UNISONIC TECHNOLOGIES CO., LTD

UL9480 Advance

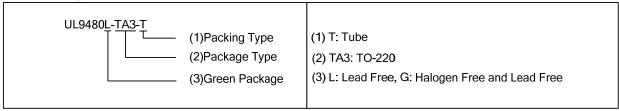
LINEAR INTEGRATED CIRCUIT

A VOLTAGE REGULATOR FOR CAR ALTERNATOR

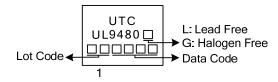
DESCRIPTION

The UTC **UL9480** is a specially designed voltage regulator for car alternator. The regulator voltage is precise with "single function" self-oscillation. These devices have a maximum output current of 5.5 A. The chip is integrated both the control section and the out power stage. So the devices require no external components, reducing the cost of the system and increasing reliability.

TO-220


■ FEATURES

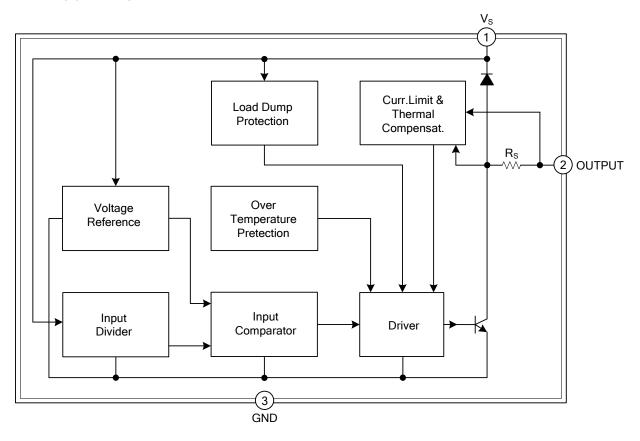
- * No external components
- * Precise regulated voltage
- * High output current
- * Very low start voltage
- * Precise temperature coefficient
- * Short circuit protection
- * Output current limit
- * Reverse battery protection
- * +80V Load dump protection
- * Low energy spike protection
- * Over temperature protection


■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UL9480L-TA3-T UL9480G-TA3-T		TO-220	VS	G	0	Tube	

Note: Pin Assignment: VS: VS G: Ground O: Output

MARKING



<u>www.unisonic.com.tw</u> 1 of 4

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	Vs	Voltage supply
2	OUTPUT	Output
3	GND	Ground

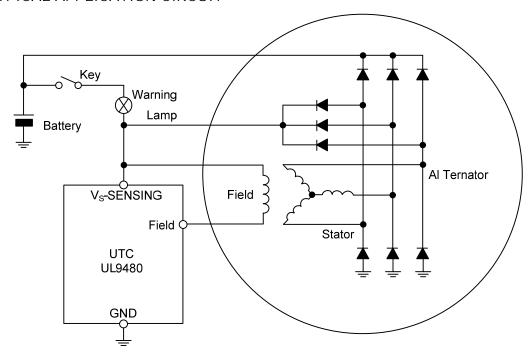
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT	
Transient Overvoltage : Load Dump : 5ms ≤T _{rise}				
≤10ms, τf Fall Time Constant ≤100ms,	Vs	80	V	
R _{source} ≥0.5Ω				
Current into Low Energy Clamping Zener		100	m A	
(T _{rise} =5µs; T _{decay} ≤2ms; duty cycle≤5%)	ICLAMP	100	mA	
Maximum Output Current	I _{OUT}	5.5	Α	
Junction Temperature Range	TJ	-55~+150	°C	
Storage Temperature Range	T _{STG}	-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES CHARACTERISTICS


PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Case	θ_{JC}	3	°C/W	

■ ELECTRICAL CHARACTERISTICS (-40°C≤T」≤125°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Regulation Voltage	V _R	T _J =-40°C	14.75	15.05	15.35	V
		T _J =25°C	14.10	14.40	14.70	V
		T _J =125°C	13.10	13.40	13.70	V
Temperature Coeff. of the	C _T			-10		mV/°C
Regulation Voltage						
Error on Nominal Temperature Coeff.	eC _T			±30		%
Load Regulation	V_R	0.1I _n <i<sub>alt<0.9I_n (Note 1)</i<sub>		250		mV
Control Circuit Minimum Start up Voltage	V _{SU}	Measured at Supply Pin		2	3	V
Shutdown Voltage (Dump Protection Threshold)	V_{sd}			22		V
Output Saturation Voltage	V _{SAT 1}	I _{field} =4A _p		1.2	2	V
Start Up Saturation Voltage	V _{SAT 2}	I _{field} =200mA		0.7	1	V
Quiescent Current	IQ	Field Off		20		mA
Supply Current	Is	I _{field} =4A _p		50		mA
Field Pin Sink Current	I _{fs}	Field Off Field Pin @ 16V			5	mA
Low Energy Clamping Zener Voltage	V _{1_CLAMP}	I _{clamp} =50mA		120		V
Switching Frequency	F _{SW}	$0.1I_{n} < I_{alt} < 0.9I_{n}$	30		1000	Hz

Note: Measured on an alternator with the following characteristics: I_n=<90A; I_{alt}/I_{field}>=23.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.