

UNISONIC TECHNOLOGIES CO., LTD

UMD9148

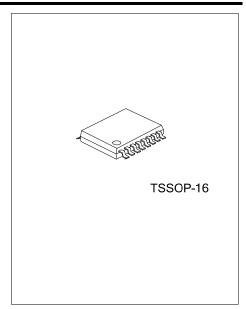
Preliminary

DUAL H-BRIDGE MOTOR DRIVER

DESCRIPTION

The **UMD9148** provides a dual H-bridge motor driver for home appliances and other mechatronic applications. The device can be used to drive one or two DC motors, a bipolar stepper motor, or other loads. A simple PWM interface allows easy inter facing to controller circuits.

The output block of each H-bridge driver consists of N-channel and P-channel power MOSFETs configured as full H-bridges to drive the motor windings. Each H-bridge includes circuitry to regulate the winding current using a fixed off-time chopping scheme. The **UMD9148** is capable of driving up to 2A of current from each output or 4A of current in parallel mode(with proper heat sinking, at 12V and $T_A=25^{\circ}C$).


A low-power sleep mode is provided, which shuts down internal circuitry to achieve very-low quiescent current draw. This sleep mode can be set using a dedicated nSLEEP pin.

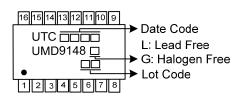
Internal protection functions are provided for UVLO, OCP, short-circuit protection, and over temperature. Fault conditions are indicated by an FAULT pin.

FEATURES

- * Dual H-Bridge Motor Driver Single/Dual Brushed DC Stepper
- * PWM Control Interface
- * Optional Current Regulation With 20-µs Fixed Off-Time
- * High Output Current per H-Bridge 2A Maximum Driver Current at 12V and $T_A=25^{\circ}C$ Parallel Mode Available Capable of 4-A Maximum Driver Current at 12V and $T_A=25^{\circ}C$
- * 4 to 18V Operating Supply Voltage Range
- * Low-Current3-µA sleep Mode
- * Thermally-Enhanced Surface Mount Package

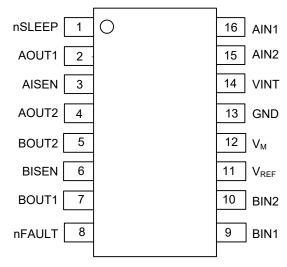
* Protection Features
V_M Under voltage Lockout (UVLO)
Over current Protection (OCP)
Thermal Shutdown (TSD)
Fault Condition Indication Pin (nFAULT)

Preliminary


LINEAR INTEGRATED CIRCUIT

ORDERING INFORMATION

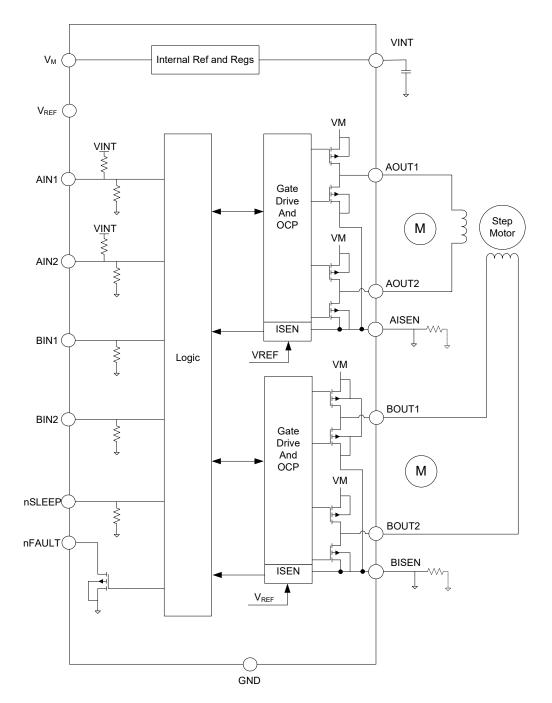
Ordering Number	Deskere	Deaking	
Lead Free Halogen Free	Package	Packing	
UMD9148L-P16-R UMD9148G-P16-R	R TSSOP-16	Tape Reel	


UMD9148G-P16-R	
	(1) R: Tape Reel
(2)Package Type	(2) P16: TSSOP-16
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

