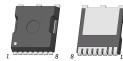


Silicon Carbide (SiC) JFET – EliteSiC, Power N-Channel, H-PDSO-F8, 750 V, 4.3 mohm

UJ4N075004L8S

Description


onsemi's UJ4N075004L8S is a 750 V, 4.3 m Ω high-performance Gen 4 normally-on SiC JFET transistor. This device exhibits ultra-low on resistance (R_{DS(on)}) in a compact H-PDSO-F8 package, making it an ideal fit to address the challenging thermal and space constraints of solid-state circuit breakers and relay applications. Additionally, the JFET is a robust device technology capable of the high-energy switching required in circuit protection applications.

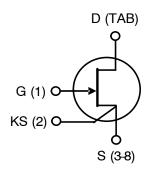
Features

- Single Digit On-Resistance in a H-PDSO-F8 SMDpackage
- Operating Temperature: 175 °C (Max)
- High Pulse Current Capability
- Excellent Device Robustness
- Silver-Sintered Die Attach for Excellent Thermal Resistance
- Short Circuit Rated
- This Device is Pb-Free, Halogen Free and is RoHS Compliant

Typical Applications

- Solid State / Semiconductor Circuit Breaker
- Solid State / Semiconductor Relay
- Battery Disconnects
- Surge Protection
- Inrush Current Control

H-PDSO-F8 CASE 740AA


MARKING DIAGRAM

UJ4N075004 = Specific Device Number A = Assembly Location

YY = Year WW = Work Week ZZZ = Lot ID

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Test Conditions	Value	Unit
V _{DS}	Drain-Source Voltage		750	V
V _{GS}	Gate-Source Voltage	DC	-30 to +3	V
		AC (Note 1)	-30 to +30	V
I _D	Continuous Drain Current (Note 2)	T _C < 145 °C	120	Α
I _{DM}	Pulsed Drain Current (Note 3)	T _C = 25 °C	588	Α
T _{SC}	Short Circuit Withstand Time	V_{DS} = 400 V, $T_{J(START)}$ = 175 °C	5	μS
P _{tot}	Power Dissipation	T _C = 25 °C	1153	W
$T_{J,max}$	Maximum Junction Temperature		175	°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C
T _{solder}	Reflow Soldering Temperature	Reflow MSL 1	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. +30 V AC rating applies for turn-on pulses < 200 ns applied with external $R_G > 1~\Omega$.
- 2. Limited by Bondwires
- 3. Pulse width tp limited by T_{J,max}.

THERMAL CHARACTERISTICS

Reverse Transfer Capacitance

C_{OSS} Stored Energy

Total Gate Charge

Gate-Drain Charge

Gate-Source Charge

Effective Output Capacitance, Energy Related

 C_{rss}

C_{oss(er)}

 $\mathsf{E}_{\mathsf{oss}}$

 Q_G

 Q_{GD}

 Q_{GS}

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		-	0.10	0.13	°C/W

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
TYPICAL PERFORMANCE - STATIC							
BV_{DS}	Drain-Source Breakdown Voltage	$V_{GS} = -20 \text{ V}, I_D = 2 \text{ mA}$	750	-	-	V	
I _{DSS}	Total Drain Leakage Current	$V_{DS} = 750 \text{ V}, V_{GS} = -20 \text{ V},$ $T_{J} = 25 ^{\circ}\text{C}$	-	13	120	μΑ	
		$V_{DS} = 750 \text{ V}, V_{GS} = -20 \text{ V},$ $T_{J} = 175^{\circ}\text{C}$	-	65	-		
I _{GSS}	Total Gate Leakage Current	$V_{GS} = -20 \text{ V}$, $T_J = 25 ^{\circ}\text{C}$	_	0.1	100	μΑ	
		$V_{GS} = -20 \text{ V}$, $T_J = 175 ^{\circ}\text{C}$	_	0.3	-	μΑ	
R _{DS(on)}	Drain-Source On-resistance	V _{GS} = 2 V, I _D = 80 A, T _J = 25 °C	_	4.3	-	mΩ	
		$V_{GS} = 0 \text{ V}, I_D = 80 \text{ A}, T_J = 25 ^{\circ}\text{C}$	_	4.9	6.6		
		V_{GS} = 2 V, I_D = 80 A, T_J = 175 °C	_	9.9	-]	
		$V_{GS} = 0 \text{ V}, I_D = 80 \text{ A}, T_J = 175 °C$	_	11.5	-]	
V _{G(th)}	Gate Threshold Voltage	V _{DS} = 5 V, I _D = 180 mA	-8.3	-6.0	-3.7	V	
R_{G}	Gate Resistance	f = 1 MHz, open drain	_	0.8	_	Ω	
TYPICAL PERFORMANCE - DYNAMIC							
C _{iss}	Input Capacitance	$V_{DS} = 400 \text{ V}, V_{GS} = -20 \text{ V},$	_	3028	-	pF	
C _{oss}	Output Capacitance	f = 100 kHz	_	364	_		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 V_{DS} = 0 V to 400 V, V_{GS} = -20 V

