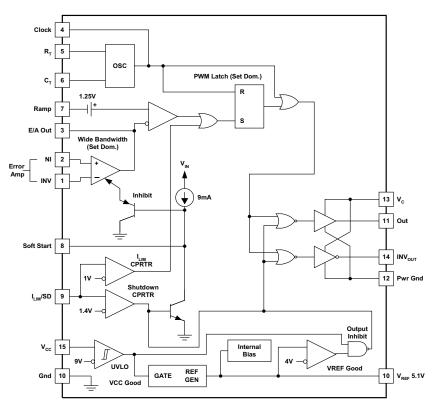


HIGH SPEED PWM CONTROLLER


FEATURES

- Complementary Outputs
- Practical Operation Switching Frequencies to 1 MHz
- 50-ns Propagation Delay to Output
- High Current Dual Totem Pole Outputs (1.5 A Peak)
- Wide Bandwidth Error Amplifier
- Fully Latched Logic With Double Pulse Suppression
- Pulse-by-Pulse Current Limiting
- Soft Start/Maximum Duty Cycle Control
- Under-Voltage Lockout with Hysteresis
- Low Start Up Current (1.1 mA)
- Trimmed Bandgap Reference (5.1 V \pm 1%)

DESCRIPTION

The UC1824 family of PWM control devices is optimized for high frequency switched mode power supply applications. Particular care was given to minimizing propagation delays through the comparators and logic circuitry while maximizing bandwidth and slew rate of the error amplifier. This controller is designed for use in either current mode or voltage mode systems with the capability for input voltage feed-forward.

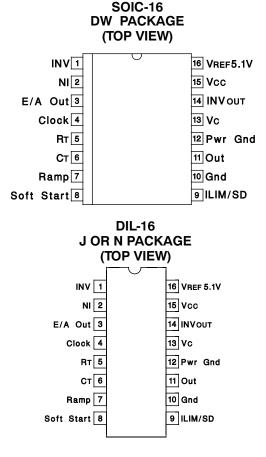
Protection circuitry includes a current limit comparator with a 1-V threshold, a TTL compatible shutdown port, and a soft-start pin which doubles as a maximum duty cycle clamp. The logic is fully latched to provide jitter free operation and prohibit multiple pulses at an output. An under-voltage lockout section with 800 mV of hysteresis assures low start up current. During under-voltage lockout, the outputs are high impedance.

BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

A

DESCRIPTION (CONTINUED)


These devices feature totem pole outputs designed to source and sink high peak currents from capacitive loads, such as the gate of a power MOSFET. The on state is designed as a high level.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

	VALUE	UNIT	
Supply voltage (pins 13, 15)	30	V	
Output current, source or sink (pins 11, 14)			
DC 0.5		•	
Pulse (0.5 ms)	2	— A	
Analog inputs			
(Pins 1, 2, 7)	–0.3 TO 7	Ň	
(Pin 8, 9)	–0.3 TO 6	- V	
Clock output current (pin 4)	-5		
Error amplifier output current (pin 3)	5		
Soft start sink current (pin 8)	20	- mA	
Oscillator charging current (pin 5)	-5		
Power dissipation	1	W	
Storage temperature range	-65 to 150		
Lead temperature (soldering, 10 seconds)	300	°C	

(1) All voltages are with respect to GND (Pin 10); all currents are positive into, negative out of part; pin numbers refer to DIL-16 package.

(2) Consult Unitrode Integrated Circuit Databook for thermal limitations and considerations of package.

-

PLCC-20 AND LCC-20	PA
Q AND L PACKAGES	F
(TOP VIEW)	N
	IN
	Ν
	E,
	С
	N
<u></u>	R
3 2 1 20 19	С
4 18	R
	S
⊈5 17]	N
⊈6 16 ⊉	IL
7 15	G
8 14	0
	P
	N
	V
	IN

PACKAGE PIN FUNCTION								
FUNCTION	PIN							
N/C	1							
INV	2							
NI	3							
E/A Out	4							
Clock	5							
N/C	6							
RT	7							
Ст	8							
Ramp	9							
Soft Start	10							
N/C	11							
ILIM/SD	12							
Gnd	13							
Out	14							
Pwr Gnd	15							
N/C	16							
Vc	17							
INVOUT	18							
Vcc	19							
VREF 5.1V	20							

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for, $R_T = 3.65k$, $C_T = 1$ nF, $V_{CC} = 15$ V, $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1824, $-40^{\circ}C < T_A < 85^{\circ}C$ for the UC2824, and $0^{\circ}C < T_A < 70^{\circ}C$ for the UC3824, $T_A = T_J$.

