NEC Microcomputers, Inc.

8080A SYSTEM CONTROLLER AND BUS DRIVER

DESCRIPTION The μ PB8228/8238 is a single chip controller and bus driver for 8080A based systems. All the required interface signals necessary to connect RAM, ROM and I/O components to a μ PD8080A are generated.

The μ PB8228/8238 provides a bi-directional three-state bus driver for high TTL fan-out and isolation of the processor data bus from the system data bus for increased noise immunity.

The system controller portion of the μ PB8228/8238 consists of a status latch for definition of processor machine cycles and a gating array to decode this information for direct interface to system components. The controller can enable gating of a multi-byte interrupt onto the data bus or can automatically insert a RESTART 7 onto the data bus without any additional components.

Two devices are provided: the μ PB8228 for small systems without tight write timing constraints and the μ PB8238 for larger systems.

FEATURES • System Controller for 8080A Systems

- Bi-Directional Data Bus for Processor Isolation
- 3.60V Output High Voltage for Direct Interface to 8080A Processor
- Three State Outputs on System Data Bus
- Enables Use of Multi-Byte Interrupt Instructions
- Generates RST 7 Interrupt Instruction
- μPB8228 for Small Memory Systems
- µPB8238 for Large Memory Systems
- Reduces System Package Count
- Schottky Bipolar Technology

PIN CONFIGURATION

NC: No Connection

PIN NAMES					
D7 - D0	Data Bus (Processor Side)				
DB7 - DB0	Data Bus (System Side)				
I/OR	I/O Read				
I/OW	I/O Write				
MEMR	Memory Read				
MEMW	Memory Write				
DBIN	DBIN (From Processor)				
INTA	Interrupt Acknowledge				
HLDA	HLDA (From Processor)				
WR	WR (From Processor)				
BUSEN	Bus Enable Input				
STSTB	Status Strobe (From µPB8224)				
Vcc	+5V				
GND	0 Volts				

9

µPB8228/8238

Bi-Directional Bus Driver

The eight bit, bi-directional bus driver provides buffering between the processor data bus and the system data bus. On the processor side, the μ PB8228/8238 exceeds the minimum input voltage requirements (3.0V) of the μ PD8080A. On the system side, the driver is capable of adequate drive current (10 mA) for connection of a large number of memory and I/O devices to the bus. Signal flow in the bus driver is controlled by the gating array and its outputs can be forced into a high impedance state by use of the BUSEN input.

Status Latch

The Status Latch in the μ PB8228/8238 stores the status information placed on the data bus by the 8080A at the beginning of each machine cycle. The information is latched when STSTB goes low and is then decoded by the gating array for the generation of control signals.

Gating Array

The Gating Array generates "active low" control signals for direct interfacing to system components by gating the contents of the status latch with control signals from the 8080A.

 $\overline{\text{MEM/R}}$, $\overline{I/\text{OR}}$ and $\overline{\text{INTA}}$ are generated by gating the DBIN signal from the processor with the contents of the status latch. $\overline{I/\text{OR}}$ is used to enable an I/O input onto the system data bus. $\overline{\text{MEM/R}}$ is used to enable a memory input.

INTA is normally used to gate an interrupt instruction onto the system data bus. When used with the μ PD8080A processor, the μ PB8228/8238 will decode an interrupt acknowledge status word during all three machine cycles for a multi-byte interrupt instruction. For 8080A type processors that do not generate an interrupt acknowledge status word during the second and third machine cycles of a multi-byte interrupt instruction, the μ PB8228/8238 will internally generate an INTA pulse for those machine cycles.

The μ PB8228/8238 also provides the designer the ability to place a single interrupt instruction onto the bus without adding additional components. By connecting the +12 volt supply to the INTA output (pin 23) of the μ PB8228/8238 through a 1 K ohm series resistor, RESTART 7 will be gated onto the processor data bus when DBIN is active during an interrupt acknowledge machine cycle.