PIN CONFIGURATION

PIN DESCRIPTION


PIN NO.	PIN NAME	I/O	DESCRIPTION
1	nSLEEP	I	Sleep mode input
2	AOUT1	0	Winding A output
3	AISEN	0	Winding A sense
4	AOUT2	0	Winding A output
5	BOUT2	0	Winding B output
6	BISEN	0	Winding B sense
7	BOUT1	0	Winding B output
8	nFAULT	OD	Fault indication pin
9	BIN1	Ι	Bridge B input 1
10	BIN2	_	Bridge B input 2
11	V _{REF}	Ι	Full-scale current reference input
12	V _M	PWR	Power supply
13	GND	PWR	Ground
14	VINT	-	Internal regulator
15	AIN2		Bridge A input 2
16	AIN1	I	Bridge A input 1

UMD9148

Preliminary

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V _M	-0.3 ~ 20	V
Internal Regulator Voltage	V _{INT}	-0.3 ~ 3.6	V
Analog Input Pin Voltage	V _{REF}	-0.3 ~ 3.6	V
Control Pin Voltage (AIN1, AIN2, BIN1, BIN2, nSLEEP, nFAULT)		-0.5 ~ 7	V
Continuous Phase Node Pin Voltage (AOUT1, AOUT2, BOUT1, BOUT2)		-0.3 ~ V _M +0.6	V
Continuous Shunt Amplifier Input Pin Voltage (AISEN, BISEN)		-0.6 ~ 0.6	V
Peak Drive current (AOUT1, AOUT2, BOUT1, BOUT2, AISEN, BISEN)		Internally limited	А
Operating Junction Temperature	TJ	-40 ~ +150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VM operating Voltage	VM		4		18	V
Reference RMS Voltage Range	V _{VREF}		1		3.3	V
Applied STEP Signal	f _{PWM}		0		250	kHz
VINT External Load Current	IVINT				1	mA
Motor RMS Current Per H-Bridge	I _{rms}		0		1	А
Ambient Temperature	T _A		-40		+85	°C

ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLIES (V _M , V _{INT})						
V _M operating Voltage	V _M		4		18	V
V _M Operating Supply Current	I _{VM}	V _{VM} =12V, excluding winding current, nSLEEP=1	2.5	3.8	5.5	mA
V _M sleep Mode Supply Current	I _{VMQ}	V _{VM} =12V, nSLEEP=0	0.5	1.2	3	uA
Sleep Time	t _{SLEEP}	nSLEEP = 0 to sleep mode			1	ms
Wake Time	t _{WAKE}	nSLEEP=1 to output transition			1	ms
Power-On Time	t _{on}	V _{VM} >V _{UVLO} rising to output transition			1	ms
V _{INT} Voltage		V _{VM} >4V, I _{OUT} =0A to 1mA	3.13	3.3	3.47	V

■ ELECTRICAL CHARACTERISTICS (Cont.)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EP)					
VIL		0		0.7	V
VIH		1.6		5.5	V
V _{HYS}		100			mV
	V _{IN} =0V	-1		1	uA
		1		30	uA
			200		
RPD					kΩ
					ns
t _{DEG}					ns
1					
			800		ns
t _{PROP}					
	÷ .		400		ns
<u>.</u>				1	ı
VII		0		0.7	V
			1.1		V
		1.6		5.5	V
					mV
	V _{IN} =0V		1	-1	uA
			1	30	uA
			170	00	kΩ
			-		kΩ
T PU			040		1122
Vol	lo=5mA	1	1	0.5	V
		_1			uA
					u/ (
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			550	l	mΩ
R _{DS(ON)}					mΩ
1					mΩ
R _{DS(ON)}					mΩ
loss		_1	420	1	uA
	VVM=3V,1j=23 C	-1	60	•	ns
	Internal dead time				ns
			200		ns
	$V_{}=1$ to 3.3V		1	1	
IREF				I	uA
VTRIP			500		mV
t	VREF -3.3V		10		
	Poforonoo only	+			
					V/V
LOFF	I	1	20		us
<u> </u>	Vers folling: LIV/LO report	1	1	2.0	i
V _{UVLO}				2.9	V
I _{OCP}		2			А
IUCP			2.8		us
tore					ี นอ
t _{DEG}					me
t _{DEG} t _{OCP} T _{TSD}	Die temperature TJ	150	1.6 160	180	ms °C
	EP) VIL VIH VHYS IIL IIH RPD tDEG tDEG tPROP VIL VIZ VIH VIZ VIH VHYS IIL IIH RPD RPU VOL IOL UT2,BOUT1, RDS(ON) IOFF tRISE tFALL tDEAD N,BISEN) IREF VTRIP tBLANK AISENSE tOFF	$\begin{tabular}{ c $	$\begin{array}{c c c c c c c c c } \hline EP \\ \hline V_{IL} & 0 \\ \hline V_{IH} & 1.6 \\ \hline V_{HYS} & 100 \\ \hline I_{IL} & V_{IN}=0V & -1 \\ \hline I_{IIH} & V_{IN}=5V & 1 \\ \hline RPD & BIN1 & BIN2 & ANT OF AIN2 & BIN1 OF AIN2 & BIN1 OF BIN2 & ANT OF AIN2 edge to output change & BIN1 of BIN2 edge to output change & BIN1 of BIN2 edge to output change & 0 \\ \hline V_{IL} & 0 & 0 \\ \hline V_{IZ} & 0 & 0 \\ \hline V_{IZ} & 0 & 0 \\ \hline V_{IH} & 1.6 & 0 \\ \hline V_{IH} & 0 & 0 \\ \hline V_{IR} & 0 & -300 \\ \hline I_{IH} & V_{IN}=5V & 1 \\ \hline R_{PD} & To GND & 0 \\ \hline R_{PU} & To V_{INT} & 0 \\ \hline V_{OL} & I_{O}=5mA & 0 \\ \hline I_{OFF} & V_{VM}=12V, I=0.5A, T_J=25^{\circ}C & 0 \\ \hline V_{IR} & 0 & 0 \\ \hline I_{FALL} & 0 \\ \hline I_{REF} & V_{REF}=1 & to 3.3V & 0 \\ \hline V_{TRIP} & V_{OR} & For 100\% current step with V_{VREF} = 3.3V \\ \hline V_{UVLO} & \hline V_{VM} falling; UVLO report \\ \hline V_{UVLO} & \hline V_{VM} falling; UVLO report \\ \hline V_{VM} falling; UVLO recovery & 0 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