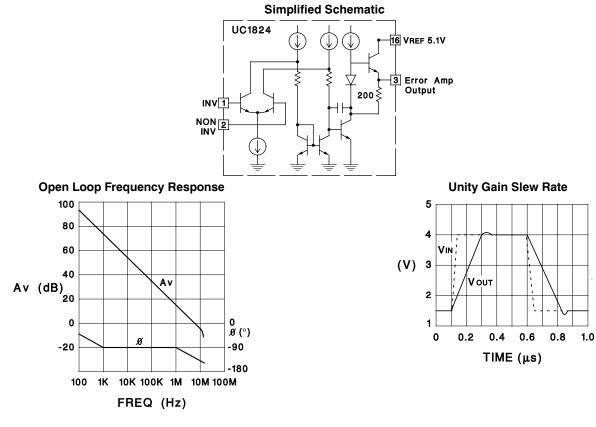
PARAMETER	TEST CONDITIONS		UC1824 UC2824			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	0.111
Reference Section	- <u>-</u>	,						
Output voltage	$T_{J} = 25^{\circ}C, I_{O} = 1 \text{ mA}$	5.05	5.10	5.15	5	5.10	5.20	V
Line regulation	10 V < V _{CC} < 30 V		2	20		2	20	., .,
Load regulation	1 mA < I _O < 10 mA		5	20		5	20	mV mV
Temperature stability ⁽¹⁾	$T_{MIN} < T_A < T_{MAX}$		0.2	0.4		0.2	0.4	mV/°C
Total output variation ⁽¹⁾	Line, Load, Temperature	5		5.20	4.95		5.25	V
Output noise voltage ⁽¹⁾	10 Hz < f < 10 kHz		50			50		μV
long term stability ⁽¹⁾	T _J = 125°C, 1000 hrs.		5	25		5	25	mV
Short circuit current	$V_{REF} = 0 \text{ V}$	-15	-50	-100	-15	-50	-100	mA
Oscillator Section		,						
Initial accuracy ⁽¹⁾	$T_J = 25^{\circ}C$	360	400	440	360	400	440	kHz
Voltage stability ⁽¹⁾	10 V < V _{CC} < 30 V		0.2%	2%		0.2%	2%	
Temperature stability ⁽¹⁾	$T_{MIN} < T_A < T_{MAX}$		5%			5%		
Total variation ⁽¹⁾	Line, Temperature	340		460	340		460	kHz
Clock out high		3.9	4.5		3.9	4.5		
Clock out low			2.3	2.9		2.3	2.9	
Ramp peak ⁽¹⁾		2.6	2.8	3	2.6	2.8	3	V
Ramp valley ⁽¹⁾		0.7	1	1.25	0.7	1	1.25	
Ramp valley to peak ⁽¹⁾		1.6	1.8	2	1.6	1.8	2	
Error Amplifier Section								
Input offset voltage				10			15	mV
Input bias current			0.6	3		0.6	3	μA
Input offset current			0.1	1		0.1	1	μA
Open loop gain	1 V < V _O < 4 V	60	95		60	95		
CMRR	1.5 V < V _{CM} < 5.5 V	75	95		75	95		dB
PSRR	10 V < V _{CC} < 30 V	85	110		85	110		
Output sink current	$V_{\text{PIN 3}} = 1 \text{ V}$	1	2.5		1	2.5		
Output source current	$V_{\text{PIN 3}} = 4 \text{ V}$	-0.5	-1.3		-0.5	-1.3		mA
Output high voltage	$I_{\text{PIN 3}} = -0.5 \text{ mA}$	4	4.7	5	4	4.7	5	
Output low voltage	$I_{\text{PIN 3}} = 1 \text{ mA}$	0	0.5	1	0	0.5	1	V
Unity gain bandwidth ⁽¹⁾		3	5.5		3	5.5		MHz
Slew rate ⁽¹⁾		6	12		6	12		V/µs
PWM Comparator Section								.,µo
Pin 7 bias current	V _{PIN 7} = 0 V		-1	-5		-1	-5	μA
Duty cycle range		0	•	80	0	•	85	%
Pin 3 zero dc threshold	V _{PIN 7} = 0 V	1.1	1.25	00	1.1	1.25	00	V
Delay to output ⁽¹⁾			50	80		50	80	ns
Soft-Start Section		<u> </u>	00	00		00	00	113
Charge current	V _{PIN 8} = 0.5 V	3	9	20	3	9	20	μA
Discharge current	V _{PIN 8} = 0.3 V V _{PIN 8} = 1 V	1	3	20	1	3	20	mA
Current Limit/Shutdown Se		I						
Pin 9 bias current	0 < V _{PIN 9} < 4 V			15				μA

