
UC3206X **Preliminary CMOS IC**

600mA, 3MHz, SYNCHRONOUS STEP-DOWN DC/DC CONVERTER

DESCRIPTION

The UTC UC3206X is a high efficiency synchronous, step-down DC/DC converter. Its input voltage range is from 2V to 6V, and Output voltage is internally set in a range from 0.8V to 4.0V in increments of 50mV (accuracy: ±2.0%).

The device is operated by 3.0MHz, and includes 0.42Ω P-channel driver transistor and 0.52Ω N-channel switching transistor. The device provides short-time turn-on by the soft start function internally set in 0.25 ms (TYP).

FEATURES

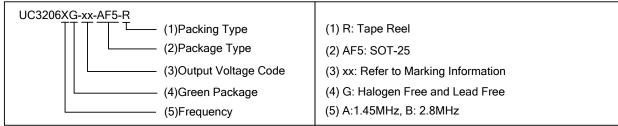
* Input voltage: 2.0V~6.0V

* Output voltage: 0.8V~4.0V (+2.0%)

* P-ch ON resistance: 0.42Ω * N-ch ON resistance: 0.52Ω * Output current: 600mA

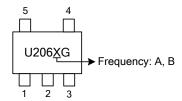
* Oscillation frequency: 3.0MHz (+15%)

* Maximum duty cycle: 100% * High efficiency: 92% (TYP.)

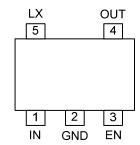

* High speed soft-start circuit and Current limiter circuit built-in

* CL high speed auto discharge

* Low ESR ceramic capacitor compatible

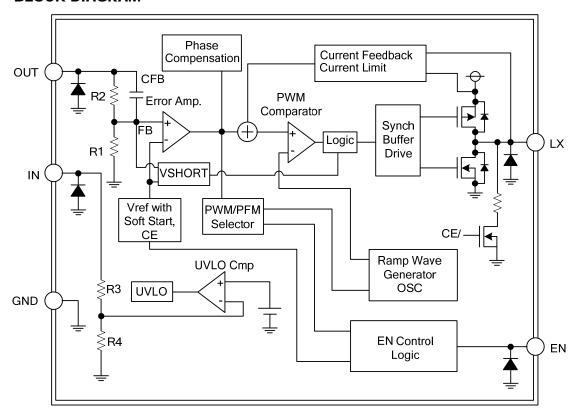

ORDERING INFORMATION

Ordering Number		Package	Packing
	UC3206XG-xx-AF5-R	SOT-25	Tape Reel
Note:	xx: Output Voltage, refer to Marking Information.		



www.unisonic.com.tw 1 of 4 QW-R211-031.a

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	IN	Power Input		
2	GND	Ground		
3	EN	Chip Enable & Mode Switch		
4	OUT	Output Voltage		
5	LX	Switching Output		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
IN Pin Voltage	V_{IN}	6.5	V
LX Pin Voltage	VLx	6.5	V
OUT Pin Voltage	V _{OUT}	6.5	V
EN Pin Voltage	V_{EN}	6.5	V
Power Dissipation	P _D	250	mW
Operating Temperature Range	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{OUT}=1.8V, F_{OSC}=3.0MHz, T_A=25°C)

