CMOS-6/6A/6V/6X 1.0-MICRON CMOS GATE ARRAYS **April 1992** ## **Description** NEC's CMOS-6 gate array families (CMOS-6, CMOS-6A, CMOS-6V and CMOS-6X) are ultra-high performance, sub-micron effective channel length CMOS products created for high-integration ASIC applications. The device processing includes 1.0-micron (drawn) silicon-gate CMOS technology and three-layer (CMOS-6) and two-layer (CMOS-6A, CMOS-6V, CMOS-6V) metallization. This technology features channelless (sea-of-gates) architecture in densities from 1,200 to 177,408 equivalent gates, with an internal gate delay of 270 ps (F/O=1; L = 0). Output drive is variable to 18 mA. Slew rate buffers are also available. CMOS-6 products are fully supported by NEC's advanced ASIC design technology. NEC's OpenCAD® integration system lets the designer choose the most powerful design tools and services available. The CMOS-6/6A/6V macro cell (block) library is compatible with the powerful CMOS-5 block library, which contain over 300 cells and more than 100 interface options. NEC offers advanced packaging solutions with both through-hole and surface-mount ceramic PGAs and flat packages. These heat-sink-equipped packages give CMOS-6 devices the performance edge in high-integration applications. ## **Features** - □ Channelless, 1.µm CMOS high-density architecture - □ Variable output drive: 4.5, 9.0, 13.5, or 18.0 mA - Slew rate output buffers - Free size memory blocks to 64 Kbytes (16K x 4, μPD65676) - □ Powerful block library with more than 400 macros - 3V characterized block library - New 0.65 mm 184-pin plastic QFP for cost effective designs - ☐ High I/O to gate ratio for CMOS-6V and CMOS-6X #### **Publications** This data sheet contains preliminary specifications, package information, and operational data for the CMOS-6 gate array families. Additional design information is available in NEC's CMOS-6 Block Library and CMOS-6 Design Manual. Contact your local NEC Design Center or the NEC Literature Center for further ASIC design information; see the back of this data sheet for locations and phone numbers. OpenCAD is a registered trademark of NEC Electronics Inc. 70020-5 Figure 1. Sample CMOS-6/6A/6V/6X Packages # **Gate Array Sizes** | | | Estimated | | | |----------------|-----------|------------|-------------|--------------| | Device | Available | • | Design = | I/O Pads | | (μ PD) | Gates | 50% Memory | All Random* | (Max.) | | CMOS-6 | X Devices | | | | | 65612 | 1,200 | 1,000 | 800 | 64 | | 65622 | 2,700 | 2,300 | 1,900 | 84 | | 65626 | 3,900 | 3,300 | 2,700 | 104 | | 65632 | 5,600 | 3,900 | 3,900 | 104 | | CMOS-6 | A Devices | | | · | | 65630 | 5,376 | 4,600 | 3,800 | 84 | | 65636 | 8,000 | 6,800 | 5,600 | 100 | | 65640 | 11,520 | 9,800 | 8,100 | 120 | | 65646 | 16,240 | 13,800 | 11,400 | 140 | | 65650 | 21,120 | 18,000 | 14,800 | 160 | | 65654 | 30,720 | 26,100 | 21,500 | 192 | | CMOS-6 | V Devices | | | | | 65631 | 5,544 | 4,700 | 3,900 | 140 | | 65641 | 11,520 | 9,800 | 8,100 | 160 | | 65644 | 14,040 | 11,900 | 9,800 | 160 | | 65647 | 16,240 | 13,800 | 11,400 | 160 | | 65648 | 18,600 | 15,800 | 13,000 | 160 | | 65651 | 21,120 | 18,000 | 14,800 | 220 | | 65652 | 26,640 | 22,600 | 18,600 | 220 | | 65655 | 30,720 | 26,100 | 21,500 | , 220 | | CMOS-6 | Devices | | | | | 65658 | 42,240 | 37,000 | 21,700 | 220 | | 65664 | 72,576 | 63,500 | 54,400 | 288 | | 65672 | 119,232 | 104,300 | 89,400 | 368 | | 65676 | 177,408 | 155,200 | 133,100 | 448 | | | | | | | Actual gate utilitization may vary depending on circuit implementation. Utilization is 75% for three-layer metal; 70% for two-layer metal. Memory utilization is determined by 50% x available gates + (utilization x 50% available gates) Depending on package and circuit specification Datasheet 4U.com #### **Circuit Architecture** CMOS-6 products are built with NEC's 1-micron channelless architecture. As shown in figure 2, CMOS gate array chips are divided into I/O and internal cell areas. The I/O cell area contains input and output buffers that isolate the internal cells from high-energy external signals. The internal cell area is an array of basic cells, each composed of two p-channel MOS transistors and two n-channel MOS transistors, as well as four additional n-channel MOS transistors for compact RAM design. A cell configured as a two-input NAND gate is shown in figure 3. These p-channel and n-channel transistors are sized to offer a superb ratio of speed to silicon area. Figure 2. Chip Layout and Internal Cell Configuration Figure 3. Cell Configured as a Two-Input NAND ## **Output Slew Rate Selection** Fast rise and fall times of CMOS output buffers can cause system noise and signal overshoot. When an unterminated line is being driven by a buffer, the maximum line length is determined by the rise and fall time of the output buffers and the round-trip signal delay of the line. As a general rule, the round-trip delay of the line should not exceed the rise or fall time of the driving signal. Transmission lines that are longer than those determined by the above rule can cause system performance degradation because of reflections and ringing. One benefit of slew rate output buffers is that longer interconnections on a PC board (and routing flexibility) are possible with slew rate output buffers. The ASIC designer can slow down the output edge rate by selecting the slew rate output buffer and thus allowing for a longer line. Also, as the slew rate buffers inject less noise than their non-slew rate counterparts into the internal power and ground busses of the devices, the slew rate buffers require fewer power pairs for simultaneous switching outputs. # **Absolute Maximum Ratings** | Power supply voltage, V _{DD} | -0.5 to +6.5 \ | | | | | |---|-----------------------------------|--|--|--|--| | Input/output voltage, V _I / V _O | -0.5 V to V _{DD} + 0.5 V | | | | | | Latch-up current, I _{LATCH} | >1 A (typ) | | | | | | Output current, I _O | | | | | | | 4.5-mA drive | 10 mA | | | | | | 9-mA drive | 20 mA | | | | | | 13.5-mA drive | 30 mA | | | | | | 18-mA drive | 40 mA | | | | | | Operating temperature, T _{OPT} | −40 to +85°C | | | | | | Storage temperature, T _{STG} | −65 to +150°C | | | | | **Caution:** Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions. # Input/Output Capacitance $V_{DD} = V_{I} = 