NEC Microcomputers, Inc.

INPUT/OUTPUT EXPANDER FOR µPD8048/8748/8035

DESCRIPTION The μPD8243 input/output expander is directly compatible with the μPD8048 family of single-chip microcomputers. Using NMOS technology the μPD8243 provides high drive capabilities while requiring only a single +5V supply voltage.

The μ PD8243 interfaces to the μ PD8048 family through a 4-bit I/O port and offers four 4-bit bi-directional static I/O ports. The ease of expansion allows for multiple μ PD8243's to be added using the bus port.

The bi-directional I/O ports of the μ PD8243 act as an extension of the I/O capabilities of the μ PD8048 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

FEATURES

- Four 4-Bit I/O Ports
- Fully Compatible with µPD8048 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5V Supply
- Direct Extension of Resident µPD8048 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a 24-Pin Plastic Package

P50	1	~~~	24	
P40 🗖	2		23	D P51
P41 🗖	3		22	D P52
P42	4		21	D P53
P43 🗖	.5		20	P P60
cs 🗖	6	μPD	19	P P61
PROG	7	8243	18	P62
P23 🗖	8		17	P P63
P22 🗲	9		16	P73
P21	10	1.	15	□ P72
P20	11		14	P71
GND	12		13	P 70

9

μPD8243

General Operation

The I/O capabilities of the μ PD8048/8748/8035 can be enhanced in four 4-bit I/O port increments using one or more μ PD8243's. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port 2 (P₂₀-P₂₃) forms the 4-bit bus through which the μ PD8243 communicates with the host processor. The PROG output from the μ PD8048/8748/8035 provides the necessary timing to the μ PD8243. There are two 4-bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple μ PD8243's can be used for additional I/O. The output lines from the μ PD8048/8748/8035 can be used to form the chip selects for the additional μ PD8243's.

Power On Initialization

Applying power to the μ PD8243 sets ports 4-7 to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time V_{CC} drops below 1V. The table below shows how the 4-bit nibbles on Port 2 correspond to the μ PD8243 operations.

Port A	ddress		Op-Code		
P21	P20	Address Code	P23	P22	Instruction Code
0	0	Port 4	0	0.	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on P20-P23, respectively, would result in a Write to Port 4.

Read Mode

There is one Read mode in the μ PD8243. A falling edge on the PROG pin latches the op-code and port address from input Port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The Port (4,5,6, or 7) that was selected by the Port address (P₂₁-P₂₀) is returned to the tri-state mode, and Port 2 is switched to the input mode.

Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the μ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD8243. The MOVD P_p,A instruction from the μ PD8048/8748/8035 writes the new data directly to the specified port (4,5,6, or 7). The old data previously latched at that port is lost. The ORLD Pp,A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD Pp,A instruction. It performs a logical AND between the new data and the data currently latched at that port.

The data remains latched at the selected port following the logical manipulation until new data is written to that port.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

PIN		
NO.	SYMBOL	FUNCTION
2-5 1, 21-23 17-20 13-16	P40-P43 P50-P53 P60-P63 P70-P73	The four 4-bit static bi-directional I/O ports. They are programmable into the following modes: input mode (during a Read operation); low impedance latched output mode (after a Write operation); and the tri-state mode (following a Read operation). Data appearing on I/O lines P20-P23 can be written directly. That data can also be logically ANDed or ORed with the previous data on those lines.
6	ĊŚ	Chip Select input (active-low). When the μ PD8343 is deselected (\overline{CS} = 1), output or internal status changes are inhibited.
7	PROG	Clock input pin. The control and address informa- tion are present on port lines P20-P23 when PROG makes a high-to-low transition. Data is present on port lines P20-P23 when PROG makes a low-to-high transition.
8-11	P20-P23	P20-P23 form a 4-bit bi-directional port. Refer to PROG function for contents of P20-P23 at the rising and falling edges of PROG. Data from a selected port is present on P20-P23 prior to the rising edge of PROG if during a Read operation.
12	GND	The μ PD8041/8741 ground potential.
24	Vcc	+5 volt supply.

9

μPD8243

Operating Temperature	0°C to +70°C
Storage Temperature (Ceramic Package)	5°C to +150°C
Storage Temperature (Plastic Package)	5°C to +125°C
Voltage on Any Pin	to +7 Volts (1)
Power Dissipation	1 W

Note: 1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

 $T_a = 0^{\circ}C$ to +70°C; $V_{CC} = +5V \pm 5\%$

		LIMITS				TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Low Voltage	VIL	-0.5		0.8	v	
Input High Voltage	VIH	2.0		V _{CC} + 0.5	v	
Qutput Low Voltage (Ports 4-7)	V _{OL1}			0.45	V	IOL = 5 mA ①
Output Low Voltage (Port 7)	V _{OL2}			1	v	I _{OL} = 20 mA
Output Low Voltage (Port 2)	V _{OL3}			0.45	v	IOL = 0.6 mA
Output High Voltage (Ports 4-7)	VOH1	2.4			٧·	IOH = 240 µA
Output High Voltage (Port 2)	VOH2	2.4			v	IOH = 100 µA
Sum of All IOL From 16 Outputs	IOL			100	, mA	5 mA Each Pin
Input Leakage Current (Ports 4-7)	HL1 .	-10		20	μA	VIN = VCC to 0V
Input Leakage Current (Port 2, CS, PROG)	IL2	-10		10	μA	VIN = VCC to 0V
V _{CC} Supply Current	'cc		10	20	mA	

DC CHARACTERISTICS

ABSOLUTE MAXIMUM

RATINGS*

Note: 1 Refer to graph of additional sink current drive.

	T	LIMITS				TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	CONDITIONS
Code Valid Before PROG	tA	100			ns	80 pF Load
Code Valid After PROG	tB	60			ns	20 pF Load
Data Valid Before PROG	tc ·	200			ns	80 pF Load
Data Valid After PROG	tD	20			ns	20 pF Load
Port 2 Floating After PROG	tн	0		150	ns	20 pF Load
PROG Negative Pulse Width	tκ	900			ns	
Ports 4-7 Valid After PROG	^t PO			700	ns	100 pF Load
Ports 4-7 Valid Before/After PROG	tLP1	100			ns	
Port 2 Valid After PROG	^t ACC			750	ns	80 pF Load
CS Valid Before/After PROG	tCS	50			ns	

- 10

TPO

cs

FLOAT

OUTPUT

VALID

DATA

OUTPUT VALID

tic

FLOAT

PREVIOUS OUTPUT VALID

INPUT VALID

1ACC

AC CHARACTERISTICS

TIMING WAVEFORMS

cs

PROG

PORT 2

PORT 2

PORTS 4-7

PORTS 4-7

Note: ① This curve plots the guaranteed worst case current tinking capability of any I/O port line versus the total sink current of all pins. The µPD8243 is capable of sinking 5 mA (for V_{OL} = 0.4V) through each of the 16 I/O lines simultaneously. The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded.

PACKAGE OUTLINES µPD8243C

(PLASTIC)

ITEM	MILLIMETERS	INCHES			
A	33 MAX	1.3 MAX			
в	2.53	0.1			
с	2.54	0.1			
D	0.5 ± 0.1	0.02 ± 0.004			
E	27.94	1.1			
F	1.5	0.059			
G	2.54 MIN	0.1 MIN			
н	0.5 MIN	0.02 MIN			
I	5.22 MAX	0.205 MAX			
J	5.72 MAX	0.225 MAX			
к	15.24	0.6			
L	13.2	0.52			
м	0.25 +0.10 -0.05	0.01 +0.004 -0.0019			

9