

# UNISONIC TECHNOLOGIES CO., LTD

UH8102 cmos ic

# LOW POWER HALL EFFECT SWITCH

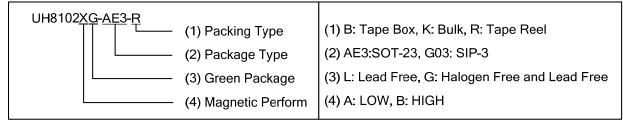
#### DESCRIPTION

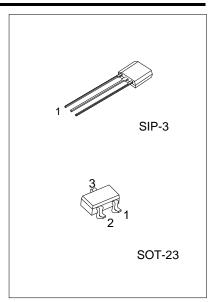
**UH8102** is a low-power integrated Hall switch designed to sense the applied magnetic flux density and give a digital output, which indicates the present condition of the magnitude sensed.

It mainly designed for battery-powered system and hand-held equipment, such as cellular flip-phones and PDA's, in which power consumption is one major concern. The typical power consumption of UH8100 at down to 10uW in 2.7V supply.

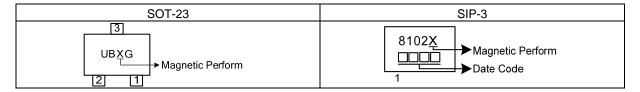
For **UH8102A**, the output will be at the "Low" level when no magnetic field is applied. When the applied magnetic flux density is stronger than the switching threshold, the output would be at the "High" level.

For **UH8102B**, the output will be at the "High" level when no magnetic field is applied. When the applied magnetic flux density is stronger than the switching threshold, the output would be at the "Low" level.

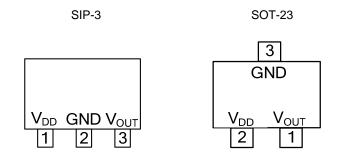




- \*Micropower Operation
- \*2.4V to 5.5V Battery Operation
- \*Offset Canceling Technology
- \*Superior Temperature Stability
- \*Extremely Low Switch-Point Drift
- \*Insensitive to Physical Stress

#### ORDERING INFORMATION


| Ordering Number | Doolsogo  | Pin Assignment |     |   | Dooking   |  |
|-----------------|-----------|----------------|-----|---|-----------|--|
|                 | Package — |                | 2   | 3 | Packing   |  |
| UH8102XG-AE3-R  | SOT-23    | 0              |     | G | Tape Reel |  |
| UH8102XG-G03-B  | SIP-3     |                | G   | 0 | Tape Box  |  |
| UH8102XG-G03-K  | SIP-3     | I              | G O |   | Bulk      |  |

Note: Pin Assignment: O: Output I: V<sub>DD</sub> G: GND

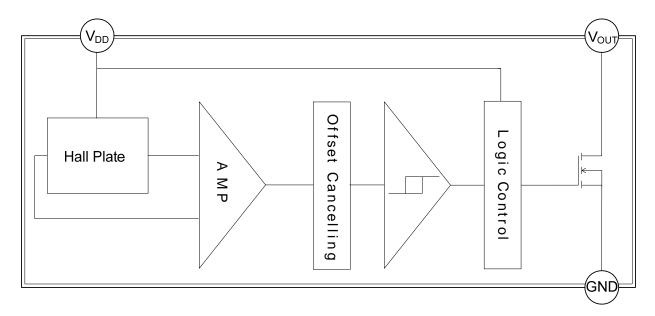





#### MARKING



#### ■ PIN CONFIGURATION




# ■ PIN DESCRIPTION

| PIN NAME         | PIN TYPE | PIN DESCRIPTION |
|------------------|----------|-----------------|
| V <sub>OUT</sub> | 0        | Digital Output  |
| $V_{DD}$         | Р        | Power Supply    |
| GND              | G        | Ground          |

