4

NEC Microcomputers, Inc.

νΕς μΡΒ409 μΡΒ429 μΡΒ409-1 μΡΒ409-2 μΡΒ429-2

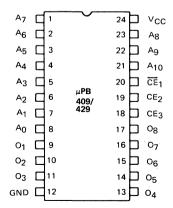
2048 WORD BY 8 BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION

The µPB409 and µPB429 are high-speed, electrically programmable, fully-decoded 16384 bit TTL read only memories. On-chip address decoding, three chip enable inputs and open-collector/three-state outputs allow easy expansion of memory capacity. The µPB409 and µPB429 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES

- 2048 WORDS x 8 BITS Organization (Fully Decoded)
- TTL Interface
- ITE IIIteriace
- :50 ns MAX
- Fast Read Access Time
 - Medium Power Consumption :500 mW TYP
- Three Chip Enable Inputs for Memory Expansion
- Open-Collector Outputs (μPB409)
- Three-State Outputs (μPB429)
- Ceramic 24-Lead Dual In-Line Package (μPB409D, μPB429D)
- Plastic 24-Lead Dual In-Line Package (μPB409C, μPB429C)
- Fast Programming Time


:200 µs/bit TYP

Replaceable with

:82S190/191

HM76160/76161, 3636 and Equivalent Type Devices

PIN CONFIGURATION

PIN NAMES

A ₀ -A ₁₀	Address Inputs
CE ₁ -CE ₃	Chip Enable Inputs
01-08	Data Outputs

µPB409/429

Supply Voltage	۷,
Input Voltage0.5 to +5.5	٧
Output Voltage	٧
Output Current	
Operating Temperature25°C to +75°	С
Storage Temperature	
Ceramic Package	
Plastic Package	С

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 25^{\circ}C$

 $T_a = 0^{\circ} C$ to $75^{\circ} C$, $V_{CC} = 4.5$ to 5.5 V

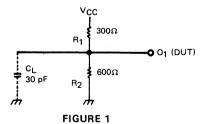
CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input High Voltage	VIH	2.0			V	
Input Low Voltage	VIL			0.85	V	
Input High Current	Чн			40	μΑ	V _I =5.5V, V _{CC} =5.5V
Input Low Current	- -			0.25	mA	V _I =0.4V, V _{CC} =5.5V
Output Low Voltage	VOL			0.45	V	IO=16 mA, VCC=4.5V
Output Leakage Current	IOFF1			40	μΑ	V _O =5.5V, V _{CC} =5.5V
Output Leakage Current	-lOFF2			40	μА	V _O =0.4V, V _{CC} =5.5V
Input Clamp Voltage	-V₁C			1.3	V	I _I =-18 mA, V _{CC} =4.5V
Power Supply Current	Icc		100	160	mA '	All inputs Grounded, VCC=5.5V
Output High Voltage*	Voн	2.4			V	IO=-2.4 mA, VCC=4.5V
Output Short Circuit Current*	-Isc	20		70	mA	V _O =0V

*Note: Applicable to µPB429

 $T_a = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 5V$, $V_{1N} = 2.5V$

CHARACTERISTICS	SYMBOL	MIN	MAX	UNIT
Input Capacitance	CIN		8	pF
Output Capacitance	COUT		10	pF

 $T_a = 0^{\circ} C \text{ to } 75^{\circ} C$, $V_{CC} = 4:5 \text{ to } 5.5 V$ 1234


CHARACTERISTIC	SYMBOL	µРВ409-2, µРВ429-2		μΡΒ409-1, μΡΒ429-1 μΡΒ409, μ		μ PB429	UNIT	
	• • • • • • • • • • • • • • • • • • • •	MIN	MAX	MIN	MAX	MIN	MAX	
Address Access Time	^t AA		50		60		70	ns
Chip Enable Access Time	^t ACE		30		40		50	ns
Chip Enable Disable Time	†DCE		30		40		50	ns

AC CHARACTERISTICS

CAPACITANCE

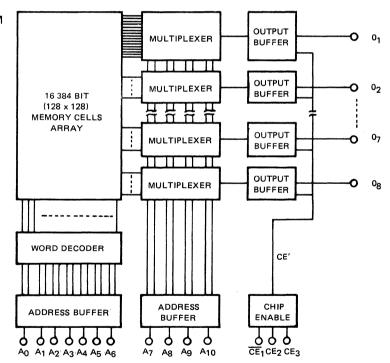
AR2OF01F	
MAXIMUM	RATINGS*

DC CHARACTERISTICS

- Output Load: See Fig. 1.
 Input Waveform: 0.0V for low level and 3.0V for high level,
 Measurement References: 1.5V for both inputs and outputs.
 C_L in Fig. 1 includes jig and probe stray capacitances. Input Waveform: 0.0V for low level and 3.0V for high level, less than 10ns for both rise and fall times.