0 \text{ V}; f = 1 \text{ MHz}$ | Terminal | Symbol | Тур | Max | Unit | |----------|------------------|-----|-----|------| | Input | C _{IN} | 10 | 25 | pF | | Output | C _{OUT} | 10 | 25 | pF | | I/O | C _{I/O} | 10 | 25 | pF | #### Note: (1) Values include package pin capacitance. # **Power Consumption** | Description | Limits (max) | Unit | Test Conditions | | | | | |---------------|--------------|----------------|------------------------|--|--|--|--| | Internal cell | 8 | μW/MHz | F/O = 3; L = 3 mm | | | | | | Input block | 46 | μ W/MHz | F/O = 3; L = 3 mm | | | | | | Output block | .98 | mW/MHz | C ₁ = 15 pF | | | | | # **Recommended Operating Conditions** | | | CMOS | Level | TTL | | | |----------------------------------|---------------------------------|---------------------|---------------------|------|-----------------|------| | Parameter | Symbol | Min | Max | Min | Max | Unit | | Power supply voltage | V _{DD} | 4.5 | 5.5 | 4.75 | 5.25 | V | | Ambient temperature | T _A | -40 | +85 | 0 | +70 | °C | | Low-level input voltage | V _{IL} | 0 | 0.3 V _{DD} | 0 | 0.8 | V | | High-level input voltage | V _{IH} | 0.7 V _{DD} | V _{DD} | 2.2 | V _{DD} | V | | Input rise or fall time | t _R , t _F | 0 | 200 | 0 | 200 | ns | | Input rise or fall time, Schmitt | t _R , t _F | 0 | 10 | 0 | 10 | ms | | Positive Schmitt-trigger voltage | V _P | 1.8 | 4.0 | 1.2 | 2.4 | V | | Negative Schmitt-trigger voltage | V _N | 0.6 | 3.1 | 0.6 | 1.8 | V | | Hysteresis voltage | V _H | 0.3 | 1.5 | 0.3 | 1.5 | ٧ | ## **AC Characteristics** $V_{DD} = 5 \text{ V} \pm 10\%$; $T_{\Delta} = -40 \text{ to } +85^{\circ}\text{C}$ | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |-------------------------------|------------------|-----|------|-----|------|------------------------| | Toggle frequency | f _{TOG} | 120 | | | MHz | D-F/F; F/O = 2 | | Delay time, internal gate | t _{PD} | | 270 | | ps | F/O = 1; L = 0 mm | | Delay time, 2-input NAND gate | | | 700 | | ps | F/O = 3; L = 3 mm | | Delay time, buffer | | | | | | | | Input (FI01) | t _{PD} | | 1.25 | | ns | F/O = 3; L = 3 mm | | Output (FO01) | t _{PD} | | 2.0 | | ns | C _L = 15 pF | | Output rise time | t _R | | 3.0 | | ns | C _L = 15 pF | | Output fall time | t _E | | 2.0 | | ns | C _L = 15 pF | # **CMOS-6/6A/6V/6X** ## **DC Characteristics** $V_{DD} = 5 \text{ V} \pm 10\%; \ \text{T}_{A} = -40 \text{ to } +85 \ ^{\circ}\text{C}$ | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |---|-----------------|----------------------|------------------|------|--------------|--| | Quiescent current (Note 1) | ار | | 0.1 | 400 | μА | V _I = V _{DD} or GND | | Input leakage current | | | | | | *** | | Regular | 1, | | 10 ⁻⁵ | 10 | μΑ | $V_{I} = V_{DD}$ or GND | | 50 kΩ pull-up | 1, | -40 | -100 | -270 | μΑ | V _I = GND | | 5 kΩ pull-up | I ₁ | -0.35 | -1.0 | -2.2 | mA | V _I = GND | | 50 kΩ pull-down | I ₁ | 45 | 120 | 300 | μΑ | $V_I = V_{DD}$ | | Off-state output leakage current | l _{oz} | | | 10 | μΑ | $V_O = V_{DD}$ or GND | | Input clamp voltage | V _{IC} | -1.2 | - | | V | I _I = 18 mA | | Output short circuit current (Note 2) | los | -250 | | | mA | V _O = 0 V | | Low-level output current (CMOS) | | | | | | | | 4.5 mA (Note 3) | l _{oL} | 4.5 | | | mA | V _{OL} = 0.4 V | | 9 mA (Note 3) | I _{OL} | 9.0 | | | mA | V _{OL} = 0.4 V | |
13.5 mA (Note 3) | l _{oL} | 13.5 | | | mA | V _{OL} = 0.4 V | | 18 mA (Note 3) | l _{oL} | 18.0 | | | mA | V _{OL} = 0.4 V | | High-level output current (CMOS) | | | - | | | - | | 4.5 mA (Note 3) | I _{OH} | -2.5 | | | mA | $V_{OH} = V_{DD} - 0.4 V$ | | 9 mA (Note 3) | I _{OH} | -5.0 | | | mA | V _{OH} = V _{DD} -0.4 V | | 13.5 mA (Note 3) | I _{OH} | -7.5 | | | mA | $V_{OH} = V_{DD} - 0.4 V$ | | 18 mA (Note 3) | I _{OH} | -10.0 | | | mA | V _{OH} = V _{DD} -0.4 V | | Low-level output current (TTL) | | | | | | | | 9 mA (Note 4) | l _{OL} | 9.0 | | | mA | V _{OL} = 0.4 V | | 18 mA (Note 4) | l _{OL} | 18.0 | | | mA | V _{OL} = 0.4 V | | High-level output current (TTL) | | | | | | | | 9 mA (Note 4) | l _{oh} | -0.5 | | | mA | V _{OH} = 2.4 V | | 18 mA (Note 4) | l _{oh} | -1.0 | | | mA | V _{OH} = 2.4 V | | Low-level output voltage | V _{OL} | · | | 0.1 | V | I _{OL} = 0 mA | | High-level output voltage (CMOS) (Note 3) | V _{OH} | V _{DD} -0.1 | | | ٧ | 1 _{OH} = 0 mA | | High-level output voltage (TTL) (Note 4) | V _{OH} | 2.6 | 3.4 | | V | I _{OH} = 0 mA | ### Notes: - (1) The maximum value reflects the use of pull-up/pull-down resistors and oscillator blocks. Contact an NEC ASIC Design Center for assistance - (2) Rating is for only one output operating in this mode for less than 1 second. - $\begin{array}{ll} \hbox{(3)} & \hbox{CMOS-level output buffer (V}_{DD} = 5 \ V \pm 10\%, \ T_A = -40 \ to \ +85 ^{\circ} C). \\ \hbox{(4)} & \hbox{TTL-level output buffer (V}_{DD} = 5 \ V \pm 5\%, \ T_A = 0 \ to \ +70 ^{\circ} C). \\ \end{array}$ # Package Plan | | | CMC
µPD | | | | | MO
PD6 | | | | | | | | S-6\
65xx | | | | | CM
μPD | OS-(
65x) | | |--|-----------|-------------|-------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|--------|--------|--------------|--------|--------|------|-------------|-------------|----------------|--------------------------| | | 612 | 622 | 626 | 632 | 630 | 636 | 640 | 646 | 650 | 654 | 631 | 641 | 644 | 647 | 648 | 651 | 652 | 655 | 658 | 664 | 672 | 676 | | K gates (usable w/o memory) | 0.8 | 1.9 | 2.7 | 3.9 | 3.8 | 5.6 | 8.1 | 11.4 | 14.8 | 21.5 | 3.9 | 8.1 | 9.8 | 11.4 | 13.0 | 14.8 | 3 18.6 | 21.5 | 21.7 | 54.4 | 89.4 | 133 | | Maximum I/O Pins | 64 | 84 | 104 | 104 | 84 | 100 | 120 | 140 | 160 | 192 | 140 | 160 | 160 | 160 | 160 | 220 | 220 | 220 | 220 | 288 | 368 | 448 | | Plastic Quad Flatpack (QFP) | 44-pin
52-pin
64-pin | A
A | A
A
A | A
A
A | | A
A
A | A
A
A | A
A
A | A
A
A | A
A
A | A
A
A | | | | | | | | | | | | | | 80-pin
100-pin
120-pin
136-pin
160-pin | | | | | ^ | A | A
A | A
A
A | A
A
A | A
A
A | A
A
E | A
A | A
A | Α | А | | | | A
A
A | A
A
A | A
A | Α | | 184-pin | | | | | | | | | | Α | | | | | | Α | Α | | А | Α | Α | A | | Thin Quad Flatpack (TQFP) | 80-pin | | | Α | Shrink Plastic Quad Flatpack (QFF | P-FP) (| (.5 m | ım L | ead Pi | tch) | | | | | | | | | | | | | | | | | | | 100-pin
120-pin
136-pin
144-pin | | | | | | Α | A | A
A | A
A | A
A
A | A
A
E | Α | Α | | | | | | A
A | A
