
FARAMETER	300	VIN1	VIN2	VIN3	VIN4	VST	CONDITIONS	POINT
Qulescent current	1	2.5V	2.5V	2.5V	2.5v	5.0V		IQ
Stand-by qulescent curront	1	2.5V	2.5V	2.5V	2.5V	0.5V		IQ
Voltage for stand-by ON	1	2.5V	2.5V	2.5V	2.5V	0.5V		IQ
Voltage for stand-by OFF	1	2.5V	2.5V	2.5V	2.5V	2.0V		IQ
Actuator driver							·	
Output offect current	1	2.5V	2.5V	2.5V	2.5V	5.0V		V01/2
Maximum output voltage	1	0V 5V	0V 5V	2.5V	2.5V	2.5V		V01/2
Trans conductance	1	2.3V	2.3V	2.5V	2.5V	2.5V		V01/2
Trans conductance	I	2.7V	2.7V	2.5V	2.5V	2.5V		
Send motor driver							·	
nput bias current	2	2.5V	2.5V	2.5V	2.5V	5.0V		VBOP/1M
Low level output voltage	1	2.5V	2.5V	0V	2.5V	5.0V		VOOP
Output source current	1	2.5V	2.5V	2.5V	2.5V	5.0V	I _{OOP} = +0.2mA	VOOP
Output sink current	1	2.5V	2.5V	2.5V	2.5V	5.0V	I _{OOP} = -1mA	VOOP
Output offset voltage	1	2.5V	2.5V	2.5V	2.5V	5.0V		Vo3
Maximum output voltage	1	2.5V	2.5V	0V 5V	2.5V	5.0V		V _o 3
Closed loop voltage gain	1	2.5V	2.5V	2.3V 2.7V	2.5V	5.0V		V _o 3
Loading driver								
Output offsct voltage	1	2.5V	2.5V	2.5V	2.5V	5.0V		V ₀ 4
Maximum output voltage	1	2.5V	2.5V	2.5V	0V 5V	5.0V		V ₀ 4
Voltage Gain	1	2.5V	2.5V	2.5V	2.3V 2.7V	5.0V		V ₀ 4

Notes on use:

1. Thermal-shut-down circuit built-in. In case IC chip temperature rise to 175°C (typ.), thermal-shut-down circuit operates and output current is muted. Next time IC chip temperature falls below 150°C (typ.), the driver blocks start.

2. In case stand-by –pin voltage under 0.5V or opened, quicscent current is muted. Stand-by-pin voltage should be over 2.0V for normal application.

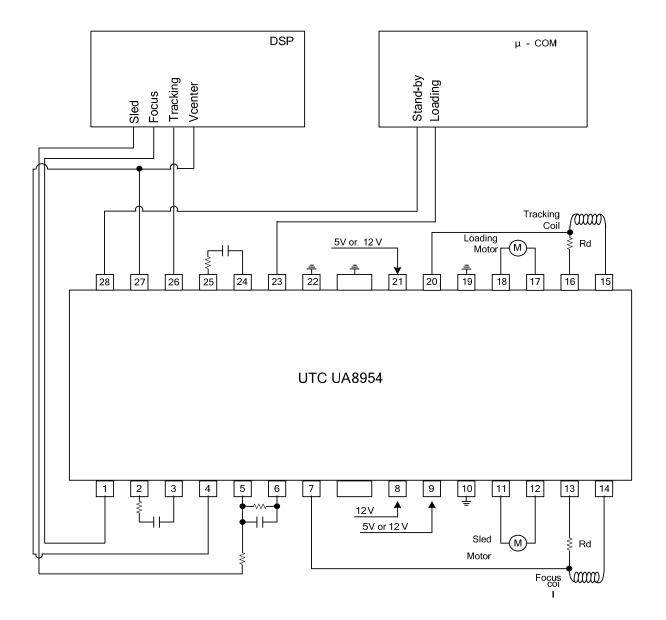
- 3. In case supply voltage falls below 3.5V (typ.), output current is muted. Next time supply voltage reses to 3.7V (typ.), the driver blocks start.
- 4. Bias-pin (pin27) should be pulled up more than 1.2V, In case bias-pin voltage is pulled down under 0.9V (typ.), output current is muted.

5. Insert the by-pass capacitor between Vcc-pin and GND-pin of IC as possible as near (approximately 0.1µF).

6. Heat dissipation fins are attached to the GND on the inside of the package, Make sure to connect these to the external GND.

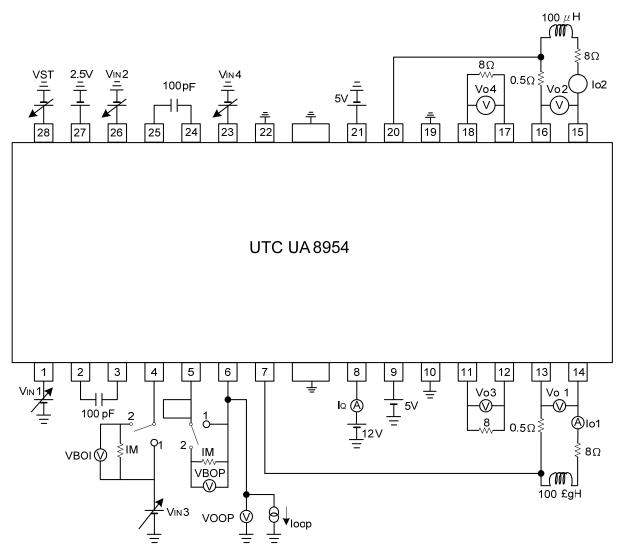
<Supplement>

Current feedback driver


Trans conductance (output current /input voltage) is showed as follows.

$$g_m = \frac{1}{Rd+Rwire} (A / V)$$

 R_{wire} =0.15 Ω (+0.05 Ω): Au wire



APPLICATION CIRCUIT

TEST CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