OPERATION

You can program only when the outputs are disabled by any one of the chip enable inputs. This insures that the output will not be damaged when you apply programming voltages.

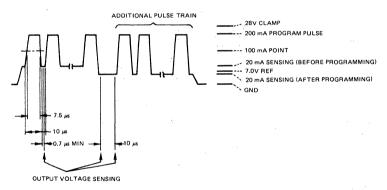

Programming

You can permanently program a logic one into a selected bit location by using special equipment (programmer). First, disable the chip as described above. Second, apply a train of high-current programming pulses to the desired output. Apply an additional pulse train after the sensed voltage indicates that the selected bit is in the logic one state. Then, stop the pulse train.

Reading

To read the memory, enable the chip (i.e., $CE_1 = 0$, $CE_2 = CE_3 = 1$). The outputs then correspond to the data programmed into the selected words. When the chip is disabled, all the outputs will be in a high impedance (floating) state.

LOGIC DIAGRAM

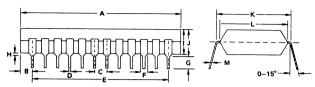

μPB409/429

It is imperative that this specification be rigorously observed in order to correctly program the μPB409 and $\mu\text{PB429}.$ NEC will not accept responsibility for any device found to be defective if it was not programmed according to this specification.

PROGRAMMING SPECIFICATION

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	°c	
Programming Pulse Amplitude Clamp Voltage Ramp Rate (Both in Rise and in Fall) Pulse Width	200 ± 5% 28 + 0% – 2% 70 MAX 7.5 ± 5%	mA V V/μs μs	15V point/150Ω load .
Duty Cycle Sense Current Amplitude Clamp Voltage Ramp Rate Sense Current Interruption before and after address change	70% MIN 20 ± 0.5 28 + 0% - 2% 70 MAX 10 MIN	mA V V/μs μs	15V point/150Ω load
Programming V _{CC}	5.0 + 5% - 0%	v	
Maximum Sensed Voltage* for programmed "1"	7.0 ± 0.1	٧	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN	μs	

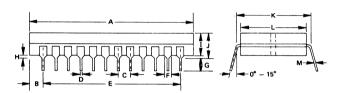
^{*}A bit is judged to be programmed when two successive sense readings 10 μ s apart with no intervening programming pulse pass the limit. When this condition has been met, four additional pulses are applied, then the sense current is terminated.



TYPICAL OUTPUT VOLTAGE WAVEFORM

COMMERCIALLY AVAILABLE PROGRAMMING EQUIPMENT:

DATA I/O: PROGRAM CARD 909/919-1555 WITH SOCKET ADAPTER 715-1033


PACKAGE OUTLINE $\mu PB409C/429C$

(Plastic)

(* ************************************				
ITEM	MILLIMETERS	INCHES		
A	33 MAX	1.3 MAX		
В	2.53	0.1		
С	2.54	0.1		
D	0.5 : 0.1	0.02 ± 0.004		
E	27.94	1.1		
F	1.5	0.059		
G	2.54 MIN	0.1 MIN		
н	0.5 MIN	0.02 MIN		
I	5.22 MAX	0.205 MAX		
J	5.72 MAX	0.225 MAX		
К	15.24	0.6		
L	13.2	0.52		
м	0.25 +0.10 -0.05	0.01 +0.004 -0.0019		

μPB409D/429D

(Cerdip)

ITEM	MILLIMETERS	INCHES
Α	33.5 MAX.	1.32 MAX.
В	2.78	0.11
С	2.54	0.1
D	0.46	0.018
Ε	27.94	1.1
F	1.5	0.059
G	2.54 MIN.	0.1 MIN.
н	0.5 MIN.	0.019 MIN.
I	4.58 MAX.	0.181 MAX.
J	5.08 MAX.	0.2 MAX.
К	15,24	0.6
L	13.5	0.53
м	0.25 ^{+0.10} -0.05	0.01 +0.004