A | A
A | | | 160-pin*
176-pin
208-pin*
304-pin | | | | | | | | | A
A | A
A | | A
A | A
A | A
A | A
A | A
A | A
A | Α | A
A
A | A
A
E | A
A
E | A
A
E | | Ceramic Pin Grid Array (PGA) | 72-pin
132-pin
176-pin
208-pin | | | | | | | Α | A | A
A | A
A
A | Α | Α | | | | Α | Α | | A
A
A | A
A
A | A
A
A | A
A
A | | 280-pin
364-pin | Α | A
A | A
A | | Ceramic Pin Grid Array (PGA) (Bu | ıtt Lead |) | 288-pin
528-pin (with heat sink)
528-pin (without heat sink) | A ¹ | A ¹
A
A | | Plastic Leaded Chip Carrier (PLCC | C) | 68-pin
84-pin | | | • | | | | | | | | | | | | | | | | A
A | | | | | A - Available | | | | - | | | | | | | | | | | | | | | | | | | A = Available **NOTE:** NEC reserves the right to alter the package plan based on the results of qualification. For current package availability, please contact your local NEC Design Center. A1= Need advanced notice E = Under Evaluation ^{* =} Heat spreader under evaluation ## 184-Pin (0.65 mm) Plastic QFP The new 184-pin 0.65 mm QFP shown above is ideal for PC integrated chipsets. The package is available with a copper leadframe thereby allowing greater heat dissipation than standard 42 alloy leadframe packages. The 0.65 mm pin pitch allows the use of widely available, cost effective assembly equipment. It is currently available in two masterslices. The $\mu PD65658$ with 25,344 usable gates and the $\mu PD65664$ with 43,545 usable gates. ## Typical Package Marking ## **NEC's ASIC Design System** CMOS-6/6A/6V gate arrays are fully supported by NEC's network of ASIC Design Centers, listed on the back of this data sheet. Design flow for CMOS-6/6A/6V gate arrays is shown in figure 4. Users can enlist Design Center support at any step in the design flow before actual manufacturing. Figure 4 shows the various levels at which Design Center support may begin — anywhere from level A through level E. Level C, "Verified Netlist," is the most popular interface. NEC supports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semicustom devices. NEC's OpenCAD integration system supports tools for floorplanning, logic synthesis, automatic test generation, accelerated fault grading and full timing simulation, and advanced place-and-route algorithms. These advanced CAD tools ensure accurate designs. Sample design kits are available at no charge to qualified users: contact an NEC ASIC Design Center for more information. (Software licensing required—NEC reserves the right to prioritize support based on user requirements.) Figure 4. Gate Array Design Flow - (1) NEC supports the most popular workstations, including Mentor Graphics, Valid, DAZIX®, FutureNet, Viewlogic®, and HP9000 workstations, for the NEC ASIC product line. However, NEC does not support all workstations for all products. Please contact your nearest NEC ASIC Design Center for more information. - (2) NEC provides support of System HILO®, Verilog®, and MACH 1000/1500™ interface capability. DAZIX is a registered trademark of DAZIX Daisy / Cadnetix Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. System HILO is a registered trademark of GenRad. Verilog is a registered trademark of Cadence Design Systems, Inc. MACH 1000 and MACH 1500 are trademarks of Zycad Corp. # **Block Library List** The CMOS-6 families offer a variety of blocks, including gates, flip-flop circuits, and shift registers. The functions of these blocks are designed to be compatible with those of the CMOS-4 and CMOS-5 families. In addition, such memory blocks as RAM and ROM and low-power gates are provided. The low-power block, in particular, was designed with low fan-out taken into consideration; the number of cells is less than that of the standard block, contributing to low power consumption and high efficiency. | ight eniciency. | | | |--|---
--| | k List | | | | Description | I _{OL}
(mA) | Cells | | Interface Blocks | | | | | | | | Input buffer, CMOS in Input buffer, CMOS in, 50 k Ω pull-down res. Input buffer, CMOS in, 50 k Ω pull-up res. Input buffer, CMOS in, 5 k Ω pull-up res. | -
-
- | 1 (3)
1 (3)
1 (3)
1 (3) | | Input buffer, TTL in Input buffer, TTL in, 50 k Ω pull-down res. Input buffer, TTL in, 50 k Ω pull-up res. Input buffer, TTL in, 5 k Ω pull-up res. | -
-
- | 1 (3)
1 (3)
1 (3)
1 (3) | | Input buffer, CMOS in, high fanout for clock driver Input buffer, TTL in, high fanout for clock driver Input buffer, CMOS Schmitt in, 50 k Ω pull-down re Input buffer, CMOS Schmitt in | -
-
S
- | 1 (24)
1 (24)
1 (6)
1 (6) | | Input buffer, CMOS Schmitt in, 50 k Ω pull-up res. Input buffer, CMOS Schmitt in, 5 k Ω pull-up res. Input buffer, TTL Schmitt in, 50 k Ω pull-down res. Input buffer, TTL Schmitt in | - | 1 (6)
1 (6)
1 (6)
1 (6) | | Input buffer, TTL Schmitt in, 50 k Ω pull-up res. Input buffer, TTL Schmitt in, 5 k Ω pull-up res. | - | 1 (6)
1 (6) | | d's | | | | Output buffer, CMOS out Output buffer, CMOS out Output buffer, CMOS out Output buffer, CMOS out | 9.0
13.5
18.0
4.5 | 1 (2)
1 (4)
1 (4)
1 (2) | | Output buffer, TTL out Output buffer, TTL out Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, $0 \text{ k}\Omega$ pull-down res. | 9.0
18.0
13.5
13.5 | 1 (4)
2 (6)
1 (6)
1 (6) | | Output buffer, CMOS 3-state out, 50 k Ω pull-up res. Output buffer, CMOS 3-state out, 5 k Ω pull-up res. Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, 50 k Ω pull-down res. | 13.5
13.5
9.0
9.0 | 1 (6)
1 (6)
1 (5)
1 (5) | | | Input buffer, CMOS in Input buffer, CMOS in, 50 kΩ pull-down res. Input buffer, CMOS in, 50 kΩ pull-up res. Input buffer, CMOS in, 50 kΩ pull-up res. Input buffer, CMOS in, 50 kΩ pull-up res. Input buffer, TTL in, in, high fanout for clock driver Input buffer, CMOS in, high fanout for clock driver Input buffer, CMOS Schmitt in, 50 kΩ pull-down res. Input buffer, CMOS Schmitt in, 50 kΩ pull-up res. Input buffer, CMOS Schmitt in, 50 kΩ pull-up res. Input buffer, CMOS Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL OMOS out Output buffer, CMOS out Output buffer, CMOS out Output buffer, CMOS out Output buffer, CMOS 3-state out Output buffer, TTL out Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. Output buffer, CMOS 3-state out, 50 kΩ pull-up res. | Input buffer, CMOS in 50 kΩ pull-up res. Input buffer, CMOS in, 50 kΩ pull-up res. Input buffer, TTL CMOS in, high fanout for clock driver Input buffer, CMOS Schmitt in, 50 kΩ pull-down res. Input buffer, CMOS Schmitt in, 50 kΩ pull-up res. Input buffer, CMOS Schmitt in, 50 kΩ pull-up res. Input buffer, CMOS Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, TTL Schmitt in, 50 kΩ pull-up res. Input buffer, CMOS out 3-state out Input buffer, CMOS 3-state out Input buffer, CMOS 3-state out, buf | | Block
