NEC Microcomputers, Inc.

CLOCK GENERATOR AND DRIVER FOR 8086/8088 MICROPROCESSORS

DESCRIPTION The μ PB8284 is a clock generator and driver for the 8086 and 8088 microprocessors This bipolar driver provides the microprocessor with a reset signal and also provides properly synchronized READY timing. A TTL clock is also provided for peripheral devices.

- FEATURES Generate System Clock for the 8086 and 8088
 - Frequency Source can be a Crystal or a TTL Signal

18 VCC

17**b** ×1

16**D** ×2

15 TNK

14 EFI

13 F/C

12 OSC 11 RES

10 RESET

- MOS Level Output for the Processor
- TTL Level Output for Peripheral Devices
- Power-Up Reset for the Processor
- READY Synchronization
- +5V Supply
- 18 Pin Package

CYSNC

PCLK

AEN1 3

RDY1

READY 5

RDY2 6

AEN2 7

CLK **[18**] GND

1

2

Δ μPB

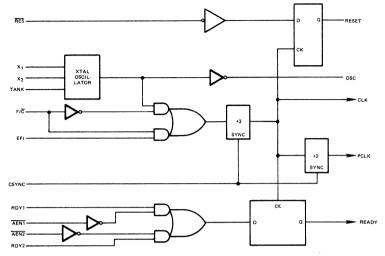
8284

PIN CONFIGURATION

X ₁ , X ₂	Crystal Connections
TANK	For Overtone Crystal
F/C	Clock Source Select
EFI	External Clock Input
CSYNC	Clock Synchronization Input
RDY1	Ready Signal from
RDY2	MultibusTM* Systems
AEN1	Address Enable Qualifiers
AEN2	for the two RDY Signals
RES	Reset Input
RESET	Synchronized Reset Output
OSC	Oscillator Output
CLK	MOS Clock for the Processor
PCLK	TTL Clock for Peripherals
READY	Synchronized Ready Output

*TM - Multibus is a trademark of Intel Corporation.

PIN NAMES


μ.PB8284

PIN IDENTIFICATION

NO.	SYMBOL	NAME	FUNCTION
1	CSYNC	Clock Synchronization	An active high signal which allows multiple 8284s to be synchronized. When CYSNC is low, the internal counters count and when high the counters are reset. CYSNC should be grounded when the internal oscillator is used.
2	PCLK	Peripheral Clock	A TTL level clock for use with per- ipheral devices. This clock is one- half the frequency of CLK.
3, 7	AEN1, AEN2	Address Enable	This active low signal is used to qualify its respective RDY inputs. If there is only one bus to interface to, AEN inputs are to be grounded.
4, 6	RDY1, RDY2	Bus Ready	This signal is sent to the 8284 from a peripheral device on the bus to indicate that data has been received or data is available to be read.
5	READY	Ready	The READY signal to the micro- processor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the guaran- teed hold time to the processor has been met.
8	CLK	Processor Clock	This is the MOS level clock output of 33% duty cycle to drive the microprocessor and bipolar support devices (8288) connected to the processor. The frequency of CLK is one third of the crystal or EFI frequency.
10	RESET	Reset	This is used to initialize the proces- sor. Its input is derived from an RC connection to a Schmitt trigger input for power up operation.
11	RES	Reset In	This Schmitt trigger input is used to determine the timing of RESET out via an RC circuit.
12	OSC	Oscillator Output	This TTL level clock is the output of the oscillator circuit running at the crystal frequency.
13	F/C	Frequency Crystal Select	F/\overline{C} is a strapping option used to determine where CLK is generated. A low is for the EFI input, and a high is for the crystal.
14	EFI	External Frequency In	A square wave in at three times the CLK output. A TTL level clock to generate CLK.
6, 17	Х ₁ , Х2	Crystal In	A crystal is connected to these inputs to generate the processor clock. The crystal chosen is three times the desired CLK output.
15	тик	Tank	This is used for overtone type crystals. (See diagram below.)
18	VCC	VCC	+5V a

PIN IDENTIFICATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	υ°C
Storage Temperature	°C
All Output and Supply Voltages	
All Input Voltages1.0V to +5.	5V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