 $\overline{\text{MEM/W}}$ and $\overline{I/OW}$ are generated by gating the $\overline{\text{WR}}$ signal from the processor with the contents of the status latch. $\overline{I/OW}$ indicates that an output port write is about to occur. $\overline{\text{MEM/W}}$ indicates that a memory write will occur.

The data bus output buffers and control signal buffers can be asynchronously forced into a high impedance state by placing a high on the $\overline{\text{BUSEN}}$ pin of the μ PB8228/8238. Normal operation is performed with $\overline{\text{BUSEN}}$ low.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

µРВ8228/8238

ABSOLUTE	Operating Temperature	0°C to +70°C
MAXIMUM RATINGS*	Storage Temperature	-65°C to +150°C
	All Output or Supply Voltages	0.5 to +7 Volts
	All Input Voltages	- 1.5 to 5.5 Volts
	Output Currents	100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

 $T_a = 0^{\circ}C$ to 70°C, $V_{CC} = 5V \pm 5\%$

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Clamp Voltage, All Inputs	vc			-1.0	v	V _{CC} = 4.75V; I _{CC} = -5 mA
Input Load Current, STSTB	۱۴			500	μA	
D ₂ and D ₆				750	μA	V _{CC} = 5.25V
D ₀ , D ₁ , D ₄ , D ₅ , and D ₇				250	μA	VF = 0.45V
All Other Inputs				250	μA	
Input Leakage Current, STSTB	IR.			100	μA	N E 25V
DB _O through DB7				20	μA	$v_{CC} = 5.25v$
All Other Inputs				100	μA	vR = 2'04
Input Threshold Voltage, All Inputs	Vтн	0.8		2.0	v	V _{CC} = 5V
Power Supply Current	'cc			190	mA	V _{CC} = 5.25V
Output Low Voltage, D ₀ through D ₇	VOL			0.45	v	V _{CC} = 4.75V; I _{OL} = 2 mA
All Other Outputs				0.48	v	I _{OL} = 10 mA
Output High Voltage, D ₀ through D ₇	∨он	3.6			v	V _{CC} = 4.75V; I _{OH} = -10 µA
All Other Outputs		2.4			v	I _{OH} = -1 mA
Short Circuit Current, All Outputs	los	15		90	mA	V _{CC} = 5V
Off State Output Current,	¹ O (off)			100	μA	V _{CC} = 5.25V; V _O = 5.0V
All Control Outputs				-100	μA	V _O = 0.45V
INTA Current	UNT			5	mA	(See Figure below)

INTA TEST CIRCUIT

CAPACITANCE,

 $T_a = 25^{\circ}C$

			LIMITS			TEST
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Input Capacitance	CIN			12	pF	VBIAS = 2.5V,
Output Capacitance Control Signals	солт		· ·	15	pF	V _{CC} = 5.0V,
I/O Capacitance (D or DB)	CI/O			15	pF	f = 1 MHz

NOTE: This parameter is periodically sampled and not 100% tested.

μ PB8228/8238 _{Ta} = 0°C to 70°C, V_{CC} = 5V ± 5%

ſ		LIMITS				TEST
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITIONS
Width of Status Strobe	tPW	22			· ns	1. N
Setup Time, Status Inputs DG-D7	tss	8			ns	×
Hold Time, Status Inputs D0-D7	tSH	5			ns	
Delay from STSTB to any Control Signal	^t DC	20		60	ns	C _L = 100 pF
Delay from DBIN to Control Outputs	^t RR			30	ns	C _L = 100 pF
Delay from DBIN to Enable/ Disable 8080A Bus	^t RE			45	ns	C _L = 25 pF
Delay from System Bus to 8080A Bus during Read	^t RD			30	ns	C _L = 25 pF
Delay from WR to Control Outputs	twR	5		45	ns	С _L ≈ 100 рF
Delay to Enable System Bus DB0-DB7 after STSTB	tWE		-	30	ns	C _L = 100 pF
Delay from 8080A Bus D ₀ -D ₇ to System Bus DB ₀ -DB ₇ during Write	twD	5		40	ns	C _L = 100 pF
Delay from System Bus Enable to System Bus DB ₀ -DB7	tΕ			30	ns	C _L = 100 pF
HLDA to Read Status Outputs	tHD			25	ns	
Setup Time, System Bus Inputs to HLDA	tDS	10			ns	
Hold Time, System Bus Inputs to HLDA	tDH	20			ns	C _L = 100 pF