Note: O=Output, P=Power Supply, G=Ground

#### ■ BLOCK DIAGRAM



#### ABSOLUTE MAXIMUM RATING

| PARAMETER             |        | SYMBOL           | RATINGS           | UNIT |
|-----------------------|--------|------------------|-------------------|------|
| Magnetic Flux Density |        | В                | Unlimited         | mT   |
| Supply Voltage        |        | $V_{DD}$         | 5.5               | V    |
| Supply current        |        | ΙQ               | -1 ~ <b>+</b> 2.5 | mA   |
| Bassas Bianis ation   | SIP-3  |                  | 400               | mW   |
| Power Dissipation     | SOT-23 | $P_{D}$          | 200               | mW   |
| Junction Temperature  |        | TJ               | 150               | °C   |
| Operation Temperature |        | T <sub>OPR</sub> | -40 ~ <b>+</b> 85 | °C   |
| Storage Temperature   |        | T <sub>STG</sub> | -40 ~ +150        | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

# ■ RECOMMENDED OPERATING CONDITIONS (T<sub>A</sub>=25°C)

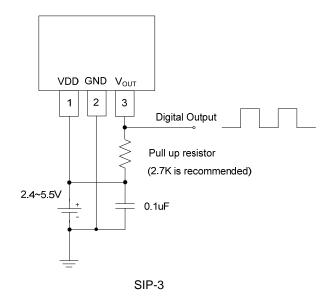
| PARAMETER           | SYMBOL           | CONDITIONS | MIN  | TYP | MAX | UNIT |
|---------------------|------------------|------------|------|-----|-----|------|
| Supply Voltage      | $V_{DD}$         | Operating  | 2.4  | 2.7 | 5.5 | V    |
| Output Voltage      | V <sub>OUT</sub> |            | -0.3 | 2.7 | 5.5 | V    |
| Ambient Temperature | T <sub>A</sub>   |            | -40  | 25  | 85  | °C   |

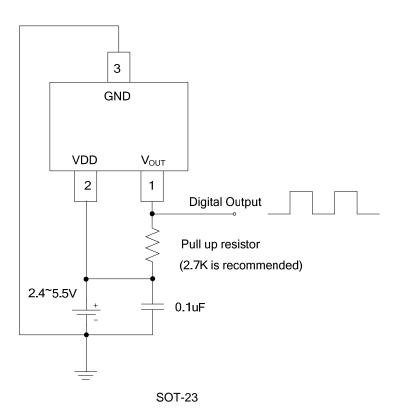
# ■ ELECTRICAL CHARACTERISTICS (T<sub>A</sub>=25° C)

| PARAMETER                 | SYMBOL               | CONDITIONS                |                        | MIN | TYP  | MAX | UNIT |
|---------------------------|----------------------|---------------------------|------------------------|-----|------|-----|------|
| Output Saturation Voltage | $V_{SAT}$            | V <sub>DD</sub> =2.7V     |                        |     | 0.1  |     | V    |
| Output Leakage Current    | l <sub>OFF</sub>     | V <sub>DD</sub> =2.7 V    |                        |     | 0.01 |     | uA   |
| Supply Current            | I <sub>DD(EN)</sub>  | \/ 2.7                    | Chip enable            |     | 1.1  |     | mΑ   |
|                           | I <sub>DD(DIS)</sub> | V <sub>DD</sub> =2.7<br>V | Chip disable           |     | 2.5  |     | uA   |
|                           | I <sub>DD(AVG)</sub> |                           | Average supply current |     | 3    | 20  | uA   |
| Operating Time            | T <sub>OP</sub>      |                           |                        |     | 60   |     | us   |
| Standby Time              | $T_{SD}$             | V <sub>DD</sub> =2.7V     |                        |     | 150  |     | ms   |
| Duty Cycle                | D.C.                 |                           |                        |     | 0.04 |     | %    |

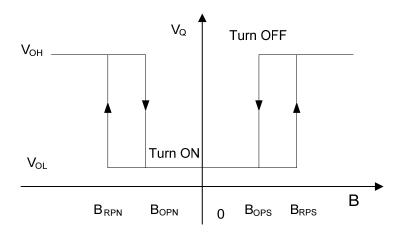
# ■ MAGNETIC CHARACTERISTICS (T<sub>A</sub>=25°C,V<sub>DD</sub>=2.7V)

For UH8102A (**LOW** level when no magnetic field is applied)