Name | Description | I _{OL}
(mA) | Cells | |------------------------------|--|------------------------------|-------------------------------------| | Output | s (Cont.) | | | | B0U9 | Output buffer, CMOS 3-state out, 50 k Ω pull-up res. | 18.0 | 1 (6) | | B0W9 | Output buffer, CMOS 3-state out, $5 \text{ k}\Omega$ pull-up res. | 18.0 | 1 (6) | | B00E
B0DE | Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, 50 k Ω pull-down res. | 4.5
4.5 | 1 (5)
1 (5) | | BOUE
BOWE
BT08
BTU8 | Output buffer, CMOS 3-state out, 50 k Ω pull-up reduction buffer, CMOS 3-state out, 5 k Ω pull-up reduction buffer, TTL 3-state out Output buffer, TTL 3-state out, 50 k Ω pull-up res. | | 1 (5)
1 (5)
1 (6)
1 (6) | | BTW8
BT09
BTU9
BTW9 | Output buffer, TTL 3-state out, 50 k Ω pull-up res. Output buffer, TTL 3-state out Output buffer, TTL 3-state out, 50 k Ω pull-up res. Output buffer, TTL 3-state out, 50 k Ω pull-up res. | 9.0
18.0
18.0
18.0 | 1 (6)
2 (12)
2 (12)
2 (12) | | EXT1
EXT3
EXW3
EXT2 | Output buffer, N-ch open drain Output buffer, N-ch open drain, 50 k Ω pull-up res. Output buffer, N-ch open drain, 5 k Ω pull-up res. Output buffer, P-ch open drain | 9.0
9.0
9.0
*9.0 | 1 (2)
1 (2)
1 (2)
1 (2) | | EXT4
EXT5
EXT7
EXW7 | Output buffer, P-ch open drain, 50 k Ω pull-up res. Output buffer, N-ch open drain, 50 k Ω pull-up res. Output buffer, N-ch open drain, 50 k Ω pull-up res. Output buffer, N-ch open drain, 5 k Ω pull-up res. | *9.0
18.0
18.0
18.0 | 1 (2)
1 (2)
1 (2)
1 (2) | | EXT6
EXT8 | Output buffer, P-ch open drain, 50 k Ω pull-up res. Output buffer, P-ch open drain, 50 k Ω pull-down res. | *18.0
*18.0 | 1 (2)
1 (2) | | EXT9
EXTB | Output buffer, N-ch open drain Output buffer, N-ch open drain, 50 k Ω pull-up res. | 13.5
13.5 | 1 (2)
1 (2) | | EXWB | Output buffer, N-ch open drain, 5 k Ω pull-up res. | 13.5 | 1 (2) | | | ates I _{OH} | | | | I/O Buf
B001
B0D1 | I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out, | 13.5
13.5 | 1 (9)
1 (9) | | B0U1 | 50 kΩ pull-down res. I/O buffer, CMOS in, CMOS 3-state out, | 13.5 | 1 (9) | | B0W1 | 50 k Ω pull-up res. I/O buffer, CMOS in, CMOS 3-state out, 5 k Ω pull-up res. | 13.5 | 1 (9) | | B002
B0D2 | I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out, 50 k Ω pull-down res. | 13.5
13.5 | 1 (9)
1 (9) | | B0U2 | I/O buffer, TTL in, CMOS 3-state out, $50 \text{ k}\Omega$ pull-up res. | 13.5 | 1 (9) | | B0W2 | I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res. | 13.5 | 1 (9) | | B003
B0D3 | I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out, 50 k Ω pull-down res. | 9.0
9.0 | 1 (8)
1 (8) | | B0U3 | I/O buffer, CMOS in, CMOS 3-state out, 50 kΩ pull-up res. | 9.0 | 1 (8) | | B0W3 | $1/O$ buffer, CMOS in, CMOS 3-state out, $5 \text{ k}\Omega$ pull-up res. | 9.0 | 1 (8) | | B004
B0D4 | I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out, 50 k Ω pull-down res. | 9.0
9.0 | 1 (8)
1 (8) | | B0U4 | I/O buffer, TTL in, CMOS 3-state out, 50 kΩ pull-up res. | 9.0 | 1 (8) | | B0W4 | I/O
buffer, TTL in, CMOS out, 5 k Ω pull-up res. | 9.0 | 1 (8) | Note: Number of internal cells required is shown in parentheses. B0W8 Output buffer, CMOS 3-state out, 5 kΩ pull-up res. 9.0 Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, 50 k Ω pull-down res. Output buffer, CMOS 3-state out, 50 k Ω pull-up res. 9.0 1 (5) 1 (5) 18.0 1 (6) 18.0 1 (6) B009 B0D9 | Block
Name | Description | l _{OL}
(mÅ) | Cells | Block
Name | Description | I _{OL}
(mA) | Cells | |---------------|--|-------------------------|------------------|---------------|--|-------------------------|------------------| | | Interface Blocks (Cont.) | | | | Interface Blocks (Cont.) | | | | /O Buf | fers (Cont.) | | | I/O Buf | fers (Cont.) | | | | B005 | I/O buffer, CMOS in, CMOS 3-state out | 18.0
18.0 | 1 (9)
1 (9) | BSD4 | I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res. | 9.0 | 1 (11) | | | I/O buffer, CMOS in, CMOS 3-state out,
50 kΩ pull-down res.
I/O buffer, CMOS in, CMOS 3-state out, | 18.0 | 1 (9) | BSI4
BSU4 | I/O buffer, TTL Schmitt in, CMOS 3-state out I/O buffer, TTL Schmitt in, CMOS 3-state out, | | 1 (11)
1 (11) | | | 50 k Ω pull-up res. I/O buffer, CMOS in, CMOS 3-state out, | 18.0 | 1 (9) | BSW4 | 50 k Ω pull-up res. I/O buffer, TTL Schmitt in, CMOS 3-state out, | 9.0 | 1 (11) | | | 5 kΩ pull-up res. | | | B0B= | $5 k\Omega$ pull-up res. | 400 | 4 (40) | | B006
B0D6 | I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out, | 18.0
18.0 | 1 (9)
1 (9) | BSD5 | 50 k Ω pull-down res. | | 1 (12) | | B0U6 | 50 k Ω pull-down res. I/O buffer, TTL in, CMOS 3-state out, | 18.0 | 1 (9) | BSI5
BSU5 | I/O buffer, CMOS Schmitt in, CMOS 3-state out I/O buffer, CMOS Schmitt in, CMOS 3-state out, $50 \text{ k}\Omega$ pull-up res. | | 1 (12)
1 (12) | | B0W6 | 50 k Ω pull-up res. I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res. | 18.0 | 1 (9) | BSW5 | I/O buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res. | 18.0 | 1 (12) | | B00A | I/O buffer, TTL in, TTL 3-state out I/O buffer, TTL in, TTL 3-state out, | 9.0
9.0 | 1 (9)
1 (9) | BSD6 | I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res. | 18.0 | 1 (12) | | | 50 k Ω pull-up res. I/O buffer, TTL in, TTL 3-state out, 5 k Ω pull-up re | | 1 (9) | BSI6
BSU6 | | | 1 (12)
1 (12) | | B00B
B0UB | I/O buffer, TTL in, TTL 3-state out I/O buffer, TTL in, TTL 3-state out, | | 2 (15)
2 (15) | BSW6 | 50 k Ω pull-up res. I/O buffer, TTL Schmitt in, CMOS 3-state out, | 18.0 | 1 (12) | | | 50 k Ω pull-up res. I/O buffer, TTL in, TTL 3-state out, 5 k Ω pull-up re | | | BSIA | 5 k Ω pull-up res. I/O buffer, TTL Schmitt in, TTL 3-state out | 9.0 | 1 (12) | | B00C | I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out, | 4.5
4.5 | 1(8)
1(8) | | I/O buffer, TTL Schmitt in, TTL 3-state out, 50 k Ω pull-up res. | | 1 (12) | | | 50 k Ω pull-down res. | | | BSWA | I/O buffer, TTL Schmitt in, TTL 3-state out, 5 kΩ pull-up res. | 9.0 | 1 (12) | | | I/O buffer, CMOS in, CMOS 3-state out, 50 k Ω pull-up res. | 4.5 | 1 (8) | BSIB | I/O buffer, TTL Schmitt in, TTL 3-state out | | 2 (18) | | | I/O buffer, CMOS in, CMOS 3-state out, 5 kΩ pull-up res. | 4.5 | 1 (8) | BSUB | I/O buffer, TTL Schmitt in, TTL 3-state out, 50 k Ω pull-up res. I/O buffer, TTL Schmitt in, TTL 3-state out, | | 2 (18) | | B00D
B0DD | I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out, | 4.5
4.5 | 1 (8)
1 (8) | | 5 k Ω pull-up res. | | . , | | B0UD | 50 k Ω pull-down res. I/O buffer, TTL in, CMOS 3-state out, | 4.5 | 1 (8) | | I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-down res. I/O buffer, CMOS Schmitt in, CMOS 3-state out | | 1 (11) | | ROWD | 50 kΩ pull-up res. I/O buffer, TTL in, CMOS 3-state out, | 4.5 | 1 (8) | BSIC | I/O buffer, CMOS Schmitt in, CMOS 3-state out, | | 1 (11)
1 (11) | | BSD1 | 5 k Ω pull-up res. I/O buffer, CMOS Schmitt in, CMOS 3-state out, | | 1 (12) | | 50 kΩ pull-up res. I/O buffer, CMOS Schmitt in, CMOS 3-state out, | | 1 (11) | | BSI1 | 50 k Ω pull-down res. I/O buffer, CMOS Schmitt in, CMOS 3-state out | 13.5 | 1 (12) | | 5 k $Ω$ pull-up res. | | , , | | BSU1 | I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-up res. | 13.5 | 1 (12) | | I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res. I/O buffer, TTL Schmitt in, CMOS 3-state out | | 1 (11) | | BSW1 | I/O buffer, CMOS Schmitt in, CMOS 3-state out, | 13.5 | 1 (12) | BSID
BSUD | | | 1 (11)
1 (11) | | BSD2 | 5 kΩ pull-up res. I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 kΩ pull-down res. | 13.5 | 1 (12) | BSWD | 50 k Ω pull-up res. I/O buffer, TTL Schmitt in, CMOS 3-state out, | 4.5 | 1 (11 | | BSI2 | I/O buffer, TTL Schmitt in, CMOS 3-state out | 13.5 | 1 (12) | | 5 k Ω pull-up res. | | | | BSU2 | I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-up res. | 13.5 | 1 (12) | | Rate Output Buffers | | | | | I/O buffer, TTL Schmitt in, CMOS 3-state out, $5 \text{ k}\Omega$ pull-up res. | 13.5 | 1 (12) | FE03
BE09 | 18 mA CMOS level slew rate output buffer 18 mA CMOS 3-state slew rate output buffer | | 1 (4
1 (5 | | | I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-down res. | | 1 (11) | BED9
BEU9 | 18 mA CMOS 3-state slew rate output buffer with 50K pull-down res. 18 mA CMOS 3-state slew rate output buffer | | 1 (5 | | BSI3 | I/O buffer, CMOS Schmitt in, CMOS 3-state out | | 1 (11) | DEUS | with 50K pull-up res. | | 1 (5 | | BSU3 | I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-up res. | | 1 (11) | BEW9 | 18 mA CMOS 3-state slew rate output buffer with 5K pull-up res. | | 1 (5 | | RSM3 | I/O buffer, CMOS Schmitt in, CMOS 3-state out, $5 \text{ k}\Omega$ pull-up res. | 9.0 | 1 (11) | BE05
BED5 | 18 mA I/O slew rate buffer (CMOS in / CMOS out) 18 mA I/O slew rate buffer (CMOS in / CMOS out) | | 1 (8
1 (8 | | Block
Name | Description | Cells | Block
Name | Description | Cells | |----------------|--|----------------|----------------------|---|-------------| | | Interface Blocks (Cont.) | | | Function Blocks - Normal Power | | | Slew F | Rate Output Buffers (Cont.) | | Inverte | | | | BEU5 | 18 mA I/O slew rate buffer (CMOS in / CMOS out) with 50K pull-up res. | 1 (8) | F101
F102
F103 | Inverter (F/O = 17) Inverter (F/O = 37) Inverter (F/O = 60) | 1
2
3 | | | 18 mA I/O slew rate buffer (CMOS in / CMOS out) with 5K pull-up res. | 1 (8) | F104
F108 | Inverter (F/O = 90) Inverter (F/O = 160) | 4 | | BE06
BED6 | 18 mA I/O slew rate buffer (TTL in / CMOS out) 18 mA I/O slew rate buffer (TTL in / CMOS out) with 50K pull-down res. | 1 (8)
1 (8) | Buffer | , | 12 | | BEU6 | 18 mA I/O slew rate buffer (TTL in / CMOS out) with 50K pull-up res. | 1 (8) | F111
F112 | Non-inverting buffer (F/O = 17)
Non-inverting buffer (F/O = 35) | 2
3 | | BEW6 | 18 mA I/O slew rate buffer (TTL in / CMOS out) | 1 (8) | F113 | Non-inverting buffer (F/O = 54) | 4 | | BFI5 | with 5K pull-up res. 18 mA Schmitt I/O slew rate buffer (CMOS in / CMOS out) | 1 (11) | F114
F118 | Non-inverting buffer ($F/O = 74$)
Non-inverting buffer ($F/O = 180$) | 5
11 | | BFD5 | (CMOS in / CMOS out) 18 mA Schmitt I/O slew rate buffer (CMOS in / CMOS out) with 50K pull-down res. | 1 (11) | NOR C | | | | BFU5 | 18 mA Schmitt I/O slew rate buffer | 1 (11) | F202
F203 | 2-input NOR
3-input NOR | 2
3 | | | (CMOS in / CMOS out) with 50K pull-up res. | , | F204 | 4-input NOR | 4 | | BFW5 | 18 mA Schmitt I/O slew rate buffer (CMOS in / CMOS out) with 5K pull-up res. | 1 (11) | F208 | 8-input NOR | 7 | | BFI6 | 18 mA Schmitt I/O slew rate buffer | 1 (11) | F222
F223 | 2-input NOR, power
3-input NOR, power | 4
6 | | BFD6 | (TTL in / CMOS out) 18 mA Schmitt I/O slew rate buffer | 1 (11) | F224 | 4-input NOR, power | 8 | | | (TTL in / CMOS out) with 50K pull-down res. | . () | OR Ga | ites | | | BFU6 | 18 mA Schmitt I/O slew rate buffer | 1 (11) | F212 | 2-input OR | 2 | | BFW6 | (TTL in / CMOS out) with 50K pull-up res. 18 mA Schmitt I/O slew rate buffer (TTL in / CMOS out) with 5K pull-up res. | 1 (11) | F213
F214 | 3-input OR
4-input OR | 3 | | | (TTL in / CMOS out) with 5K pull-up res. | | F232 | 2-input OR, power | 3 | | Specia
FIB1 | Il Blocks Input buffer, CMOS in, high fanout for clock driver | 1 (24) | F233
F234 | 3-input OR, power
4-input OR, power | 4 | | FIB2
OSF1 | Input buffer, TTL in, high fanout for clock driver
Feedback resistance for oscillator (low freq.) | 1 (24) | NAND | Gates | | | OSF2 | Feedback resistance for oscillator (high freq.) | 1 | F302
F303 | 2-input NAND
3-input NAND | 2 | | OSF3 | Feedback resistance for oscillator with Enable (low freq.) | 1 | F303 | 4-input NAND | 3 | | OSF4 | Feedback resistance for oscillator with Enable (high freq.) | 1 | F305
F306 | 5-input NAND
6-input NAND | 5
5 | | OSI1 | Oscillator input buffer | 1 | F308 | 8-input NAND | 6 | | OSI2 | Oscillator input buffer with Enable | 1 | F322 | 2-input NAND, power | 4 | | | Oscillator output buffer with feedback res. (low freq.) Oscillator output buffer with feedback res. (high freq.) | 1
1 | F323
F324 | 3-input NAND, power
4-input NAND, power | 6
8 | | | Oscillator output buffer (low
freq.) Oscillator output buffer (high freq.) | 1
1 | AND G | · | | | OSO7 | Oscillator output buffer with feedback res. & Enable | 1 | F312 | 2-input AND | 2 | | OSO8 | (low freq.) Oscillator output buffer with feedback res. & Enable | 1 | F313
F314 | 3-input AND
4-input AND | 3 | | SHT1 | (high freq.)
Monostable multivibrator | 1 | F332
F333
F334 | 2-input AND, power 3-input AND, power | 3 | | | Oscillator pins must be used in combination. Some validations are: | d | | 4-input AND, power | 4 | | | SI1 + OSO1 Low Frequency | | F421 | 2-wide 1-2-input AND-OR inverter | 3 | | | SI1 + OSO3 + OSF1 Low Frequency SI1 + OSO2 High Frequency | | F422 | 3-wide 1-1-2-input AND-OR inverter | 4 | | | SI1 + OSO2 High Frequency SI2 + OSO7 Low Frequency with oscillator End | able | F423
F424 | 2-wide 1-3-input AND-OR inverter 2-wide 2-2-input AND-OR inverter | 4 | | | SI2 + OSO3 + OSF3 Low Frequency with oscillator End
SI2 + OSO8 High Frequency with oscillator End | able
able | F425
F426 | 3-wide 2-2-2-input AND-OR inverter 2-wide 3-3-input AND-OR inverter | 6 | | 0 | SI2 + OSO4 + OSF4 High Frequency with oscilator En | able | F429 | 4-wide 2-2-2-input AND-OR inverter | 8 | | 10 | | | | | | | Block
Name | Description | Cells | Block
Name | Description C | Cells | | | |------------------------------|--|---------------------|---------------------------------------|--|----------------------|--|--| | | Function Blocks - Normal Power (Cont.) | | | Function Blocks - Normal Power (Cont.) | | | | | OR-NA | AND Gates | | Flip-Fl | ops | | | | | F431
F432
F433
F434 | 2-wide 1-2-input OR-AND inverter
3-wide 1-1-2-input OR-AND inverter
2-wide 1-3-input OR-AND inverter
2-wide 2-2-input OR-AND inverter | 3
4
4
4 | F596
F611
F614
F617 | Synchronous R-S F/F with Set-Reset D-F/F D-F/F with Set-Reset D-F/F with Set-Reset low | 11
8
10
10 | | | | F435
F436
F454 | 2-wide 2-3-input OR-AND inverter
2-wide 3-3-input OR-AND inverter
4-wide 2-2-2-2-input OR-AND inverter | 5
6
8 | F631
F637
F641
F647 | D-F/F C low D-F/F C low with Set-Reset low D-F/F, buffered D-F/F with Set-Reset low, buffered | 8
10
8
10 | | | | Clock | Drivers | | F661 | D-F/F C low, buffered | 8 | | | | F501
F502
FCK1 | Clock driver Dual clock driver Clock driver (F/O = 360) Clock driver (F/O = 720) | 0
0
40
80 | F667
F714
F717
F737 | D-F/F C low with Set-Reset low, buffered Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low | 10
9
9 | | | | FCK3 | Clock driver (F/O = 1080)
Clock driver (F/O = 1440) | 120
160
200 | F744
F747
F767 | Toggle F/F with Set-Reset, buffered Toggle F/F with Set-Reset low, buffered Toggle low F/F with Set-Reset low, buffered | 9 | | | | EX-OF
F511 | R Gate
Exclusive-OR | 4 | F771
F774
F777
F781 | J-K F/F, buffered J-K F/F with Set-Reset, buffered J-K F/F with Set-Reset low, buffered J-K F/F C low, buffered | 10
12
12
10 | | | | EX-NC | DR Gate | | F787 | J-K F/F C low with Set-Reset low, buffered | 12 | | | | F512 | Exclusive-NOR | 4 | F791
F792
F922 | Toggle F/F with Set-Reset and Tog. Enable Toggle low F/F with Set-Reset and Tog. Enable low 4-bit D-F/F with Reset | 12
12
33 | | | | F521 | 1-bit full-adder | 9 | F924 | 4-bit D-F/F | 28 | | | | F523 | 4-bit binary full-adder | 32 | Counters | | | | | | Buffer | s | | F961 | 4-bit synchronous binary counter with Reset low, buffered | 52 | | | | F531 | 3-state buffer with Enable | 5 | F962 | 4-bit synchronous binary up counter with Reset low | 38 | | | | F532 | 3-state buffer with Enable low | 5 | Compa | arator | | | | | Decod | lers | | F985 | 4-bit magnitude comparator | 32 | | | | F561
F981
F982 | 2-to-4 decoder
2-to-4 decoder with Enable low
3-to-8 decoder with Enable low | 10
13
26 | Scan
S000
S002 | Scan path D-F/F with Set-Reset
Scan path D-F/F | 11
9 | | | | | Registers | 33 | S050
S052 | Scan path D-F/F with Set-Reset, Hold
Scan path D-F/F with Hold | 14
12 | | | | F911
F912
F913
F914 | 4-bit shift register with Reset 4-bit serial/parallel shift register 4-bit parallel shift register with Reset low, Load 4-bit shift register | 35
39
28 | S100
S102
S150
S152 | Scan path J-K F/F with Set-Reset
Scan path J-K F/F
Scan path J-K F/F with Set-Reset, Hold
Scan path J-K F/F with Hold | 14
12
17
15 | | | | • | lexers | | S201 | Scan path D-latch with Reset | 12 | | | | F569
F570
F571
F572 | 8-to-1 multiplexer 4-to-1 multiplexer 2-to-1 multiplexer Quad 2-to-1 multiplexer | 18
10
6
14 | \$202
\$301
\$302
\$999 | Scan path D-latch Scan path D-latch with Reset (ATG) Scan path D-latch (ATG) Scan path 2-to-1 data selector | 11
8
7
4 | | | | Latch | es | | Dolove | 0 | | | | | F595
F601
F602
F603 | R-S latch D-latch D-latch with Reset D-latch with Reset low | 5
6
6
7 | Delay:
F130
F131
F132 | s Delay block (for monostable multivibrator) Delay gate Delay gate | 8
6
1 | | | | F604
F605
F901
F902 | D-latch with G driver low
D-latch with G low, Reset low
4-bit D-latch
8-bit D-latch | 6
7
20
38 | | | | | | | | | | | | | | | # **CMOS-6/6A/6V/6X** | Block
Name | Description | Cells | Block
Name | Decription | Cells | | |---------------|------------------------------------|--------|---------------|--|----------|--| | | Function Blocks - Low Power | | | Function Blocks - Low Power | | | | Multip | lexer | | OD NA | IND Codes | | | | L572 | Quad 2-to-1 multiplexer | 10 | | AND Gates | | | | Latche | · | , , | L431
L432 | 2-wide 1-2-input OR-AND inverter 3-wide 1-1-2-input OR-AND inverter | 2 | | | L601 | D-latch | 3 | L433
L434 | 2-wide 1-3-input OR-AND inverter 2-wide 2-2-input OR-AND inverter | 2
2 | | | L602 | D-latch with Reset | 4 | L434 | 2-wide 2-2-input On-AND inverter | 2 | | | L603 | D-latch with Reset low | 4 | | | _ | | | L604 | D-latch with G low driver | 3 | L435 | 2-wide 2-3-input OR-AND inverter | 3 | | | L605 | D-latch with G low, R low | 4 | L436