DETAILED DESCRIPTION

Overview

The **UMD9148** is an integrated motor driver solution for two DC motors or a bipolar stepper motor. The device integrates two H-bridges that use NMOS low-side drivers and PMOS high-side drivers and current sense regulation circuitry. The **UMD9148** can be powered with a supply range between 4 to 18V and is capable of providing an output current to 1A rms.

A simple PWM interface allows easy interfacing to the controller circuit.

The current regulation uses a fixed off-time (t_{OFF}) PWM scheme. The current regulation trip point is controlled by the value of the sense resistor and the voltage applied to V_{REF} .

A low-power sleep mode is included, which allows the system to save power when not driving the motor.

FEATURE DESCRIPTION

PWM Motor Drivers

UMD9148 contains two identical H-bridge motor drivers with current-control PWM circuitry.

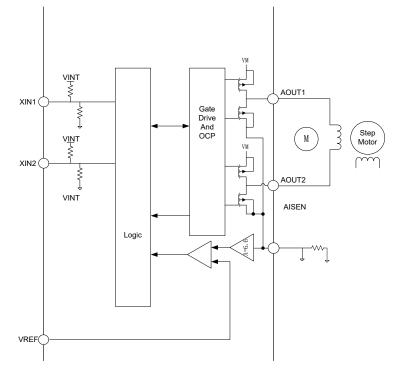


Figure 1. PWM Motor Driver Circuitry

Bridge Control

Table. 1 S	Shows the	logic for	r the inputs	xIN1	and xIN2.
------------	-----------	-----------	--------------	------	-----------

xIN1	xIN2	xOUT1	xOUT2	Function(DCMotor)
0	0	Z	Z	Coast(fast decay)
0	1	L	Н	Reverse
1	0	Н	L	Forward
1	1	L	L	Brake(slow decay)

Pins A_{IN1} and A_{IN2} are tri-level, so when they are left Hi-Z, they are not internally pulled to logic low. When A_{IN1} or A_{IN2} are set to Hi-Z and not in parallel mode, the output driver maintains the previous state.

PARALLEL OPERATION

Parallel Operation

The two drivers can be used in parallel to deliver twice the current to a single motor. To enter parallel mode, AIN1 and AIN2 must be left Hi-Z during power-up or when exiting sleep mode (nSLEEP toggling from 0 to 1). BIN1 and BIN2 are used to control the drivers. Tie AISEN and BISEN to a single sense resistor if current control is desired. To exit parallel mode, AIN1 and AIN2 must be driven high or low and the device must be powered-up or exit sleep mode.

Current Regulation

The current through the motor windings is regulated by a fixed-off-time PWM current regulation circuit. With DC brushed motors, current regulation can be used to limit the stall current (which is also the start up current) of the motor.

Current regulation works as follows:

When an H-bridge is enabled, current rises through the winding at a rate dependent on the supply voltage and inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current for a time t_{OFF} before starting the next PWM cycle. Note that immediately after the current is enabled, the voltage on the xISEN pin is ignored for a period of time (t_{BLANK}) before enabling the current sense circuitry. This blanking time also sets the minimum on-time of the PWM cycle.