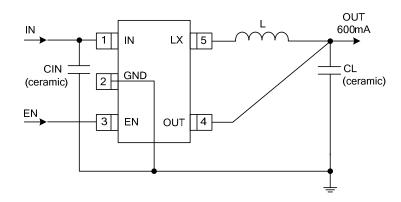
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	V _{IN} =V _{EN} =5.0V, I _{OUT} =30mA		1.764	1.800	1.836	V
Operating Voltage Range	V _{IN}					6.0	V
Maximum Output Current	I _{OUTMAX}	$V_{IN}=V_{OUT(E)}+2.0V, V_{EN}=1.0V,$		600			mA
U.V.L.O. Voltage	V_{UVLO}			1.00	1.40	1.78	V
Supply Current	I_{DD}	$V_{IN}=V_{EN}=5.0V$, $V_{OUT}=V_{OUT(E)}\times1.1V$,		60		μΑ
Stand-by Current	I _{STB}	V _{IN} =5.0V, V _{EN} =0V, V _{OUT} =V _{OUT(E)} ×1	1.1V		0	1.0	μΑ
Oscillation Frequency	Fosc	, ,	JC3206A JC3206B		1.45 2.8		MHz MHz
PFM Switching Current	I _{PFM}	V _{IN} =V _{OUT(E)} +2.0V, V _{EN} =V _{IN} , I _{OUT} =1	mA		350		mA
Maximum Duty Cycle	D _{MAX}	$V_{IN}=V_{EN}=5.0V$, $V_{OUT}=V_{OUT(E)}\times0.9V$			100		%
Minimum Duty Cycle	D _{MIN}	V _{IN} =V _{EN} =5.0V, V _{OUT} =V _{OUT(E)} ×0.1V			0		%
Efficiency	E _{FFI}	V _{EN} =V _{IN} =V _{OUT(E)} +1.2V, I _{OUT} =100m	ıΑ		92		%
Lx SW "H" ON Resistance 2	R _{LxH}	V _{IN} =V _{EN} =3.6V, V _{OUT} =0V, I _{Lx} =100m			0.42	0.67	Ω
Lx SW "L" ON Resistance 2	R _{LxL}	V _{IN} =V _{EN} =3.6V			0.52	0.77	Ω
Lx SW "H" Leak Current (Note 1)	I _{LeakH}	V _{IN} =V _{OUT} =5.0V, V _{EN} =0V, Lx=0V			0.01	1.0	μΑ
Current Limit	I _{LIM}	$V_{IN}=V_{EN}=5.0V$, $V_{OUT}=V_{OUT(E)}\times0.9V$	'	900			mA
Output Voltage Temperature Characteristics	△V _{OUT} / (V _{OUT} ·△T _{OPR})	I _{OUT} =30mA, -40°C ≤Topr≤85°C			±100		ppm/°C
EN "H" Voltage	V_{ENH}	V _{OUT} =0V		1.5		V_{IN}	V
EN "L" Voltage	V_{ENL}	V _{OUT} =0V		0		0.25	V
EN "H" Current	I _{ENH}	$V_{IN}=V_{EN}=5.0V$, $V_{OUT}=0V$		-0.1		0.1	μΑ
EN "L" Current	I _{ENL}	V _{IN} =5.0V, V _{EN} =0V, V _{OUT} =0V		-0.1		0.1	μΑ
Soft Start Time	t _{ss}	V _{EN} =0V→V _{IN} , I _{OUT} =1mA		-	0.3	0.4	ms
Latch Time	t _{LAT}	V_{IN} = V_{EN} =5.0V, V_{OUT} =0.8× $V_{OUT(E)}$ Short Lx at 1Ω Resistance			4		ms
Short Protection Threshold Voltage	V _{SHORT}	V_{IN} = V_{EN} =5.0 V , Short Lx at 1 Ω Resistance			0.900		V
L Discharge R_{Dischg} V_{IN} =5.0V, L_{x} =5.0V, V_{EN} =0V				100		Ω	

Note: When temperature is high, a current of approximately 10µA (maximum) may leak.

■ OPERATIONAL DESCRIPTION

Soft Start

The UTC **UC3206X** provides 0.25ms (Typ.) high speed soft-start. Soft start time is defined as the time to reach 90% of the output nominal voltage when the EN pin is turned on.


UVLO Circuit

When the IN pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the IN pin voltage becomes 1.8V or higher, switching operation takes place.

CL High Speed Discharge

The UTC **UC3206X** can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the EN pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin and the GND pin.

■ TYPICAL APPLICATION CIRCUIT

FOSC=3.0MHz

L: 1.5µH (NR3015, TAIYO YUDEN)

 C_{IN} : 4.7 μ F (Ceramic) C_L : 10 μ F (Ceramic)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.