

UJ3D1250K

50A -1200V SiC Schottky Diode

Rev. C, February 2020

Description

UnitedSiC offers the 3rd generation of high performance SiC Merged-PiN-Schottky (MPS) diodes. With zero reverse recovery charge and 175°C maximum junction temperature, these diodes are ideally suited for high frequency and high efficiency power systems with minimum cooling requirements.

Features

- Maximum operating temperature of 175°C
- Easy paralleling
- Extremely fast switching not dependent on temperature
- No reverse or forward recovery
- Enhanced surge current capability, MPS structure
- 100% UIS tested
- AEC-Q101 qualified

Typical applications

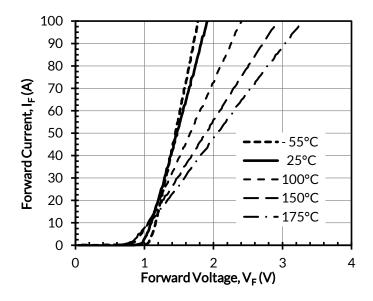
- Power converters
- Industrial motor drives
- Switch mode power supplies
- Power factor correction modules

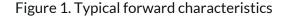
Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units	
DC blocking voltage	V_R		1200	V	
Repetitive peak reverse voltage, T _J =25°C	V_{RRM}		1200	V	
Surge peak reverse voltage	V_{RSM}		1200	V	
Maximum DC forward current	I _F	T _C = 112°C	50	Α	
Non-repetitive forward surge current sine halfwave	I _{FSM}	$T_C = 25^{\circ}C, t_p = 10 \text{ms}$	275	А	
Repetitive forward surge current		$T_C = 25^{\circ}C$, $t_p = 10 \text{ms}$	163.5	А	
sine halfwave, D=0.1	I _{FRM}	$T_C = 110^{\circ}C, t_p = 10 \text{ms}$	99.6		
Non-repetitive peak forward current	I _{F,max} –	$T_C = 25$ °C, $t_p = 10 \mu s$ 2400		Δ.	
		$T_C = 110$ °C, $t_p = 10 \mu s$	2400	Α	
i ² t value	∫i²dt	$T_C = 25^{\circ}C, t_p = 10 \text{ms}$	378	A^2s	
Power dissipation	P _{tot}	T _C = 25°C	319	14/	
		T _C = 112°C	134	W	
Maximum junction temperature	$T_{J,max}$		175	°C	
Operating and storage temperature	T_J,T_STG		-55 to 175	°C	
Soldering temperatures, wavesoldering only allowed at leads	T_{sold}	1.6mm from case for 10s	260	°C	

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
			Min	Тур	Max	Offics
Thermal resistance, junction-to-case	$R_{\theta IC}$			0.36	0.47	°C/W




Electrical Characteristics (T_J = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Value			Units	
		Test Conditions	Min	Тур	Max	Units	
Forward voltage	V _F	I _F = 50A, T _J =25°C	-	1.5	1.7	٧	
		I _F = 50A, T _J =150°C	-	1.95	2.4		
		I _F = 50A, T _J =175°C	-	2.2	2.7		
Reverse current	I _R	V _R =1200V, T _J =25°C	-	52	400	μΑ	
		V _R =1200V, T _J =175°C	-	900			
Total capacitive charge ⁽¹⁾	Q _C	V _R =800V		240		nC	
Total capacitance	С	$V_R=1V, f=1MHz$		2340			
		V _R =400V, f = 1MHz		224		pF	
		V _R =800V, f = 1MHz		198		<u> </u>	
Capacitance stored energy	E _C	V _R =800V		72		μЈ	

(1) Q_c is independent on T_J , di_F/dt , and I_F as shown in the application note USCi_AN0011.

Typical Performance Diagrams

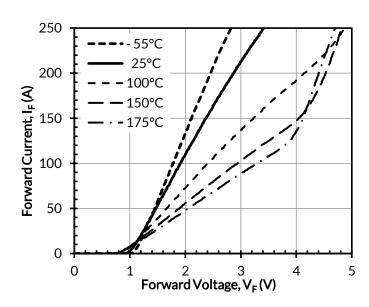
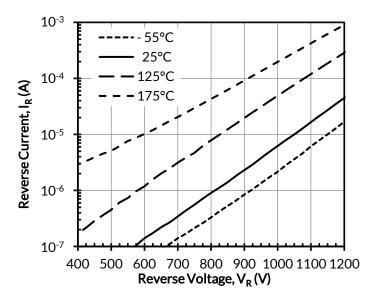
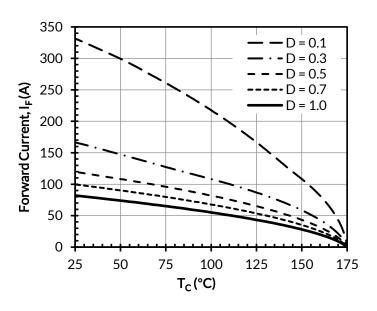


Figure 2. Typical forward characteristics in surge current





Power Disspiation, P_{Tot} (W) T_C (°C)

Figure 3. Typical reverse characteristics

Figure 4. Power dissipation

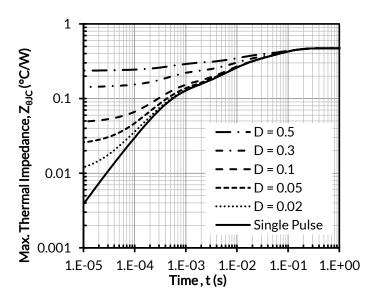
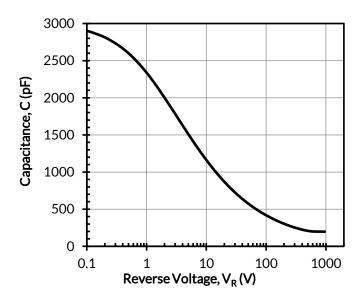


Figure 5. Diode forward current

Figure 6. Maximum transient thermal impedance



 $Q_{C} = \int_{0}^{V_{R}} C(V) dV$ 1000 1200 Reverse Voltage, $V_R(V)$

Figure 7. Capacitance vs. reverse voltage at 1MHz

Figure 8. Typical capacitive charge vs. reverse voltage

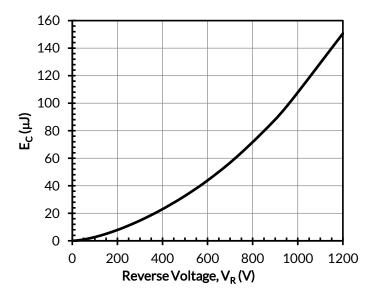


Figure 9. Typical capacitance stored energy vs. reverse voltage

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.