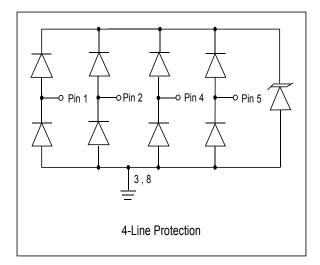
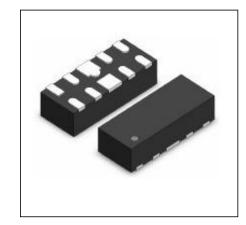
MSKSEMI

Features

- Solid-state silicon-avalanche technology
- Low operating and clamping voltage
- Up to four I/O Lines of Protection
- Ultra low capacitance: 0.35pF typical(I/O to I/O)
- Low Leakage
- Low operating voltage:5V
- Flow-Through design

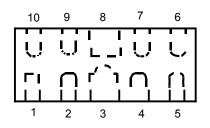

IEC COMPATIBILITY (EN61000-4)


- IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- IEC 61000-4-4 (EFT) 40A (5/50ns)
- IEC 61000-4-5 (Lightning) 5A (8/20μs)

Mechanical Characteristics

- DFN-10L package (2.5×1.0×0.58mm)
- Molding compound flammability rating: UL 94V-0
- Marking: Marking Code
- Packaging: Tape and Reel
- RoHS/WEEE Compliant

Circuit Diagram



Applications

- Digital Visual Interface(DVI)
- MDDI Ports
- DisplayPortTM Interface
- PCI Express
- High Definition Multi-Media Interface(HDMI)
- eSATA Interfaces

Schematic & PIN Configuration

Pin	Identificaion
1,2,4,5	Input Lines
6,7,9,10	Output Lines (No Internal Connection)
3,8	Ground

ULC0524P

ULC0524P

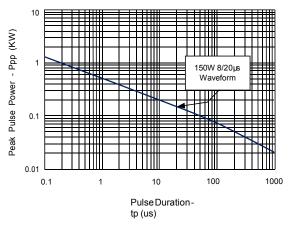
Absolute Maximum Rating

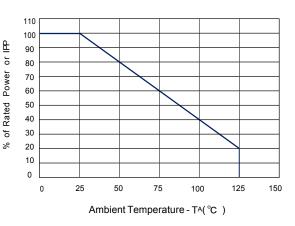
Rating	Symbol	Value	Units
Peak Pulse Power ($t_p = 8/20 \mu s$)	P _{PP}	150	Watts
Peak Pulse Current ($t_p = 8/20 \mu s$)	I _{pp}	5	А
ESD per IEC 61000-4-2(Air) ESD per IEC 61000-4-2(contact)	V _{ESD}	+/-17 +/-12	kV
Operating Temperature	TJ	-55 to + 125	Ĵ
Storage Temperature	T _{STG}	-55 to +150	C

Electrical Parameters (T=25°C)

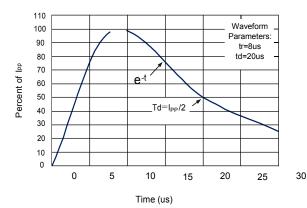
Symbol	Parameter
IPP	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @ IPP
VRWM	Working Peak Reverse Voltage
IR	Maximum Reverse Leakage Current @ VRWM
VBR	Breakdown Voltage @ I⊤
Iτ	Test Current
lF	Forward Current
VF	Forward Voltage @ IF

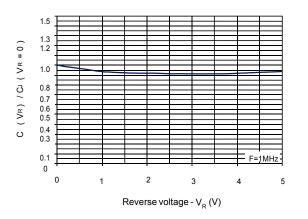
Electrical Characteristics

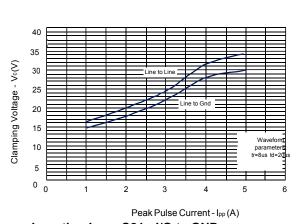

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}	Any I/O pin to ground			5.0	V
Reverse Breakdown Voltage	V _{BR}	l _t = 1mA Any I/O pin to ground	6.0			V
Reverse Leakage Current	I _R	V _{RWM} = 5V, T=25°C Any I/O pin to ground			1	μA
Clamping Voltage	Vc	I _{pp} =5A, t _p =8/20µs Any I/O pin to ground			15	V
Junction Capacitance	Cj	V _R = 0V, f = 1MHz I/O pin to GND			0.8	pF
		V _R = 0V, f = 1MHz Between I/O pins		0.3	0.35	pF