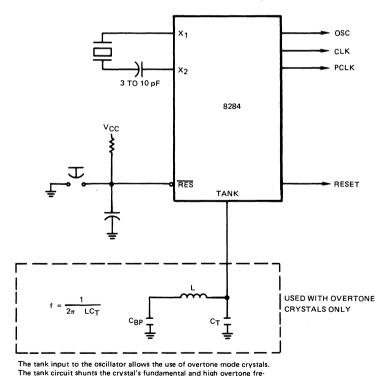
 ${}^{*}T_{a} = 25^{\circ}C$

DC CHARACTERISTICS

Conditions: $T_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 10\%$

PARAMETER	SYMBOL	MIN	мах	UNIT	TEST CONDITIONS
Forward Input Current	IF		-0.5	mA	VF = 0.45V
Reverse Input Current	IR		50	μA	VR = 5.25V
Input Forward Clamp Voltage	VC		-1.0	٦V	IC = - 5 mA
Power Supply Current	ICC		140	mΑ	
Input Low Voltage	VIL		0.8	V	VCC = 5.0V
Input High Voltage	VIH	2.0		v	V _{CC} = 5.0V
Reset Input High Voltage	VIHR	2.6		V	VCC = 5.0V
Output Low Voltage	Vol		0.45	v	5 mA =I _{OL}
Output High Voltage CLK Other Outputs	Voh	4 2.4		V V	-1 mA -1 mA ^I OH
RES Input Hysteresis	VIHR ^{-VILR}	0.25		v	V _{CC} = 5.0V

μPB8284


The clock generator can provide the system clock from either a crystal or an external TTL source. There is an internal divide by three counter which receives its input from either the crystal or TTL source (EFI Pin) depending on the state of the F/\overline{C} input strapping. There is also a clear input (C SYNC) which is used for either inhibiting the clock, or synchronizing it with an external event (or perhaps another clock generator chip). Note that if the TTL input is used, the crystal oscillator section can still be used for an independent clock source, using the OSC output.

For driving the MOS output level, there is a 33% duty cycle MOS output (CLK) for the microprocessor, and a TTL output (PCLK) with a 50% duty cycle for use as a peripheral clock signal. This clock is at one half of the processor clock speed.

Reset timing is provided by a Schmitt Trigger input (RES) and a flip-flop to synchronize the reset timing to the falling edge of CLK. Power-on reset is provided by a simple RC circuit on the RES input.

There are two READY inputs, each with its own qualifier ($\overline{\text{AEN1}}$, $\overline{\text{AEN2}}$). The unused $\overline{\text{AEN}}$ signal should be tied low.

The READY logic in the 8284 synchronizes the RDY1 and RDY2 asynchronous inputs to the processor clock to insure proper set up time, and to guarantee proper hold time before clearing the ready signal.

quencies and allows the third harmonic to oscillate. The external LC network is connected to the TANK input and is AC coupled to ground.

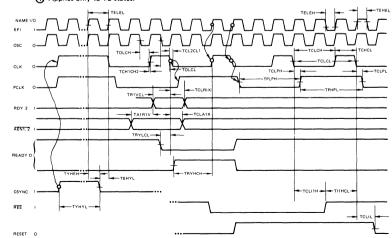
TANK INSERT CIRCUIT DIAGRAM

FUNCTIONAL DESCRIPTION

AC CHARACTERISTICS

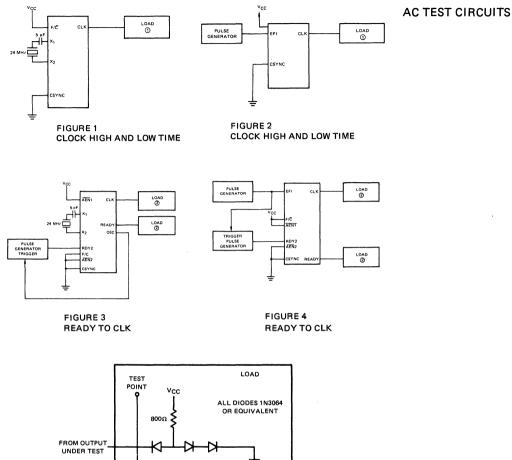
Conditions: $T_a = 0^\circ C$ to $70^\circ C$; $V_{CC} = 5V \pm 10\%$

