
$1700V-1.1\Omega$ SiC Normally-on JFET

Rev. A, February 2020

UJ3N1701K2

DATASHEET

Description UnitedSiC offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{DS(ON)}$) and gate charge (Q_G) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{DS(ON)}$ at $V_{GS} = 0$ V is also ideal for current protection circuits without the need for active

•	Typical on-resi	istance R _{DS}	(on),typ of 1.1 Ω

Features

- Voltage controlled
- Maximum operating temperature of 175°C

control, as well as for cascode operation.

- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Typical applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Part Number	Package
UJ3N1701K2Z	Die on tape
UJ3N1701K2	Undiced wafer

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units	
Drain-source voltage	V _{DS}		1700	V	
Cata aquina valtaga	V	DC -20 to +3			
Gate-source voltage	V _{GS}	AC ¹	-20 to +20	V	
2	1	T _C = 25°C	3.4	А	
Continuous drain current ^{2,3}	I _D	T _C = 100°C	2.7	А	
Pulsed drain current ^{3,4}	I _{DM}	T _C = 25°C	6	А	
Maximum junction temperature ⁵	T _{J,max}		175	°C	
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C	

1. +20V AC rating applies for turn-on pulses <200ns applied with external $R_G > 1\Omega$.

2. Limited by $T_{J,max}$

3. Assumes a maximum junction-to-case thermal resistance of 2.6°C/W

- 4. Pulse width t_p limited by $T_{J,max}$
- 5. Package limited

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions	Value			Linite
	Symbol		Min	Тур	Max	Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =-20V, I_{D} =1mA	1700			V
Total duain lackage surrout	I _{DSS}	V _{DS} =1700V, V _{GS} =-20V, T _J =25°C		3.5	12	- μΑ
Total drain leakage current		V _{DS} =1700V, V _{GS} =-20V, T _J =175°C		35		
		V _{GS} =-20V, T _J =25°C		0.2	1.2	μA
Total gate leakage current	I _{GSS}	V _{GS} =-20V, T _J =175°C		0.8		μA
Drain-source on-resistance		V _{GS} =2V, I _D =0.5A, T _J =25°C		1.0		Ω
	R _{DS(on)}	V _{GS} =0V, I _D =0.5A, T _J =25°C		1.1	1.4	
		V _{GS} =2V, I _D =0.5A, T _J =175°C		2.2		
		V _{GS} =0V, I _D =0.5A, T _J =175°C		2.4		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =1.5mA	-14	-11.5	-8	V
Gate resistance	R _G	f=1MHz, open drain		14.5		Ω

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			11.21.	
Parameter	Symbol	Test Conditions	Min	Тур	Max	- Units	
Input capacitance	C _{iss}	- V _{DS} =100V, V _{GS} =-20V -		76.5		pF	
Output capacitance	C _{oss}	$v_{DS} = 100 v, v_{GS} = -20 v$ f=100kHz		10.1			
Reverse transfer capacitance	C _{rss}	1-100KHZ		7			
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 1200V, V _{GS} =-20V		6.3		pF	
C _{OSS} stored energy	E _{oss}	V _{DS} =1200V, V _{GS} =-20V		4.6		μJ	
Total gate charge	Q _G	V -1200V L -2.5A		11		nC	
Gate-drain charge	Q_{GD}	- V _{DS} =1200V, I _D =2.5A, $-$ V _{GS} = -18V to 0V		6			
Gate-source charge	Q_{GS}	VGS - 10V 100V		1.3			
Turn-on delay time	t _{d(on)}	$V_{DS}=1200V, I_{D}=2.5A,$ Gate Driver =-18V to 0V, R _G =1 Ω , Inductive Load, FWD: 2x UJ3D1202TS in series		6		ns	
Rise time	t _r			12			
Turn-off delay time	$t_{d(off)}$			6			
Fall time	t _f			46			
Turn-on energy	E _{ON}			59			
Turn-off energy	E _{OFF}			24			
Total switching energy	E _{TOTAL}	TJ=25°C		83			
Turn-on delay time	t _{d(on)}	$V_{DS}=1200V, I_{D}=2.5A,$ Gate Driver =-18V to 0V, R _G =1 Ω , Inductive Load, FWD: 2x UJ3D1202TS in series		6			
Rise time	t _r			11		nc	
Turn-off delay time	$t_{d(off)}$			6		ns	
Fall time	t _f			38			
Turn-on energy	E _{ON}			58		μJ	
Turn-off energy	E _{OFF}			18			
Total switching energy	E _{TOTAL}	T_150°C		76			