(1) This parameter not 100% tested in production but guaranteed by design.

ELECTRICAL CHARACTERISTICS (continued)

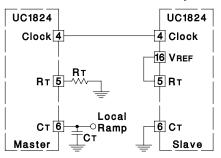
Unless otherwise stated, these specifications apply for, $R_T = 3.65k$, $C_T = 1$ nF, $V_{CC} = 15$ V, $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1824, $-40^{\circ}C < T_A < 85^{\circ}C$ for the UC2824, and $0^{\circ}C < T_A < 70^{\circ}C$ for the UC3824, $T_A = T_J$.

PARAMETER	TEST CONDITIONS		UC1824 UC2824			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX		
Current limit threshold		0.9	1	1.1	0.9	1	1.1	V	
Shutdown threshold		1.25	1.40	1.55	1.25	1.40	1.55	v	
Delay to output			50	80		50	80	ns	
Output Section	·								
Output low level	I _{OUT} = 20 mA		0.25	0.40		0.25	0.40		
	I _{OUT} = 200 mA		1.2	2.2		1.2	2.2	V	
Output high lovel	$I_{OUT} = -20 \text{ mA}$	13	13.5		13	13.5	v		
Output high level	I _{OUT} = -200 mA	12	13		12	13			
Collector leakage	V _C = 30 V		100	500		10	500	μA	
Rise/fall time ⁽²⁾	CL = 1 nF		30	60		30	60	ns	
Under-Voltage Lockout Secti	on								
Start threshold		8.8	9.2	9.6	8.8	9.2	9.6	V	
UVLO hysteresis		0.4	0.8	1.2	0.4	0.8	1.2	V	
Supply Current Section		·							
Start up current	V _{CC} = 8 V		1.1	2.5		1.1	2.5	mA	
ICC	$V_{PIN 1}, V_{PIN 7}, V_{PIN 9} = 0 V; V_{PIN 2} = 1 V$		22	33		22	33	ША	

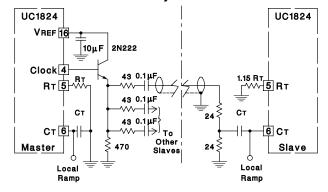

(2) This parameter not 100% tested in production but guaranteed by design.

UC1824 Printed Circuit Board Layout Considerations

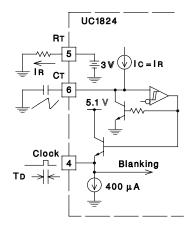
High speed circuits demand careful attention to layout and component placement. To assure proper performance of the UC1824 follow these rules:

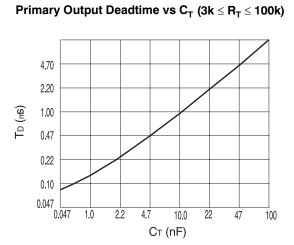

- 1. Use a ground plane.
- 2. Damp or clamp parasitic inductive kick energy from the gate of driven MOSFETs. Do not allow the output pins to ring below ground. A series gate resistor or a shunt 1-A Schottky diode at the output pin serves this purpose.
- Bypass V_{CC}, V_C, and V_{REF}. Use 0.1-μF monolithic ceramic capacitors with low equivalent series inductance. Allow less than 1 cm of total lead length for each capacitor between the bypassed pin and the ground plane.
- 4. Treat the timing capacitor, C_T , like a bypass capacitor.

