

A Schlumberger Company

μA9643 Dual TTL To MOS/CCD Driver

Interface Products

Description

The $\mu A9643$ is a Dual Positive-Logic "AND" TTL-to-MOS Driver. The $\mu A9643$ is a functional replacement of the SN75322 with one important exception: the two external pnp transistors are no longer needed for operation. The $\mu A9643$ is also a functional replacement for the 75363 with the important exception that the V_{CC3} supply is not needed. The pin connections normally used for the external pnp transistors are purposely not internally connected to the $\mu A9643$.

- SATISFIES CCD MEMORY AND DELAY LINE REQUIREMENTS
- DUAL POSITIVE-LOGIC TTL-TO-MOS DRIVER
- OPERATES FROM STANDARD BIPOLAR AND MOS SUPPLY VOLTAGES
- HIGH-SPEED SWITCHING
- **TTL AND DTL COMPATIBLE INPUTS**
- SEPARATE DRIVER ADDRESS INPUTS WITH COMMON STROBE
- V_{OH} AND V_{OL} COMPATIBLE WITH POPULAR MOS RAMs
- DOES NOT REQUIRE EXTERNAL pnp TRANSISTORS OR V_{CC3}
- V_{OH} MINIMUM IS V_{CC2} 0.5 V

Absolute Maximum Ratings

Over operating ambient temperature range unless otherwise noted

-0.5 V to 7 V

5.5 V

5.5 V

1000 mW 0°C to 70°C

-0.5 V to 15 V

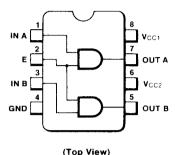
-65°C to 150°C

Supply Voltage Range of V_{CC1}

(Note 1)

Supply Voltage Range of V_{CC2} Input Voltage

Inter-Input Voltage (Note 2)
Continuous Total Dissipation at


 $T_A = 25^{\circ}C$

Operating Temperature Range Storage Temperature Range

Pin Temperature

Molded DIP (Soldering, 10 s) 260°C

Connection Diagram 8-Pin DIP

(10p VI

Order Information

Type Package μA9643 Molded DIP

Code 9T Part No. μΑ9643TC

Notes

- Voltage values are with respect to network ground terminal unless otherwise noted.
- This rating applies between any two inputs of any one of the gates.

Recommended Operating Conditions

Characteristic	Min	Тур	Max	Unit
Supply Voltage, V _{CC1}	4.75	5.0	5.25	V
Supply Voltage, V _{CC2}	4.75	12	15	V
Operating Temperature, T _A	0		70	°C

Symbol	Characteristic	Condition		Min	Тур(3)	Max	Unit
VIH	Input HIGH Voltage			2.0			V
VIL	Input LOW Voltage					0.8	٧
V _{OH}	Output HIGH Voltage	$I_{OH} = -400 \mu A$		V _{CC2} - 0.5	V _{CC2} – 0.2		V
V _{OL}	Output LOW Voltage	I _{OL} = 10 mA			0.4	0.5	٧
		I _{OL} = 1.0 mA			0.2	0.3	٧
I _{IN}	Input Current at Maximum Input Voltage	V _{CC1} = 5.25 V, V _{CC2} = 11.4 V V _{IN} = 5.25 V				0.1	mA
lıн	Input HIGH Current	V _{IN} = 2.4 V	A Inputs			40	μΑ
			E Inputs			80	
l _{IL}	Input LOW Current	V _{IN} = 0.4 V	A Inputs			0.5	mA
			E Inputs			- 1.0	
I _{CC1(L)}	Supply Current from V _{CC1} All Outputs LOW	$V_{CC2} = 12.6 \text{ V}$	No Load		15	19	mA
I _{CC2(L)}	Supply Current from V _{CC2} All Outputs LOW	V _{CC2} = 12.6 V	V _{CC1} = 5.25 V		5.5	9.5	mA
I _{CC1(H)}	Supply Current from V _{CC1} All Outputs HIGH	$V_{CC2} = 13.2 \text{ V}$	No Load		9.0	13	mA
I _{CC2(H)}	Supply Current from V _{CC2} All Outputs HIGH	V _{CC2} = 12.6 V	V _{CC1} = 5.25 V		5.5	9.5	mA

AC Characteristics $V_{CC1} = 5.0 \text{ V}, V_{CC2} = 12 \text{ V}, T_A = 25 ^{\circ}\text{C}$

Symbol	Characteristic	Condition		Min	Тур	Max	Unit
tDLH	Delay Time	C _L = 300 pF		5.0	9.0	17	ns
t _{DHL}	Delay Time			5.0	9.0	17	ns
tTLH	Rise Time	R _{SERIES} = 0	C _L = 300 pF	6.0	11	17	ns
tTHL	Fall Time			6.0	11	17	ns
tTLH	Rise Time	R _{SERIES} = 10 Ω		8.0	14	20	ns
[†] THL	Fall Time			8.0	14	20	ns
t _{PLHA} t _{PLHB} t _{PHLA} t _{PHLB}	Skew between outputs A and B				0.5		ns

Note

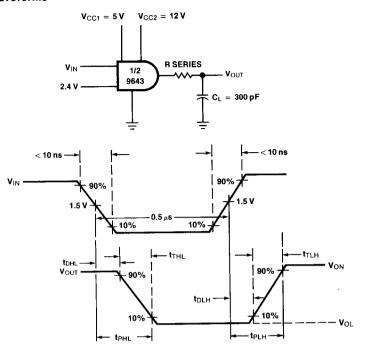
^{3.} All typical values are at V_{CC1} = 5.0 V, V_{CC2} = 12 V, and T_A = 25°C unless otherwise noted.

The be dyi

me The

> and out

> The ref ga


> ma

dri fot

Th

int red

AC Test Circuit and Waveforms

The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUT}=$ 50 Ω

 C_{L} includes probe and jig capacitance.