Typical Performance Diagrams

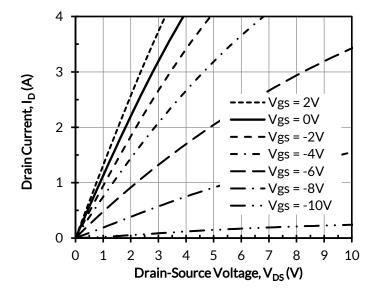


Figure 1. Typical output characteristics at $T_{\rm J}$ = - 55°C, tp < 250 μs

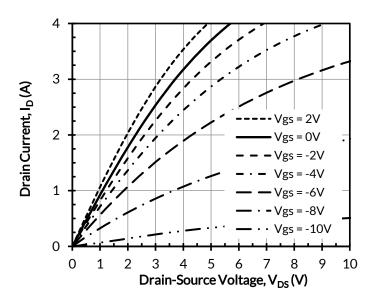


Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

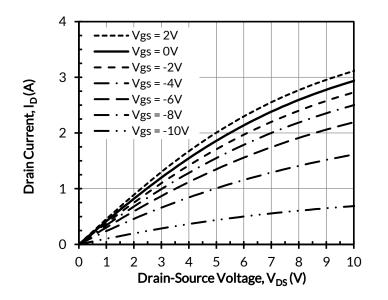


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

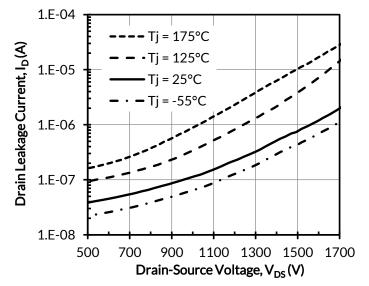
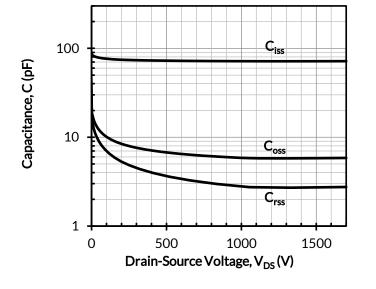
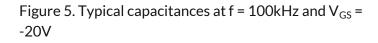




Figure 4. Typical drain-source leakage at V_{GS} = -20V

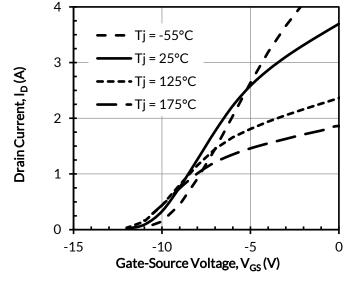


Figure 6. Typical transfer characteristics at V_{DS} = 5V

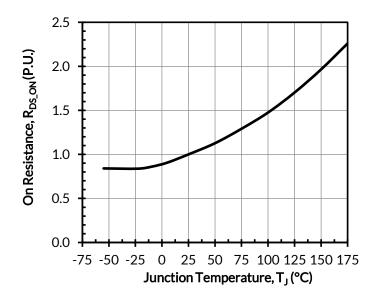


Figure 7. Normalized on-resistance vs. temperature at V_{GS} = 0V and $I_{\rm D}$ = 0.5A

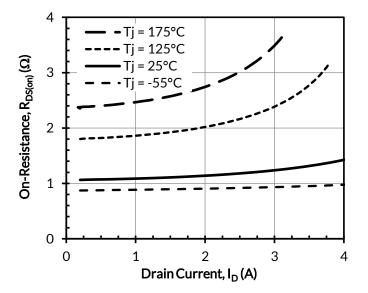


Figure 8. Typical drain-source on-resistances at V_{GS} = 0V

United SiC

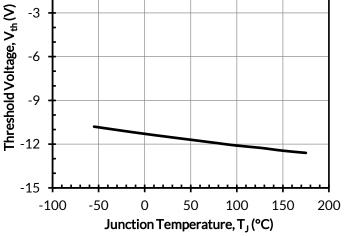
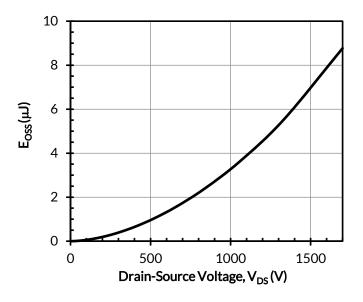
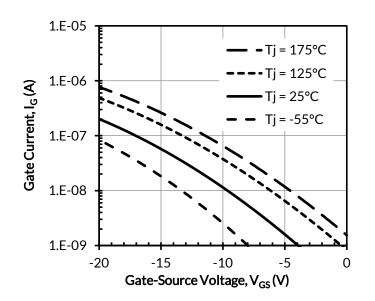