Error Amplifier Circuit

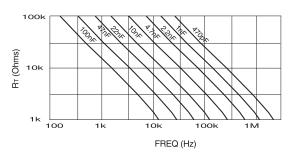


Synchronized Operation

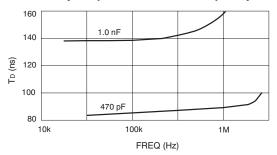


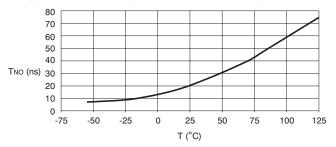


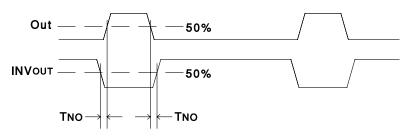
Generalized Synchronization

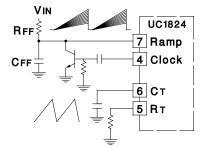


Oscillator Circuit

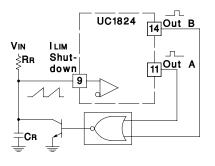



Timing Resistance vs Frequency

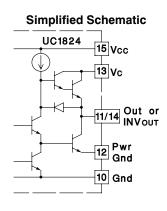

Primary Output Deadtime vs Frequency


Typical Non-Overlap Time (T NO) Over Temperature

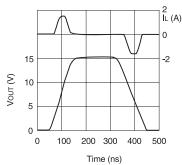
Non-Overlap Time (TNO)

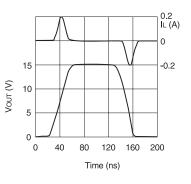


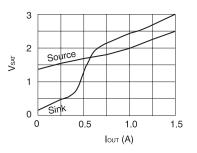
Forward Technique for Off-Line Voltage Mode Application

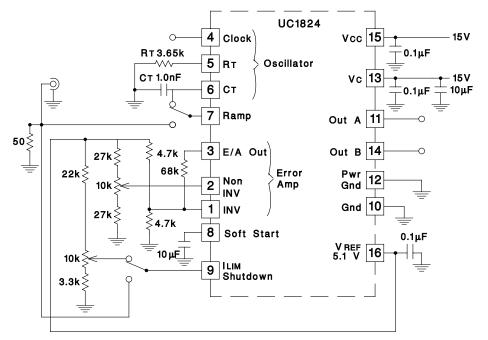


Constant Volt-Second Clamp Circuit


The circuit shown here will achieve a constant volt-second product clamp over varying input voltages. The ramp generator components, RT and CR are chosen so that the ramp at Pin 9 crosses the 1V threshold at the same time the desired maximum volt-second product is reached. The delay through the functional nor block must be such that the ramp capacitor can be completely discharged during the minimum deadtime.


Output Section


Rise/Fall Time (CL=10 nF)


Rise/Fall Time (CL=1 nF)

Saturation Curves

Open-Loop Laboratory Test Fixture

UC1824's functions and measuring their specifications.

This test fixture is useful for exercising many of the As with any wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly recommended.

UDG-92036-2

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UC2824DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2824DW	Samples
UC2824N	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UC2824N	Samples
UC3824DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3824DW	Samples
UC3824DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3824DW	Samples
UC3824N	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3824N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

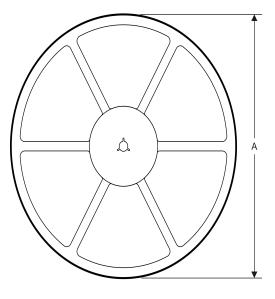
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

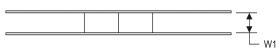
www.ti.com

13-Oct-2018

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

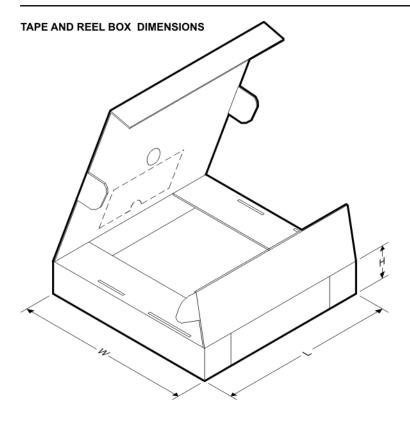
Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal


	Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC	C3824DWTR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC3824DWTR	SOIC	DW	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated