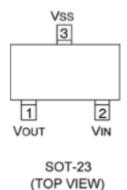


UP6202

DESCRIPTION

The UP6202 series are a highly precise, lower consumption, 3 terminals, positive voltage regulators manufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage. The UP6202 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error correction circuit. The series is compatible with low ESR ceramic capacitors. The current limiter's foldback circuit operates as a short circuit protection as well as the output current limiter for the output pin. Output voltages are internally by laser trimming technologies. It is selectable in 0.1V increments within a range of 2.5V to 5.0V. UP6202 series are available in SOT23-3L packages

150mA Low Power CMOS LDO


■ FEATURE

- Low power consumption
- Low voltage drop
- Low temperature coefficient
- Quiescent current 2uA at 18V
- High output current 150mA
- Output voltage accuracy: tolerance 2%
- SOT23-3L packages

APPLICATIONS

- Battery-powered equipment
- Communication equipment
- Audio/Video equipment

PIN CONFIGURATION

PART NUMBER INFORMATION

UP6202-10234	 (2)=Output Voltage 2.5V ~ 5.0V
	③=Output Voltage Accuracy 2=2%
	<pre>④=Package Code M=SOT23-3L</pre>

ORDERING INFROMATION

Part Number	Output Voltage	Package	Marking
UP6206-332M	3.3	SOT23-3L	3000EA/T&R

• **ABSOLUTE MAXIMUM RATINGS** ($T_A = 25 C$ Unless otherwise noted)

Symbol	Parameter	Typical	Unit
VIN(MAX)	Supply Voltage	20	V
Іоит	Output Current	150	mA
Vout	Output Voltage	Vss-0.3~VIN+0.3	
TJ	Operation Junction Temperature	150 °C	
T _{STG}	Storage Temperature Range	-55~+150	°C
TOPR	Operation Temperature	-40~+80	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress rating only and functional device operation is not implied

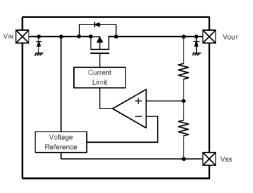
THERMAL DATA

Symbol	Parameter	Package	Max	Unit
PD	Power Dissipation	SOT23-3L	0.3	W

UP6202

■ ELECTRICAL CHARACTERISTICS(T_A=25 °C Unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vin	Input Voltage		3.5		18	V
Vout	Output Voltage	V _{IN} =V _{OUT} +1V I _{OUT} =10mA	Vout*0.98		Vout*1.02	V
Ιουτ	Output Current Note1	VIN=VOUT+1V		150		mA
ΔVουτ	Load Regulation	V _{IN} =V _{OUT} +1V, 1mA≤I _{OUT} ≤80mA		15	30	mV
V _{DIF}	Dropout Voltage Note2	Refer to the next table				
Iss	Quiescent Current	No Load		2	5	uA
ΔVουτ/ΔVιν*Vουτ	Line Regulation	Vout+1V≤Vin≤18V, Iout=30mA			0.2	%V
Vout/(Ta*Vout)	Output Voltage Temperature Coefficiency	I _{ou⊤} =30mA 0°C≤T _A ≤70°C		100		Ppm/℃
PSRR	PSRR	F=1KHz V _{IN} =V _{OUT} +1V		50		dB
I _{SHORT}	Short Circuit Current	V _{IN} =V _{OUT} +1.5V V _{OUT} =V _{SS}		120		mA
I _{LIMIT}	Over Current Protection			250	300	mA

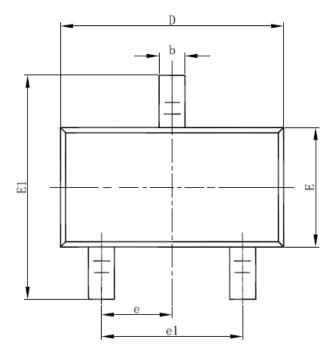

Note1: The deviation parameters V_{OUT} and I_{OUT} are defined as the difference between the maximum and minimum values obtained over the rated temperature range

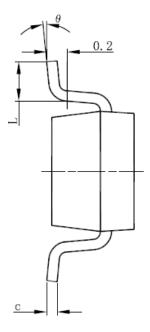
Note2: Iout=PD/(VIN-VOUT)

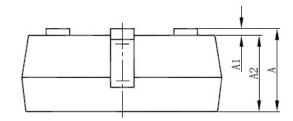
Electrical characteristics by Output Voltage

Output Voltage Vout (V)	Dropout Voltage Vdif (mV)		
	Conditions	Тур	Max
Vout≤3.0V		550	850
3.0V≤V _{OUT} ≤4.0V	I _{OUT} =100mA	380	420
4.0V≤V _{OUT} ≤5.0V		290	350

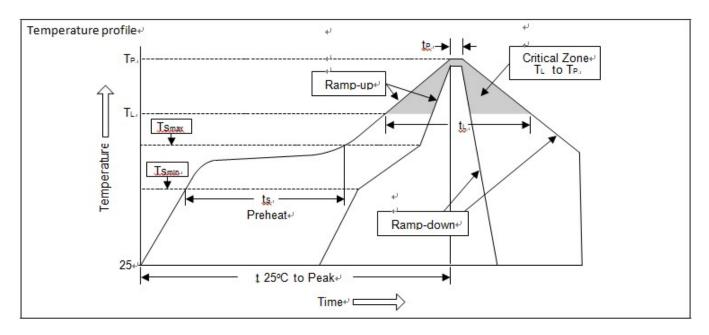
FUNCTION BLOCK DIAGRAM


*Diodes inside the circuit are an ESD protection diode and a parasitic diode.


UP6206 Rev B 28/July/2016



SOT23 PACKAGE OUTLINE DIMENSIONS



Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950	(BSC)	0.037((BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0 °	8°	0°	8°

SOLDERING METHODS FOR UNIVERCHIP

Storage environment Temperature=10 $^\circ\!C$ ~35 $^\circ\!C$ Humidity=65%±15% Reflow soldering of surface mount device

Profile Feature	Sn-Pb Eutectic Assembly	Pb free Assembly	
Average ramp-up rate (T _L to T _P)	<3℃/sec	<3°C/sec	
Preheat			
-Temperature Min (Tsmin)	100 ℃	150 ℃	
-Temperature Max (Ts _{max})	150 ℃	200 °C	
-Time (min to max) (ts)	60~120 sec	60~180 sec	
Tsmax to T∟	-2°C /222	-2°⊂ /222	
-Ramp-up Rate	<3℃/sec	<3℃/sec	
Time maintained above			
-Temperature (T∟)	183 ℃	217 °C	
-Time (t∟)	60~150 sec	60~150 sec	
Peak Temperature (T _P)	240℃+0/-5℃	260 °C +0/−5 °C	
Time within 5 $^{\circ}$ C of actual Peak	10, 20,000	20, 40, 222	
Temperature (t _P)	10~30 sec	20~40 sec	
Ramp-down Rate	<6°C/sec	<6°C/sec	
Time 25°C to Peak Temperature	<6 minutes	<6 minutes	

UP6202

Flow (wave) soldering (solder dipping)

Product	Peak Temperature	Dipping Time
Pb device	245℃±5℃	5sec±1sec
Pb-Free device	260°C+0/-5° C	5sec±1sec

This integrated circuit can be damaged by ESD UniverChip Corporation recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedure can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.