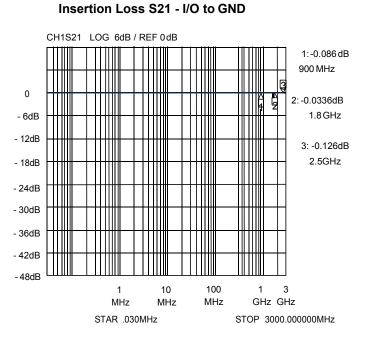

ULC0524P

Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time


Power Derating curve


Pulse Waveform



Normalized Capacitance vs. Reverse Voltage

Clamping Voltage vs.Peak Puls e Current

Design Recommendations for HDMI protection

Adding external ESD protection to HDMI ports can be challenging. First, ESD protection devices have an inherent junction capacitance. Furthermore, adding even a small amount of capacitance will cause the impedance of the differential pair to drop. Second, large packages and land pattern requirements cause discontinuities that adversely affect signal integrity. The BDFN10A054U are specifically designed for protection of high-speed interfaces such as HDMI.

They present <0.4pF capacitance between the pairs while being rated to handle ±8kV ESD contact discharges (±15kV air discharge) as outlined in IEC 61000-4-2. Each device is in a leadless SLP package that is less than 1.1mm wide. They are designed such that the traces flow straight through the device. The narrow package and flow-through design reduces discontinuities and minimizes impact on signal integrity. This becomes even more critical as signal speeds increase.

Pin Configuration

Figure 1 is an example of how to route the high speed differential traces through the BDFN10A054U The solid line represents the PCB trace. The PCB traces are used to connect the pin pairs for each line (pin 1 to pin 10, pin 2 to pin 9, pin 4 to pin 7, pin 5 to pin 6). For example, line 1 enters at pin 1 and exits at Pin 10 and the PCB trace connects pin 1 and 10 together. This is true for lines connected at pins 2, 4, and 5 also. Ground is connected at pins 3 and 8. One large ground pad should be used in lieu of two separate pads. The same layout rules apply for the BDFN10A054U

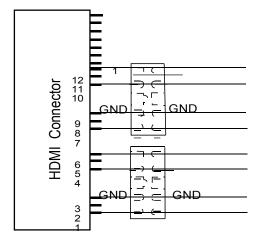
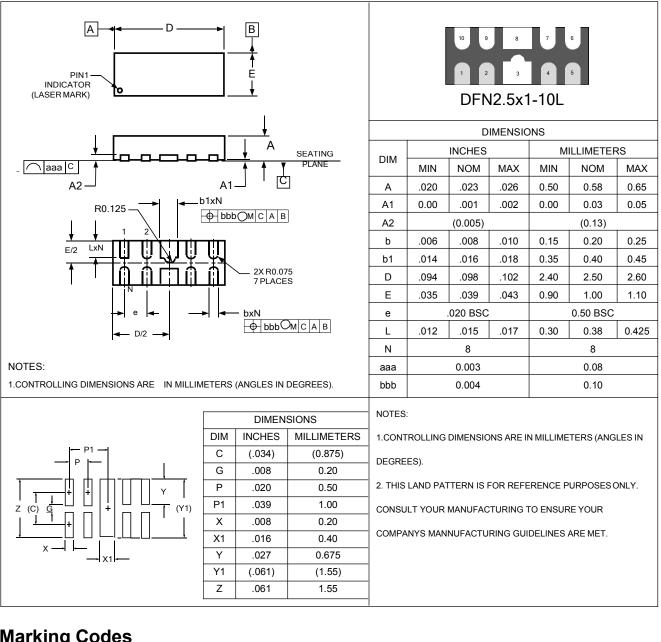


Figure 1.Flow though layout Using BDFN10A054U

Design Recommendations for HDMI Protection


Good circuit board layout is critical not only for signal integrity, but also for effective suppression of ESD induced transients. For optimum ESD protection, the following guidelines are recommended:

- Place the device as close to the connector as possible. This practice restricts ESD coupling into adjacent traces and reduces parasitic inductance.
- The ESD transient return path to ground should be kept as short as possible.
 Whenever possible, use multiple micro vias connected directly from the device ground pad to the ground plane.
- Avoid running critical signals near board edges.

ULC0524P

Outline Drawing – DFN-2L

Marking Codes

Part Number	Marking Code
BDFN10A054U	0524P

Package Information

Qty: 3k/Reel