Figure 9. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_D = 1.5mA

Spice Models


Learn

More

Contact

Related Devices

Figure 10. Typical stored energy in C_{OSS} at V_{GS} = -20V

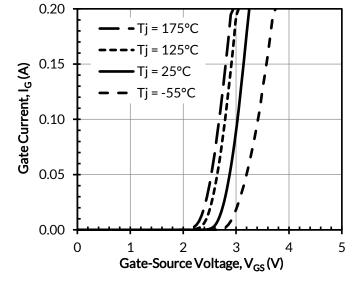
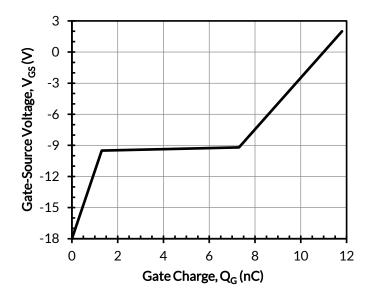



Figure 11. Typical gate leakage at V_{DS} = 0V

Figure 12. Typical gate forward current at V_{DS} = 0V

United **SiC**

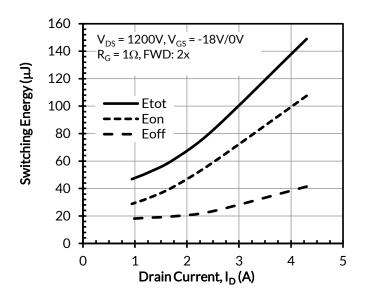


Figure 13. Typical gate charge at V_{DS} = 1200V and I_{D} = 2.5A

Figure 14. Clamped inductive switching energy vs. drain current at $T_J = 25^{\circ}C$

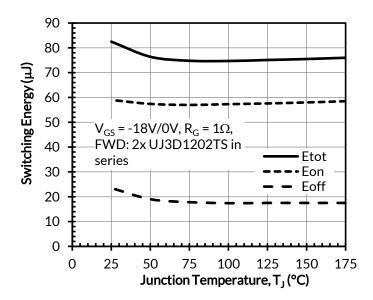


Figure 15. Clamped inductive switching energy vs. junction temperature at $V_{\rm DS}$ = 1200V and $I_{\rm D}$ = 2.5A

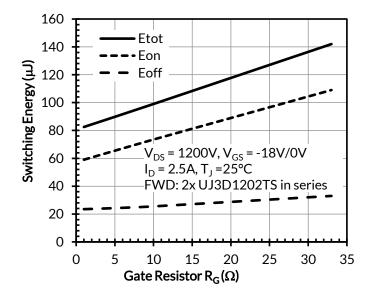
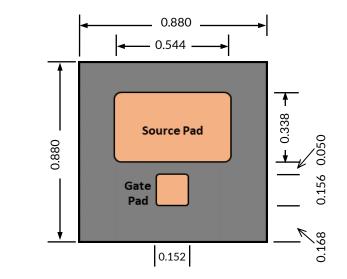


Figure 16. Clamped inductive switching energy vs. gate resistor $\rm R_{\rm G}$



Mechanical Characteristics

Parameter	Typical Value	Units
Die dimensions with scribe line (L x W)	0.880 x 0.880	mm
Scribe line width	80	μm
Source pad metal dimensions (L x W)	0.544 x 0.338	mm
Gate pad metal dimensions (L x W)	0.152 x 0.156	mm
Source metallization (AICu)	5	μm
Gate metallization (AICu)	5	μm
Backside drain metallization (Ti/Ni/Ag)	0.1/0.2/1	μm
Frontside passivation	Polyimide	
Die thickness	150	μm
Wafer size	150	mm
Gross die per wafer	18,656	

Chip Dimensions

Unit: mm

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document. UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.