NEC Microcomputers, Inc.

4096 × 1 STATIC NMOS RAM

DESCRIPTION The μ PD4104 is a high performance 4K static RAM. Organized as 4096 x 1, it uses a combination of static storage cells with dynamic input/output circuitry to achieve high speed and low power in the same device. Utilizing NMOS technology, the μ PD4104 is fully TTL compatible and operates with a single +5V ± 10% supply.

FEATURES `• Fast Access Time - 200 ns (µPD4104-2)

- Very Low Stand-By Power 28 mW Max.
- Low V_{CC} Data Retention Mode to +3 Volts.
- Single +5V ±10% Supply.
- Fully TTL Compatible.
- Available in 18 Pin Plastic and Ceramic Dual-in-Line Packages.
- 3 Performance Ranges:

			s	UPPLY CURRE	NT
	ACCESS TIME	R/W CYCLE	ACTIVE	STANDBY	LOW VCC
μPD4104	300 ns	460 ns	21 mA	5 mA	5 mA
μPD4104-1	250 ns	385 ns	21 mA	5 mA	3.3 mA
μPD4104-2	200 ns	310 ns	25 mA	5 mA	3.3 mA

PIN NAMES

A0-A11	Address Inputs
CE	Chip Enable
D _{IN}	Data Input
^D оит	Data Output
v _{ss}	Ground
v _{cc}	Power (+5V)
WE	Write Enable

Rev/2

μPD4104

Operating Temperature	 	 	 	 	 0°C to +70°C
Storage Temperature	 	 	 	 	 65°C to +150°C
Voltage on Any Pin	 	 	 	 	 1 to +7 Volts ①
Power Dissipation	 	 	 	 	 1 Watt
Short Circuit Output Current	 	 	 	 	 50 mA

ABSOLUTE MAXIMUM **BATINGS***

Note: 1 With respect to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*Ta = 25°C

 $T_a = 0^{\circ}C$ to +70°C, $V_{CC} = +5V \pm 10\%$

				LIMITS			TEST
PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Supply Voltage		Vcc	4.5	5.0	5.5	v	
Logic "1" Voltage All Input	is	VIH	2.2	-3	7.0	v	0
Logic "0" Voltage All Input	s	VIL	-1.0		0.8	v	
	μPD4104	ICC1			21	mA	
Average VCC	µPD4104-1	ICC1			21	mA	
Current	µPD4104-2	ICC1			25	mA	
Standby V _{CC} Power Supply	Current	ICC2			5	mA	3
Input Leakage Current (Any	/ Input)	հե	-10		10	μA	(4)
Output Leakage Current		IOL	-10		10	μA	35
Output Logic "1" Voltage IOUT -500 µA		∨он	2.4			V	
Output Logic "0" Voltage I	OUT 5mA	VOL			0.4	v	

DC CHARACTERISTICS ① ⑥

CAPACI	TANCE	1
--------	-------	---

			Enviri 15			
PARAMETER	SYMBOL	MIN	түр	МАХ	UNIT	TEST CONDITIONS
Input Capacitance	CIN		4	6	pF	\bigcirc
Output Capacitance	COUT		6	7	ρF	0

LIMITS

Notes: 1 All voltages referenced to VSS

2 ICC1 is related to precharge and cycle times. Guaranteed maximum values for ICC1 may be calculated by

 $|CC1| ma| = (5t_p + 13 (t_C - t_p) + 3420) t_C$

where tp and tc are expressed in nanoseconds. Equation is referenced to the -2 device, other devices derate to the same curve.

3 Output is disabled (open circuit), CE is at logic 1.

(4) All device pins at 0 volts except pin under test at 0. V_{IN} = 5.5 volts.

(5) $0V \le V_{OUT} \le +5.5V$.

- (6) During power up, \overrightarrow{CE} and \overrightarrow{WE} must be at VIH for minimum of 2 ms after V_{CC} reaches
- 4.5V, before a valid memory cycle can be accomplished. (7) Effective capacitance calculated from the equation C $-1 \frac{\Delta t}{\Delta V}$ with ΔV equal to 3V and VCC nominal.

AC CHARACTERISTICS 2 7

Та	= 0° (to	+70°(с,	Vcc	=	+5V	t	10% (1)
----	--------	----	-------	----	-----	---	-----	---	--------	---

		LIMITS							
		41	04	41	04-1	4104-2			TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
Read or Write Cycle Time	tC	460		385		310		ns	8
Random Access	^t AC		300		250		200	ns	3
Chip Enable Pulse Width	^t CE	300	10,000	250	10,000	200	10,000	ns	
Chip Enable Precharge Time	tp	150		125		100		ns	
Address Hold Time	tAH	165		135		110		ns	
Address Set-Up Time	tAS	0		0		0		ns	
Output Buffer Turn-Off Delay	^t OFF	0	75	0	65	0	50	ns	9
Read Command Set-Up Time	tRS	0		0		0		ns	4
Write Enable Set-Up Time	tws	-20		-20		-20		ns	4
Data Input Hol <u>d T</u> ime Referenced to WE	tон	25		25		25		ns	
Write Enabled Pulse Width	tww	90		75		60		ns	
Modify Time	tMOD	0	10,000	0	10,000	0	10,000	ns	5
WE to CE Precharge Lead Time	tWPL	105		85		70		ns	6
Data Input Set-Up Time	^t DS	0		0		0		ns	
Write Enable Hold Time	twH	225		185		150		ns	
Transition Time	۲T	5	50	5	50	5	50	ns	
Read-Modify-Write Cycle Time	tRMW	565		470		380		ns	10