The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor, connected to the xISEN pin, with a reference voltage. The reference voltage is derived from the voltage applied to the V_{REF} pin and it is V_{REF} / 6.6. The V_{REF} pin can be tied, on board, to the 3.3V–VINT pin, or it can be externally forced to a desired V_{REF} voltage.

Current Recirculation and Decay Modes

During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM current chopping threshold is reached.

After the chopping current threshold is reached, the drive current is interrupted, but due to the inductive nature of the motor, current must continue to flow for some period of time. This is called recirculation current. To handle this recirculation current, the **UMD9148** H-bridge operates in mixed decay mode.

Mixed decay is a combination of fast and slow decay modes. In fast decay mode, the opposite drivers are turned on to allow the current to decay. If the winding current approaches zero, while in fast decay, the bridge is disabled to prevent any reverse current flow. In slow decay mode, winding current is recirculated by enabling both of the low-side FETs in the bridge. Mixed decay starts with fast decay, then goes to slow decay. In **UMD9148**, the mixed decay ratio is 25% fast decay and 75% slow decay.

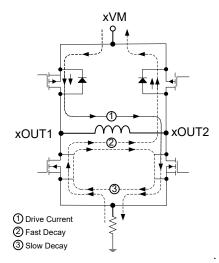


Figure 2. Decay Modes

PARALLEL OPERATION (Cont.)

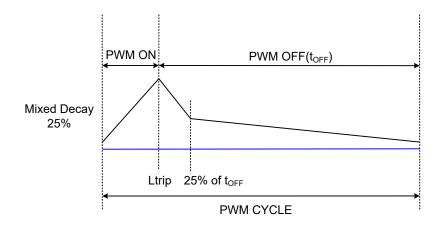


Figure 3. Mixed Decay

Protection Circuits

The **UMD9148** is fully protected against under voltage, over current, and over temperature events.

ОСР

An analog current limit circuit on each FET limits the current through the FET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time t_{OCP} , all FETs in the H-bridge are disabled and the nFAULT pin is driven low. The device remains disabled until the retry time t_{RETRY} occurs. The OCP is independent for each H-bridge.

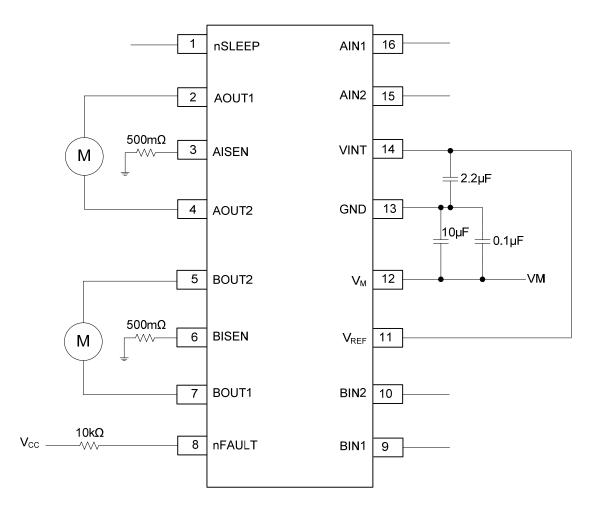
Over current conditions are detected independently on both high-side and low-side devices; that is, a short to ground, supply, or across the motor winding all result in an OCP event. Note that OCP does not use the current sense circuitry used for PWM current control, so OCP functions even without presence of the xISEN resistors.

TSD

If the die temperature exceeds safe limits T_{TSD} , all FETs in the H-bridge are disabled and the nFAULT pin is driven low. After the die temperature has fallen to a safe level, operation automatically resumes. The nFAULT pin is released after operation has resumed.

UVLO

If at any time the voltage on the V_M pin falls below the UVLO falling threshold voltage, VUVLO, all circuitry in the device is disabled, and all internal logic is reset. Operation resumes when V_{VM} rises above the UVLO rising threshold. The nFAULT pin is driven low during an under voltage condition and is released after operation has resumed.


Device Functional Modes

The **UMD9148** is active unless the nSLEEP pin is brought logic low. In sleep mode, the VINT regulator is disabled and the H-bridge FETs are disabled Hi-Z. Note that t_{SLEEP} must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The UMD9148 is brought out of sleep mode automatically if nSLEEP is brought logic high. Note that t_{WAKE} must elapse before the output change state after wake-up.

When V_{VM} falls below the V_M UVLO threshold (VUVLO), the output driver, internal logic, and VINT regulator are reset.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