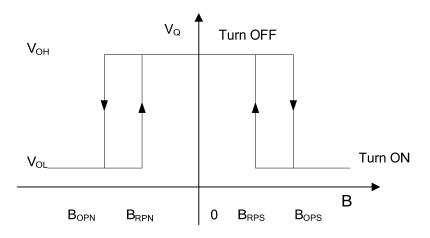

| Rank | PARAMETER        | SYMBOL                           | TEST CONDITIONS                                                                     | MIN | TYP | MAX | UNIT  |
|------|------------------|----------------------------------|-------------------------------------------------------------------------------------|-----|-----|-----|-------|
|      | Operation Points | B <sub>OP</sub>                  | South or North pole to branded side,  B  >  B <sub>OP</sub>  , V <sub>OUT</sub> On  | 8   |     | 23  |       |
| 1    | Release Points   | B <sub>RP</sub>                  | South or North pole to branded side,  B  <  B <sub>RP</sub>  , V <sub>OUT</sub> Off | 10  |     | 25  | Gauss |
|      | Hysteresis       | $ B_{OP}-B_{RP} $                | B <sub>OPX</sub> -B <sub>RPX</sub>                                                  |     | 10  |     |       |
|      | Operation Points | B <sub>OP</sub>                  | South or North pole to branded side,  B  >  B <sub>OP</sub>  , V <sub>OUT</sub> On  | 15  |     | 35  |       |
| 2    | Release Points   | B <sub>RP</sub>                  | South or North pole to branded side,  B  <  B_RP , V_OUT Off                        | 20  |     | 40  | Gauss |
|      | Hysteresis       | $ B_{OP}-B_{RP} $                | B <sub>OPX</sub> -B <sub>RPX</sub>                                                  |     | 10  |     |       |
| 3    | Operation Points | B <sub>OP</sub>                  | South or North pole to branded side,  B  >  B <sub>OP</sub>  , V <sub>OUT</sub> On  | 1   |     |     |       |
|      | Release Points   | B <sub>RP</sub>                  | South or North pole to branded side, $ B  <  B_{RP} $ , $V_{OUT}$ Off               |     |     | 70  | Gauss |
|      | Hysteresis       | B <sub>OP</sub> -B <sub>RP</sub> | B <sub>OPX</sub> -B <sub>RPX</sub>                                                  |     | 10  |     |       |


# ■ MAGNETIC CHARACTERISTICS(Cont.)

For UH8102B (**HIGH** level when no magnetic field is applied)


| Rank | PARAMETER        | SYMBOL                           | TEST CONDITIONS                                                                     | MIN | TYP | MAX | UNIT  |
|------|------------------|----------------------------------|-------------------------------------------------------------------------------------|-----|-----|-----|-------|
| 1    | Operation Points | B <sub>OP</sub>                  | South or North pole to branded side, $ B  >  B_{OP} $ , $V_{OUT}$ On                | 10  |     | 25  |       |
|      | Release Points   | B <sub>RP</sub>                  | South or North pole to branded side,  B  <  B_RP , V_OUT Off                        | 8   |     | 23  | Gauss |
|      | Hysteresis       | $ B_{OP}-B_{RP} $                | B <sub>OPX</sub> -B <sub>RPX</sub>                                                  |     | 10  |     |       |
| 2    | Operation Points | B <sub>OP</sub>                  | South or North pole to branded side,  B  >  BOP , VOUT On                           | 20  |     | 40  |       |
|      | Release Points   | B <sub>RP</sub>                  | South or North pole to branded side,  B  <  B <sub>RP</sub>  , V <sub>OUT</sub> Off | 15  |     | 35  | Gauss |
|      | Hysteresis       | B <sub>OP</sub> -B <sub>RP</sub> | B <sub>OPX</sub> -B <sub>RPX</sub>                                                  |     | 10  |     |       |
| 3    | Operation Points | B <sub>OP</sub>                  | South or North pole to branded side, $ B  >  B_{OP} $ , $V_{OUT}$ On                |     |     | 70  |       |
|      | Release Points   | B <sub>RP</sub>                  | South or North pole to branded side, $ B  <  B_{RP} $ , $V_{OUT}$ Off               | 1   |     |     | Gauss |
|      | Hysteresis       | B <sub>OP</sub> -B <sub>RP</sub> | B <sub>OPX</sub> -B <sub>RPX</sub>                                                  |     | 10  |     |       |

# ■ TYPICAL APPLICATION CIRCUIT






#### ■ MAGNETIC FLUX



UH8102A (LOW level when no magnetic field is applied)



UH8102B (HIGH level when no magnetic field is applied)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.