 V_{DS} = 400 V, V_{GS} = -20 V

 $V_{DS} = 400 \text{ V}, I_D = 80 \text{ A}, V_{GS} = -18 \text{ V to } 0 \text{ V}$

360

448

36

400

270

60

_

_

pF

μJ

nC

TYPICAL PERFORMANCE DIAGRAMS

ID, Drain Current (A)

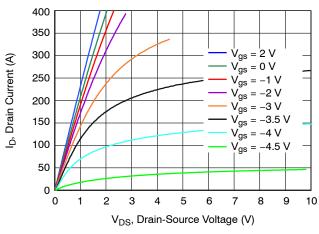


Figure 1. Typical Output Characteristics at $T_J = -55~^{\circ}\text{C},\, t_p < 250~\mu\text{s}$

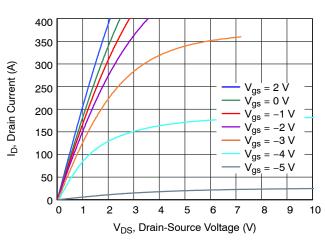


Figure 2. Typical Output Characteristics at $T_J = 25$ °C, $t_p < 250 \mu s$

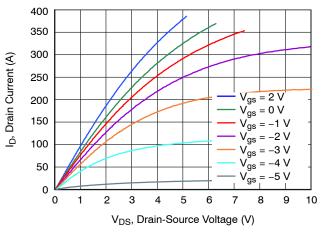


Figure 3. Typical Output Characteristics at T_J = 175 °C, $t_p <$ 250 μs

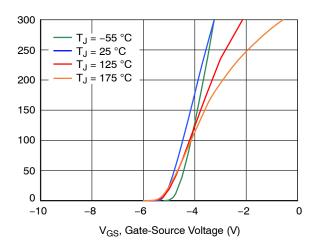


Figure 4. Typical Transfer Characteristics at $V_{DS} = 5 \text{ V}$



Figure 5. Normalized On-Resistance vs. Temperature at $V_{GS} = 0 \text{ V}$ and $I_D = 80 \text{ A}$

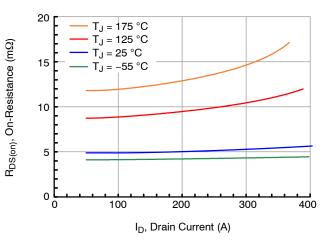


Figure 6. Typical Drain-Source On-Resistance $V_{GS} = 0 \text{ V}$

TYPICAL PERFORMANCE DIAGRAMS (continued)

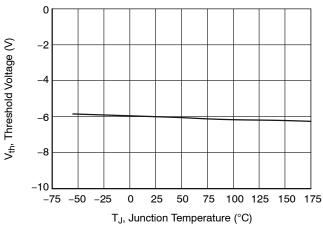


Figure 7. Threshold Voltage vs. Junction Temperature at V_{DS} = 5 V and I_{D} = 180 mA

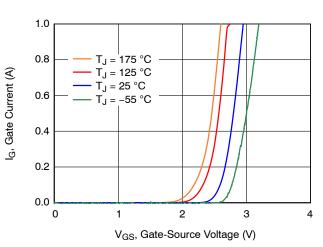


Figure 8. Typical Gate Forward Current at $V_{DS} = 0 V$

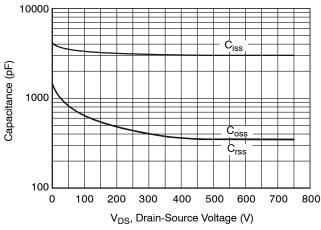


Figure 9. Typical Capacitances at f = 100 KHz and $V_{GS} = -20 \text{ V}$

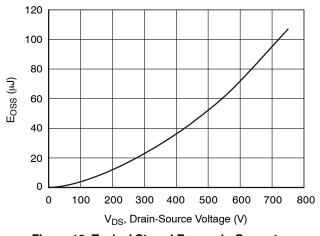


Figure 10. Typical Stored Energy in C_{OSS} at $V_{GS} = -20 \ V$

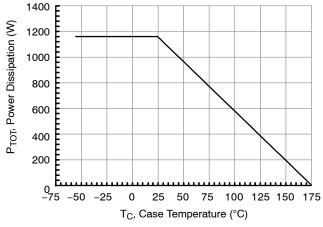


Figure 11. Total Power Dissipation

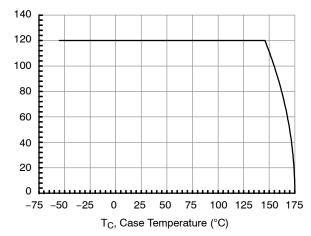


Figure 12. DC Drain Current Derating

I_D, Drain Current (A)

TYPICAL PERFORMANCE DIAGRAMS (continued)