For D₀-D₇: $R_1 = 4 K\Omega$, $R_2 = \infty \Omega$, C_L = 25 pF. For all other outputs:

 $R_1 = 500\Omega$, $R_2 = 1 K\Omega$, $C_L = 100 pF$.

Rı OUTPUT c_L

 Δ^{vcc}

VOLTAGE MEASUREMENT POINTS: $D_0 \cdot D_7$ (when outputs) Logic "0" = 0.8V, Logic at 1.5V. "1" = 3.0V.

AC CHARACTERISTICS

TIMING WAVEFORMS

μPB8228/8238

STATUS WORD CHART

5	STATUS	INC. INCORNEL	ME. UCTION	MEL REALETCH	STA WRIT	STAL READ	IND. COLUMNITE	OUT READ	INT. WRITE	INT PLOT AC	Ha. ACK IM. CKNOWLED	1.1.400 (200) (200
		\bigcirc	2	3	4	5	6	\bigcirc	8	9	\bigcirc	
Do	INTA	Ō	0	0	0	0	0	0	1	0	1	1
D ₁	WO	1	1	0	1	0	1	0	1	1	1	
D ₂	STACK	0	0	0	1	1	0	0	0	0	0	
D_3	HLTA	0	0	0	0	0	0	0	0	1	1	UPD8080A
D ₄	OUT	0	0	0	0	0	0	1	0	0	0	OUTPUT
D_5	M1	1	0	0	0	0	0	0	1	0	1	
D_6	INP	0	0	0	0	Û	1	0	0	0	0	
D7	MEMR	1	1	0	1	0	0	0	0	1	0	
24	MEMR	0	0	1	0	1	1	1	1	1	1	
26	MEMW	1	1	0	1	0	1	1	1	1	1	μPB8228/8238
25	I/OR	1	1	1	1	1	0	1	1	1	1	OUTPUT
27	I/OW	1	1	1	1	1	1	0	1	1	1	
23	INTA	1	1	1	1	1	1	1	0	0	1	
\ _{PI}	Ŵ	$\mathbf{\mathbf{N}}$			S	GNA	L STA	TUS				
	NO.	•••••		μPE	8228	/8238	CON	FROL	SIGN	ALS		-

9

PACKAGE OUTLINE µPB8228C µPB8238C

(Plastic)							
ITEM	MILLIMETERS	INCHES					
А	38.0 MAX.	1.496 MAX.					
В	2.49	0.098					
С	2.54	0.10					
D	0 5 ± 0.1	0.02 ± 0.004					
E	33.02	1.3					
F	1.5	0.059					
G	2.54 MIN.	0.10 MIN.					
н	0.5 MIN.	0.02 MIN.					
s I	5.22 MAX.	0.205 MAX.					
J	5.72 MAX.	0.225 MAX.					
к	15.24	0.6					
L	13.2	0.52					
м	0.25 + 0.10	0.01 + 0.004					

μPB8228D μPB8238D

(Geramic)					
ITEM	MILLIMETERS	INCHES			
А	36.2 MAX.	1.43			
В	1,59 MAX.	0.06			
С	2.54	0.1			
D	0.46 ± 0.05	0.02 ± 0.004			
E	33.02	1.3			
F	1.02	0.04			
G	3.2 MIN.	0.13			
н	1.0	0.04			
I	3.5	0.14			
J	4.5	0.18			
к	15.24	0.6			
L	14,93	0.59			
M	0.25 ± 0.05	0.01 ± 0.002			

. .