3

Notes: 1 All voltages referenced to VSS

- ② During power up, CE and WE must be at V_{IH} for minimum of 2 ms after V_{CC} reaches 4.5V, before a valid memory cycle can be accomplished.
- ③ Measured with load circuit equivalent to 2 TTL loads and CL = 100 pF.
- (4) If \overline{WE} follows \overline{CE} by more than t_{WS} then data out may not remain open circuited.
- ⑤ Determined by user. Total cycle time cannot exceed tCE max.
- 6 Data-in set-up time is referenced to the later of the two falling clock edges CE or WE.
- O AC measurements assume t_T = 5 ns. Timing points are taken as V_{IL} = 0.8V and V_{IH} = 2.2V on the inputs and V_{OL} = 0.4V and V_{OH} = 2.4V on the output waveform.
- (8) t_C = t_{CE} + t_P + 2 t_T.
- $\ensuremath{\textcircled{0}}$ The true level of the output in the open circuit condition will be determined totally by output load conditions. The output is guaranteed to be open circuit within tOFF.
- (10) tRMW = tAC + tWPL + tP + 3 tT + tMOD.

STANDBY T_a = 0°C to +70°C CHARACTERISTICS

		LIMITS							
		41	04	4104-1		4104-2			TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
V _{CC} In Standby	VPD	3.0		3.0		3.0		v	
Standby Current	IPD		5.0		3.3		3,3	mA	0
Power Supply Fall Time	TF	100		100		100		μs	
Power Supply Rise Time	TR	100		100		100		μs	
Chip Enable Pulse CE Width	TCE	300		250		200		μs	
Chip Enable Precharge to Power Down Time	TPPD	150		125		100		ns	
"I" Level CE Min Level	VIH	2.2		2.2		2.2		v	
Standby Recovery Time	TRC	500		500		500		μs	

Note: (1) Maximum value for V_{PD} minimum value (= 3 V).

TIMING WAVEFORMS

POWER DOWN

μ PD4104

WRITE CYCLE

READ-MODIFY-WRITE CYCLE

TIMING WAVEFORMS (CONT.)

OPERATIONAL

DESCRIPTION

READ CYCLE

The selection of one of the possible 4096 bits is made by virtue of the 12 address bits presented at the inputs. These are latched into the chip by the negative going edge of chip enable (\overline{CE}). If the write enable (\overline{WE}) input is held at a high level (VIH) while the CE input is clocked to a low level (VII), a read operation will be performed. At the access time $(t \Delta C)$, valid data will appear at the output. Since the output is unlatched by a positive transition of \overline{CE} , it will be in the high impedance state from the previous cycle until the access time. It will go to the high impedance state again at the end of the current cycle when CE goes high.

The address lines may be set up for the next cycle any time after the address hold time has been satisfied for the current cycle.

WRITE CYCLE

Data to be written into a selected cell is latched into the chip by the later negative transition of \overline{CE} or \overline{WE} . If \overline{WE} is brought low before \overline{CE} , the cycle is an "Early Write" cycle, and data will be latched by CE. If CE is brought low before WE, as in a Read-Modify-Write cycle, then data will be latched by WE.

If the cycle is an "Early Write" cycle, the output will remain in the high impedance state. For a Read-Modify-Write cycle; the output will be active for the Modify and Write portions of the memory cycle until \overline{CE} goes high. If \overline{WE} is brought low after \overline{CE} but before the access time, the state of the output will be undefined. The desired data will be written into the cell if data in is valid on the leading edge of \overline{WE} , to μ is satisfied. and \overline{WE} occurs prior to \overline{CE} going high by at least the minimum lead time (twp).

READ-MODIFY-WRITE

Read and Write cycles can be combined to allow reading of a selected location and then modifying that data within the same memory cycle. Data is read at the access time and modified during a period defined by the user. New data is written between WE low and the positive transition of \overline{CE} . Data out will remain valid until the rising edge of \overline{CE} . A minimum R-M-W cycle time can be calculated by tRMW = tAC + tMOD + tWPI + tP + 3 tT; where tRMW is the cycle time, tAC is the access time, tMOD is the user defined modify time, twp is the \overline{WE} to \overline{CE} lead time, tp is the \overline{CE} high time, and tT is one transition time.

POWER DOWN MODE

In power down, data may be retained indefinitely by maintaining V_{CC} at +3V. However, prior to V_{CC} going below V_{CC} minimum (≤4.5V) CE must be taken high $(V_{IH} = 2.2V)$ and held for a minimum time period tppp and maintained at V_{IH} for the entire standby period. After power is returned to VCC min or above, CE must be held high for a minimum of tRC in order that the device may operate properly. See power down waveforms herein. Any active cycle in progress prior to power down must be completed so that tCE min is not violated.

PACKAGE OUTLINES µPD4104C

μPD4104D

Disctio	
riastic	

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
В	1.44	0.055
С	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN.
н	0.5 MIN.	0.02 MIN.
1	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
к	7.62	0.3
L	6.7	0.26
м	0.25	0.01

Cerdip

ITEM	MILLIMETERS	INCHES
Α	23.2 MAX.	0.91 MAX.
8	1.44	0.055
· C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2,5 MIN.	0.1 MIN.
н	0.5 MIN.	0.02 MIN.
1	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
ĸ	7.62	0.3
L	6.7	0.26
M	0.25	0.01

4104DS-9-80-CAT