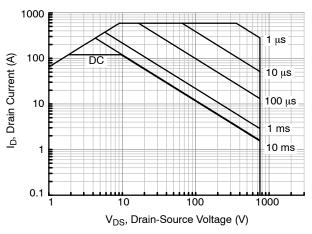


Figure 13. Safe Operation Area at T_C = 25 °C, Parameter t_p

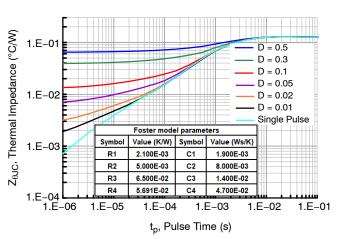


Figure 14. Maximum Transient Thermal Impedance

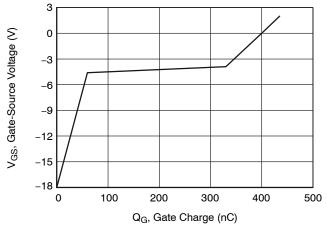
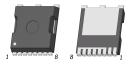


Figure 15. Typical Gate Charge at V_{DS} = 400 V and I_{D} = 80 A

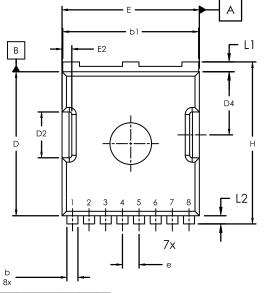
ORDERING INFORMATION

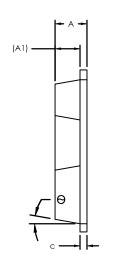

Part Number	Marking	Package	Shipping [†]
UJ4N075004L8S	UJ4N075004	H-PDSO-F8 (Pb-Free, Halogen Free)	2,000 / Tape and Reel

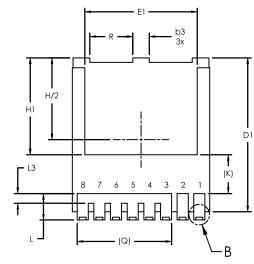
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

REVISION HISTORY

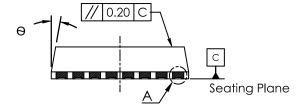
Revision	Description of Changes	Date
С	Acquired the original Qorvo JFET Division Data Sheet and updated the main document title to comply with onsemi standards for SiC products.	1/15/2025
2	Converted the Data Sheet to onsemi format.	5/7/2025

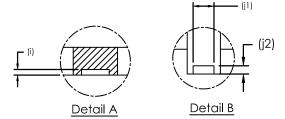





H-PDSO-F8 9.90x10.38x2.30, 1.20P

CASE 740AA ISSUE B

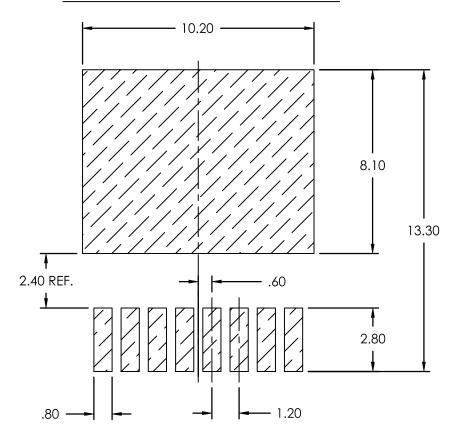

DATE 24 JUN 2025



⊕ 0.25M C A B

Note:

- 1. Dimensioning and tolerancing as per ASME Y14.5 2018
- 2. Controlling dimension: millimeters
- 3. Dimensions does not include Burrs and Mold Flashes


TO-LL					
CAMBOI	Value				
SYMBOL	Min	Nom	Max		
Α	2.15	2.30	2.45		
A1		1.80 REF			
b	0.65	0.80	0.90		
b1	9.65	9.80	9.95		
b3	1.10	1.20	1.30		
c D	0.40	0.50	0.60		
	10.18	10.38	10.58		
D1	10.88	11.08	11.28		
D2	3.15	3.30	3.45		
D4	4.40	4.55	4.70		
Е	9.70	9.90	10.10		
E1	7.95	8.10	8.25		
E2	0.60	0.70	0.80		
е		1.20 BSC			
Н	11.48	11.68	11.88		
H1	6.80	6.95	7.10		
i		0.10 REF			
j1		0.46 REF			
j2		0.20 REF			
K		2.80 REF			
L	1.40	1.90	2.10		
L1	0.50	0.70	0.90		
L2	0.48	0.60	0.72		
L3 Q	0.30	0.70	0.80		
Q	6.80 REF				
R	3.00 3.10 3.20				
θ	10°				

DOCUMENT NUMBER:	98AON26704H	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	H-PDSO-F8 9.90x10.38x2.30, 1.20P		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 24 JUN 2025

RECOMMENDED PCB LAND PATTERN

NOTE: LAND PATTERN AND THROUGH HOLE DIMENSIONS SERVE ONLY AS AN INITIAL GUIDE. END-USER PCB DESIGN RULES AND TOLERANCES SHOULD ALWAYS PREVAIL.

DOCUMENT NUMBER:	98AON26704H	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	H-PDSO-F8 9.90x10.38x2.30, 1.20P		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales