

UM23128/UM23128A

$16K \times 8$ NMOS ROM

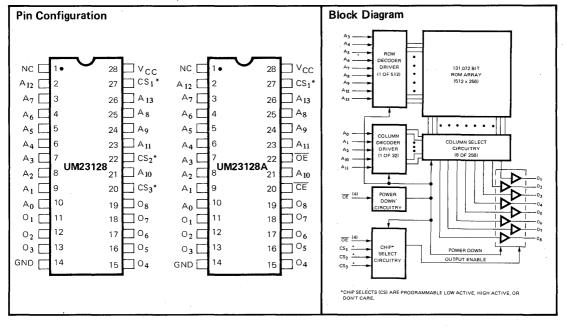
Features

- EPROM pin compatible
- 16,384 x 8 bit organization
- single +5 volt supply
- Access time 200/300/450 ns (max)
- Totally static operation
- Completely TTL compatible
- 28 pin JEDEC approved pinout

UM23128A – automatic power down (CE)

- output enable function (OE)
 one programmable chip select (CS)
- UM23128 non power down version
- UM23128 non power down version
 three programmable chip selects (CS)
- Three state outputs for wire-OR expansion
- EPROMS accepted as program data input

Description


The UM23128 and UM23128A high performance Read Only Memories are organized 16,384 words by 8 bits with access times from 200 ns to 450 ns. The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 128K ROMs.

The UM23128 offers the simplest operation (no power down.) Its three programmable chip selects allow up to eight 128K ROMs to be OR-tied without external decoding.

The UM23128A offers an automatic power down feature.

Power down is controlled by the Chip Enable (\overline{CE}) input. When \overline{CE} goes high, the device will automatically power down and remain in a low power standby mode as long as \overline{CE} remains high. This unique feature provides system level power savings as much as 90%. An additional feature of the UM23128A is the Output Enable (\overline{OE}) function. This eliminates bus contention in multiple bus microprocessor systems. The programmable chip select allows two 128K ROMs to be OR-tied without external decoding.

Both the UM23128 and UM23128A are pin compatible with EPROMs thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature
Voltage on Any Pin with Respect to Ground
Power Dissipation 1 OW

Electrostatic Discharge Rating (ESD)**

Inputs to Ground ± 2000V

**Test Condition: MIL-STD-883B Method 3015.1

D.C. Characteristics

 $(T_{\Delta} = 0^{\circ}C \text{ to } + 70^{\circ}C, V_{CC} = +5V \pm 10\%)$

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Voн	Output HIGH Level	2.4		Vcc	V	Iон = -1.0 mA
Vol	Output LOW Level			0.4	V	IOL = 3.2 mA
Vih	Input HIGH Level	2.0		Vcc	V	
VIL	Input LOW Level	-3.0		0.8	V	
ILI	Input Leakage Current			10	μA	VIN = OV to VCC
LO	Output Leakage Current			10	μA	VOUT = OV to VCC
Icc	Operating Supply Current			100	mA	Note 1
ISB	Standby Supply Current			10	mA	Note 2
los	Output Short Circuit Current			90	mA	Note 3

Capacitance

 $(T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter	Min.	Max.	Unit	Conditions	
Cı	Input Capacitance		5	pf	V _{IN} = OV	
Со	Output Capacitance		5	pf	V _{OUT} = OV	

Note: This parameter is periodically sampled and is not 100% tested.

A.C. Characteristics

 $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C, V_{CC} = +5V \pm 10\%)$ (Note 7)

Symbol	Parameter	UM23128-2 UM23128A-2		UM23128-1 UM23128A-1		UM23128 UM23128A		Unit	Conditions
		Min.	Max.	Min.	'Max.	Min.	Max.		
tcyc	Cycle Time	200		300		450		ns	
taa	Address Access Time		200		300		450	ns	
tон	Output Hold After Address Change	10		10		10		ns	
tACE	Chip Enable Access Time		200		300		450	ns	Note 4
tACS	Chip Select Access Time		85		100		150	ns	
t AOE	Output Enable Access Time		85		100		150	ns	Note 4
tlz	Output LOW Z Delay	10		10		10		ns	Note 5
tHZ	Output HIGH Z Delay		85		100		150	ns	Note 6
tPU	Power Up Time	0		0		0		ns	Note 4
tpd	Power Down Time		100		120		150	ns	Note 4

Notes:

first.

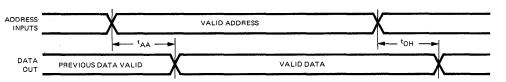
1. Measured with device selected and outputs unloaded.

2. Applies to "A" versions only and measured with $\overline{CE} = 2.0V$.

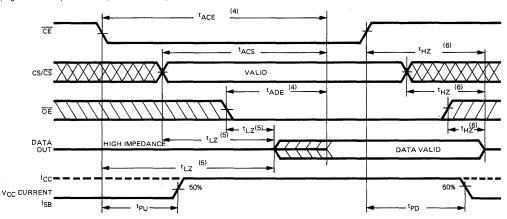
3. For a duration not to exceed one second with $V_{OUT} = 0V$

4. Applies to "A" versions (power down) only.

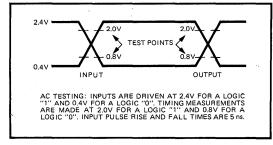
5. Output low impedance delay (tLz) is measured from CE and OE going low and CS going active, whichever occurs last.

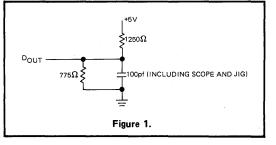

6. Output high impedance delay (t_{HZ}) is measured from either CE or OE going high or CS going inactive, whichever occurs

7. A minimum 0.5 ms time delay is required after application of V_{CC} (+5V) before proper device operation is achieved.



Timing Diagrams


Propagation Delay from Address ($\overline{CE} = \overline{OE} = LOW$, $CS/\overline{CS} = Active$)


Propagation Delay from Chip Enable, Chip Select (Address Valid)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Programming Instructions

All UMC Read Only Memories (ROM) utilize computer asided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to UMC in a number of different ways. UMC can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your UMC sales representative for complete details on each of the various data input formats.

Programming instructions are listed at the end of the Memory Section.

Ordering Information

Part Number	Access Time	Operating Current	Standby Current	Package Type
UM23128	450 ns	100 mA	N.A.	Plastic
UM23128-1	300 ns	100 mA	N.A.	Plastic
UM23128-2	200 ns	100 mA	N.A.	Plastic
UM23128A	450 ns	100 mA	10 mA	Plastic
UM23128A-1	300 ns	100 mA	10 mA	Plastic
UM23128A-2	200 ns	100 mA	10 mA	Plastic