UTC UNISONIC TECHNOLOGIES CO., LTD

UC34363

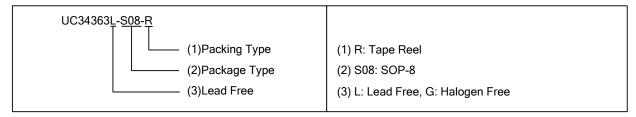
Preliminary

LINEAR INTEGRATED CIRCUIT

SOP-8

CONSTANT VOLTAGE AND **CONSTANT CURRENT** CONTROLLER FOR BATTERY **CHARGERS**

DESCRIPTION

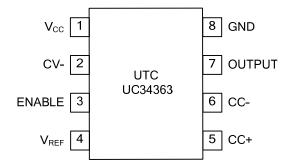

The UTC UC34363 is a switch controller for constant voltage, constant current (CV/CC) application. The device could be used for battery charge. UTC UC34363 is used of SOP-8 packages. Additionally the UTC UC34363 intergrated a internal compensation capacitor, so that the application is simplicial.

FEATURES

- * CV/CC linear charge
- * 3A maximum charge current
- * PWM control Mode
- * Available charge current
- * Over Voltage protect ,Over Current Protect
- * Enable Control function
- * Very Low Power Dissipation in Standby Mode

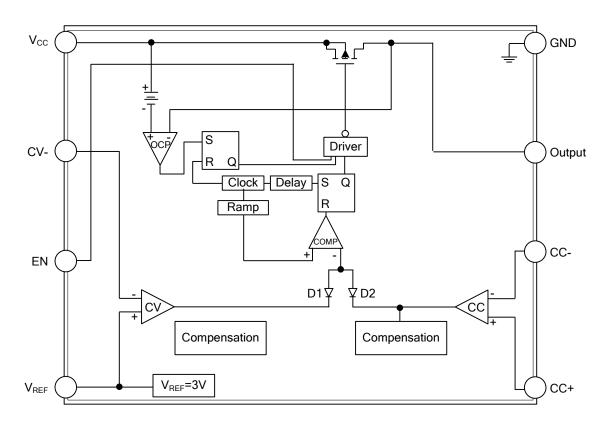
ORDERING INFORMATION

Ordering Number		Doolsono	Packing	
Lead Free	Halogen Free	Halogen Free Package		
UC34363L-S08-R	UC34363G-S08-R	SOP-8	Tape Reel	


MARKING INFORMATION

PACKAGE	MARKING
SOP-8	B 7 6 5 UTC OCCUPATION Date Code L: Lead Free L: Lead Free C: Halogen Free Lot Code

www.unisonic.com.tw 1 of 4

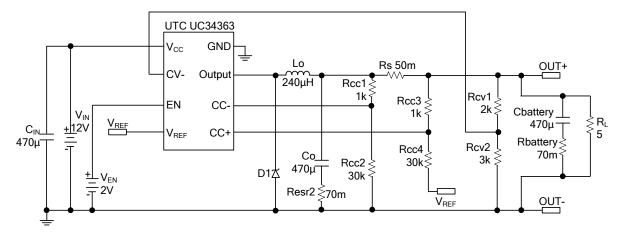

■ PIN CONFIGURATION

■ PIN DESCRIPTION

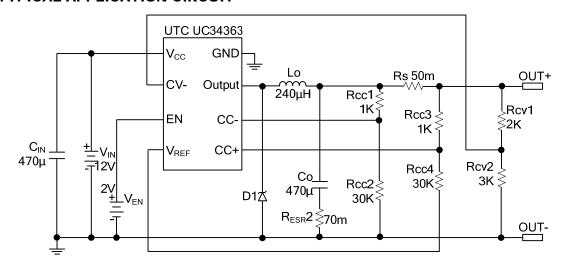
PIN NO.	PIN NAME	DESCRIPTION	
1	V_{CC}	Power Supply	
2	CV-	Negative Input of the Voltage Amplifier	
3	ENABLE	Enable Controlled ON/OFF for IC	
4	V_{REF}	3V external Voltage Reference	
5	CC+	Positive Input of Current Amplifier	
6	CC-	Negative Input of Current Amplifier	
7	OUTPUT	Output	
8	GND	Ground	

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING


PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V_{CC}	30	V
CC+ Voltage	V _{CC} +	10	V
CC- Voltage	V _{CC} -	10	V
CV- Voltage	V _{CV} -	10	V
Operating Junction Temperature	TJ	125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ **ELECTRICAL CHARACTERISTICS** (V_{IN}=15V, T_A=25°C, Unless otherwise specified)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vcc		8		30	V
ISTANDBY	V _{CC} = 30V		7	15	mA
			ā.	ā.	
Fosc			75		KHZ
			_	_	_
СС	R_S =50m Ω , Rcc1=Rcc3=1K, Rcc2=Rcc4=30K		2		Α
			_	_	_
V_{ON}		2			V
V_{OFF}				1.5	V
V_{REF}	I _{LOAD} =5mA		3.0		V
			•	•	•
T _{OTP}			150		°C
	V _{CC} ISTANDBY FOSC CC Von Voff VREF	V _{CC} I _{STANDBY} V _{CC} = 30V Fosc CC R _S =50mΩ, Rcc1=Rcc3=1K, Rcc2=Rcc4=30K V _{ON} V _{OFF} V _{REF} I _{LOAD} =5mA	V _{CC} 8 I _{STANDBY} V _{CC} = 30V F _{OSC} CC R _S =50mΩ, Rcc1=Rcc3=1K, Rcc2=Rcc4=30K V _{ON} 2 V _{OFF} V _{REF}	V _{CC} 8 I _{STANDBY} V _{CC} = 30V 7 F _{OSC} 75 CC R _S =50mΩ, Rcc1=Rcc3=1K, Rcc2=Rcc4=30K 2 V _{ON} 2 V _{OFF} V _{OFF} V _{REF} I _{LOAD} =5mA 3.0	V _{CC} 8 30 I _{STANDBY} V _{CC} = 30V 7 15 F _{OSC} 75 75 CC R _S =50mΩ, Rcc1=Rcc3=1K, Rcc2=Rcc4=30K 2 V _{ON} 2 1.5 V _{REF} I _{LOAD} =5mA 3.0

■ TEST CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.