L454 | 2-wide 3-3-input OR-AND inverter
4-wide 2-2-2-input OR-AND inverter | 3
4 | | | L901 | 4-bit latch | 10 | L434 | 4-wide 2-2-2-input On-AND inverter | 4 | | | L902 | 8-bit latch | 18 | EX-OF | t Gate | | | | Inverte | er | | L511 | EX-OR | 3 | | | L101 | Inverter | 1 | EX-NC | PR Gate | | | | Buffer | | | L512 | EX-NOR | 3 | | | L111 | Non-inverting buffer | 1 | Decod | Decoders | | | | NOR G | ates | | L561 | 2-to-4 decoder | 6 | | | L202 | 2-input NOR | 1 | L981 | 2-to-4 decoder with Enable low | 8 | | | L202 | 3-input NOR | 2 | L982 | 3-to-8 decoder with Enable low | 17 | | | L204 | 4-input NOR | 2 | Flip Fl | ops | | | | OR Ga | itas | | L611 | D-F/F | 5 | | | | | _ | L614 | D-F/F with Set-Reset | 7 | | | L212 | 2-input OR | 2 | L617 | D-F/F with Set-Reset low | 7 | | | L213
L214 | 3-input OR | 2 | L631 | D-F/F with C low | 5 | | | L214 | 4-input OR | 3 | L637 | D-F/F with R low, S low, C low | 7 | | | NAND | Gates | | L714 | Toggle-F/F with Set-Reset | 7 | | | | | 4 | L717 | Toggle-F/F with Set-Reset low | 7 | | | L302
L303 | 2-input NAND
3-input NAND | 1
2 | L737 | Toggle low F/F with Set-Reset low | 7 | | | L303 | 4-input NAND | 2 | L922 | 4-bit D-F/F with Reset | 23 | | | | · | | L924 | 4-bit D-F/F | 18 | | | L305
L306 | 5-input NAND
6-input NAND | 3
3 | O1 141 E | | | | | L000 | O-IIIput IVAIVO | 3 | | Registers | | | | AND G | Sates | | L911 | 4-bit shift register with Reset | 23 | | | L312 | 2-input AND | 2 | L912
L913 | 4-bit serial/parallel shift register | 23 | | | L313 | 3-input AND | 2 | L913
L914 | 4-bit parallel in shift register with Reset low 4-bit shift register | 27
18 | | | L314 | 4-input AND | 3 | L914 | 4-bit Stillt register | 10 | | | AND-N | IOR Gates | | | | | | | L421 | 2-wide 1-2-input AND-OR inverter | 2 | | | | | | L422 | 3-wide 1-1-2-input AND-OR inverter | 2 | | | | | | L423 | 2-wide 1-3-input AND-OR inverter | 2 | | | | | | L424 | 2-wide 2-2-input AND-OR inverter | 2 | | | | | | L425 | 3-wide 2-2-2-input AND-OR inverter | 3 | | | | | | L426 | 2-wide 3-3-input AND-OR inverter | 3 | | | | | | L429 | 4-wide 2-2-2-input AND-OR inverter | 4 | | | | | | L442 | 2-wide 4-4-input AND-OR inverter | 4 | | | | | | L462 | 3-wide 1-2-3-input AND-OR inverter | 3 | | | | | | Block | Description | Basic
RAM | BIST | Cells | Block | Description | Basic
RAM | BIST | Cells | |--------------|---|--------------|--------------|--------------|--------------|---|--------------|--------|----------------| | | Memory Blocks | _ | | | | Memory Blocks | | | | | High-S | peed Basic RAM Blocks - Hard Mac | ros | | | High-S | peed Dual-Port RAM Blocks - Soft | Macros (C | Cont.) | | | KD49 | Single-port RAM (32 word x 4 bit) | | _ | 574 | RK8F | Dual-port RAM (256 word x 8 bit) | KE8F | RU8F | 8887 | | KD8B | Single-port RAM (64 word x 8 bit) | _ | _ | 1672 | RK8H | Dual-port RAM (512 word x 8 bit) | KE8F | RU8H | 17501 | | KD8F | Single-port RAM (256 word x 8 bit) | _ | _ | 5400 | RKAB | Dual-port RAM (64 word x 10 bit) | | RUAB | | | KDAB | Single-port RAM (64 word x 10 bit) | _ | _ | 1976 | RKAD | Dual-port RAM (128 word x 10 bit) | KEAB | RUAD | 5215 | | KDAF | Single-port RAM (256 word x 10 bit) | _ | _ | 6600 | RKAF | Dual-port RAM (256 word x 10 bit) | KEAF | RUAF | 10125 | | KE49 | Dual-port
RAM (32 word x 4 bit) | _ | | 820 | RKAH | Dual-port RAM (512 word x 10 bit) | KEAF | RUAH | 19969 | | KE87 | Dual-port RAM (16 word x 8 bit) | _ | | 520 | RKC9 | Dual-port RAM (32 word x 16 bit) | KE49 | RUC9 | 3612 | | KE8B | Dual-port RAM (64 word x 8 bit) | _ | _ | 2128 | RKCB | Dual-port RAM (64 word x 16 bit) | KE8B | RUCB | 4609 | | KE8F | Dual-port RAM (256 word x 8 bit) | _ | _ | 6000 | RKCD | Dual-port RAM (128 word x 16 bit) | KE8B | RUCD | 8927 | | KEAB | Dual-port RAM (64 word x 10 bit) | _ | | 2432 | RKCF | Dual-port RAM (256 word x 16 bit) | KE8F | RUCF | 17491 | | KEAF | Dual-port RAM (256 word x 10 bit) | _ | _ | 7200 | RKEB | Dual-port RAM (64 word x 20 bit) | | RUEB | | | | | | | | RKED | Dual-port RAM (128 word x 20 bit) | KEAB | RUED | 10183 | | High-S | peed Single Port RAM Blocks - Soft | Macros | | | RKEF | Dual-port RAM (256 word x 20 bit) | KE49 | RUH9 | 19968 | | RJ49 | Single-port RAM (32 word x 4 bit) | KD49 | RU49 | 778 | RKH9 | Dual-port RAM (32 word x 32 bit) | KE8B | | 7025 | | RJ4B | Single-port RAM (64 word x 4 bit) | KD49 | | 1381 | RKHB | Dual-port RAM (64 word x 32 bit) | KE8B | RUHD | 8998 | | RJ4D | Single-port RAM (128 word x 4 bit) | KD49 | RU4D | 2556 | RKHD | Dual-port RAM (128 word x 32 bit) | KE8B | RUHD | 17604 | | RJ4F | Single-port RAM (256 word x 4 bit) | KD49 | RU4F | 4908 | RKKB | Dual-port RAM (64 word x 40 bit) | KEAR | RUKB | 10278 | | RJ89 | Single-port RAM (32 word x 8 bit) | KD49 | RU89 | 1384 | RKKD | Dual-port RAM (128 word x 40 bit) | | RUKD | | | RJ8B | Single-port RAM (64 word x 8 bit) | KD8B | RU8B | 1924 | | 2 da. port vii iii (v20 110 ta 11 110 iiii, | | | | | RJ8D | Single-port RAM (128 word x 8 bit) | KD8B | RU8D | 3632 | High-D | ensity Single-Port RAM Blocks - S | oft Macro | s | | | RJ8F | Single-port RAM (256 word x 8 bit) | KD8B | RU8F | 7009 | DD4D | Cimals port DAM (100 word v 4 bit) | | | 1170 | | RJ8H | Single-port RAM (512 word x 8 bit) | KD8B | RU8H | 13781 | RB4D