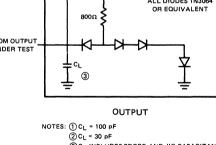
TIMING REQUIREMENTS


PARAMETER	SYMBOL	MIN	мах	UNITS	TEST CONDITIONS
External Frequency High Time	TEHEL	20		ns	90%-90% ∨ _{IN}
External Frequency Low Time	TELEH	20		ns	10%-10% V _{IN}
EFI Period	TELEL	TEHEL + TELEH + δ		ns	0
XTAL Frequency		12	25	MHz	
RDY1, RDY2 Set-Up to CLK	TR1VCL	35		ns	
RDY1, RDY2 Hold to CLK	TCLR1X	0		ns	
AEN1, AEN2 Set-Up to RDY1, RDY2	TA1VR1V	15		ns	
AEN1, AEN2 Hold to CLK	TCLA1X	0		ns	
CSYNC Set-Up to EFI	ТҮНЕН	20		ns	
CSYNC Hold to EFI	TEHYL	20		ns	
CSYNC Width	TYHYL	2 TELEL		ns	
RES Set-Up to CLK	TI1HCL	65		ns	2
RES Hold to CLK	TCLI1H	20		ns	2

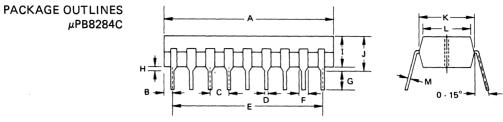
TIMING RESPONSES

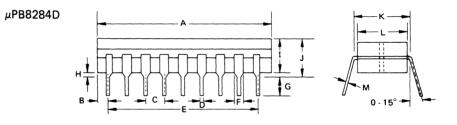
PARAMETER	SYMBOL	MIN	мах	UNITS	TEST CONDITIONS
CLK Cycle Period	TCLCL	125		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2.0		ns	Figure 3 and Figure 4
CLK Low Time	TCLCH	(2/3 TCLCL) -15.0		ns	Figure 3 and Figure 4
CLK Rise and Fall Time	TCH1CH2 TCL2CL1		10	ns	1.0V to 3.5V
PCLK High Time	TPHPL	TCLCL -20		ns	
PCLK Low Time	TPLPH	TCLCL-20		ns	
Ready Inactive to CLK ④	TRYLCL	-8		ns	Figure 5 and Figure 6
Ready Active to CLK ③	TRYHCH	(2/3 TCLCL) -15.0		ns	Figure 5 and Figure 6
CLK To Reset Delay	TCLIL		40	ns	
CLK to PCLK High Delay	TCLPH		22	ns	
CLK to PCLK Low Delay	TCLPL		22	ns	
OSC to CLK High Delay	TOLCH	-5	12	ns	
OSC to CLK Low Delay	TOLCL	2	20	ns	


Notes: (1) δ = EFI rise (5 ns max) + EFI fall (5 ns max). (2) Set up and hold only necessary to guarantee recognition at next clock. (3) Applies only to T3 and TW states. (4) Applies only to T2 states.


TIMING WAVEFORMS*

*ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.


μPB8284


3CL INCLUDES PROBE AND JIG CAPACITANCE

μPB8284

Plastic

ITEM	MILLIMETERS	INCHES		
A	23.2 MAX.	0.91 MAX.		
8	1.44	0.055		
С	2.54	0.1		
D	0.45	0.02		
E	20.32	0.8		
F	1.2	0.06		
G	2.5 MIN.	0.1 MIN.		
н	0.5 MIN.	0.02 MIN.		
1	4.6 MAX.	0.18 MAX.		
J	5.1 MAX.	0.2 MAX.		
к	7.62	0.3		
L	6.7	0.26		
M	0.25	0.01		

Cerdip					
ITEM	MILLIMETERS	INCHES			
А	23.2 MAX.	0.91 MAX.			
В	1.44	0.055			
С	2.54	0.1			
D	0.45	0.02			
E	20.32	0.8			
F	1.2	0.06			
G	2.5 MIN.	0.1 MIN.			
н	0.5 MIN.	0.02 MIN.			
1	4.6 MAX.	0.18 MAX.			
J	5.1 MAX.	0.2 MAX.			
к	7.62	0.3			
L	6.7	0.26			
M	0.25	0.01			

9