RB4F | Single-port RAM (128 word x 4 bit) Single-port RAM (256 word x 4 bit) | | _ | 2133 | | RJAB | Single-port RAM (64 word x 10 bit) | | RUAB | 2246 | RB4H | Single-port RAM (512 word x 4 bit) | _ | _ | 4030 | | RJAD | Single-port RAM (128 word x 10 bit) | | RUAD | | RB4M | Single-port RAM (1K word x 4 bit) | _ | | 7826 | | RJAF | Single-port RAM (256 word x 10 bit) | KDAB | RUAF | 8247 | | | | | 45404 | | RJAH | Single-port RAM (512 word x 10 bit) | KDAB | RUAH | 16249 | RB4S | Single-port RAM (2K word x 4 bit) | _ | _ | 15434
30532 | | RJC9 | Single-port RAM (32 word x 16 bit) | KD49 | | 2602 | RB4U
RB8D | Single-port RAM (4K word x 4 bit) Single-port RAM (128 word x 8 bit) | _ | _ | 2137 | | RJCB | Single-port RAM (64 word x 16 bit) | | RUCB | | RB8F | Single-port RAM (126 word x 8 bit) | _ | _ | 3622 | | RJCD | Single-port RAM (128 word x 16 bit) | | RUCD | | TIDOI | Single-port HAM (230 Word x obit) | | | | | | | | | | RB8H | Single-port RAM 512 word x 8 bit) | _ | | 6999 | | RJCF | Single-port RAM (256 word x 16 bit) | | RUCF
RUEB | | RB8M | Single-port RAM (1K word x 8 bit) | _ | _ | 11617 | | RJEB
RJED | Single-port RAM (64 word x 20 bit) Single-port RAM (128 word x 20 bit) | | RUED | 4306
8318 | RB8S | Single-port RAM (2K word x 8 bit) | _ | _ | 22958 | | RJEF | Single-port RAM (126 word x 20 bit) Single-port RAM (256 word x 20 bit) | | RUEF | | RBAF | Single-port RAM (256 word x 10 bit) | | _ | 4439 | | | | | | | RBAH | Single-port RAM (512 word x 10 bit) | _ | _ | 8619 | | RJH9 | Single-port RAM (32 word x 32 bit) | | RUH9 | 5030 | RBAM | Single-port RAM (1K word x 10 bit) | _ | _ | 14369 | | RJHB | Single-port RAM (64 word x 32 bit) | | RUHB | 7143 | RBAS | Single-port RAM (2K word x 8 bit) | _ | | 28450 | | RJHD | Single-port RAM (128 word x 32 bit) | | RUHD
RUKB | | RBCD | Single-port RAM (128 word x 16 bit) | _ | | 4077 | | RJKB | Single-port RAM (64 word x 40 bit) | NDAD | HUND | 0423 | RBCF | Single-port RAM (256 word x 16 bit) | _ | _ | 7032 | | RJKD | Single-port RAM (128 word x 40 bit) | KDAB | RUKD | 16427 | RBCH | Single-port RAM (512 word x 16 bit) | _ | _ | 13764 | | | | | | | RBCM | | _ | _ | 22989 | | High-9 | Speed Dual Port RAM Blocks - Soft N | Macros | | | RBHD | Single-port RAM (128 word x 32 bit) | | _ | 7949 | | RK49 | Dual-port RAM (32 word x 4 bit) | KE49 | RU49 | 1051 | RBHF | Single-port RAM (256 word x 32 bit) | _ | _ | 13844 | | RK4B | Dual-port RAM (64 word x 4 bit) | KE49 | | 1910 | RBHH | Single-port RAM (512 word x 32 bit) | _ | | 27289 | | RK4D | Dual-port RAM (128 word x 4 bit) | KE49 | | 3690 | RBKF | Single-port RAM (256 word x 40 bit) | _ | | 17109 | | RK4F | Dual-port RAM (256 word x 4 bit) | KE49 | RU4F | 6944 | RBKH | Single-port RAM (512 word x 40 bit) | | _ | 33769 | | RK87 | Dual-port RAM (16 word x 8 bit) | KE87 | RU87 | | | | | | | | RK89 | Dual-port RAM (32 word x 8 bit) | KE49 | | 1904 | | | | | | | RK8B | Dual-port RAM (64 word x 8 bit) | | RU8B | 2413 | | | | | | | | p= | | | | | | | | | | Block | Description | Basic
RAM | BIST | Cells | Block | Description | Basic
RAM | BIST | Cells | |-------|------------------------|--------------|-----------------------|-------|-------|-------------------|----------------|------|-------| | | Memory Blocks | (Cont.) | Memory Blocks (Cont.) | | | | | | | | RОМ В | locks | | | | RAM T | est (BIST) | | | | | J14D | 128 word x 4 bit ROM | _ | _ | 720 | RU49 | 32 word x 4 bit | _ | _ | | | J14F | 256 word x 4 bit ROM | _ | _ | 1040 | RU4B | 64 word x 4 bit | _ | _ | | | J14H | 512 word x 4 bit ROM | _ | _ | 1512 | RU4D | 128 word x 4 bit | _ | _ | | | J14M | 1K word x 4 bit ROM | _ | _ | 2408 | RU4F | 256 word x 4 bit | | _ | | | J14S | 2K word x 4 bit ROM | _ | _ | 3960 | RU87 | 16 word x 8 bit | _ | | | | J14U | 4K word x 4 bit ROM | _ | _ | 6776 | RU89 | 32 word x 8 bit | _ | _ | | | J18D | 128 word x 8 bit ROM | _ | _ | 1040 | RU8B | 64 word x 8 bit | _ | _ | | | J18F | 256 word x 8 bit ROM | _ | _ | 1456 | RU8D | 128 word x 8 bit | _ | _ | | | J18H | 512 word x 8 bit ROM | _ | _ | 2352 | RU8F | 256 word x 8 bit | _ | | | | J18M | 1K word x 8 bit ROM | _ | _ | 3784 | RU8H | 512 word x 8 bit | | | | | J18S | 2K word x 8 bit ROM | | | 6600 | RUAB | 64 word x 10 bit | _ | _ | | | J18U | 4K word x 8 bit ROM | _ | | 11704 | RUAD | 128 word x 10 bit | | _ | | | J18W | 4K word x 8 bit ROM | | _ | 21584 | RUAF | 256 word x 10 bit | _ | _ | | | J1CD | 128 word x 16 bit ROM | _ | _ | 1456 | RUAH | 512 word x 10 bit | _ | _ | | | J1CF | 256 word x 16 bit ROM | _ | _ | 2352 | RUC9 | 32 word x 16 bit | _ | _ | | | J1CH | 512 word x 16 bit ROM | _ | _ | 3696 | RUCB | 64 word x 16 bit | _ | _ | | | J1CM | 1K word x 16 bit ROM | _ | | 6512 | RUCD | 128 word x 16 bit | _ | _ | | | J1CS | 2K word x 16 bit ROM | _ | _ | 11400 | RUCF | 256 word x 16 bit | | _ | | | J1CU | 4K word x 16 bit ROM | _ | _ | 21280 | RUEB | 64 word x 20 bit | _ | _ | | | J1HF | 256 word x 32 bit ROM | _ | _ | 3696 | RUED | 128 word x 20 bit | | | | | J1HH | 512 word x 32 bit ROM | | _ | 6512 | RUEF | 256 word x 20 bit | _ | _ | | | J1HM | 1K word x 32 bit ROM | | _ | 11248 | RUH9 | 32 word x 32 bit | _ _ | _ | | | J1HS | 2K word x 32 bit ROM | _ | _ | 21128 | RUHB | 64 word x 32 bit | _ | _ | | | | ETC TOTAL A OF DICTION | | | 0 | RUHD | 128 word x 32 bit | _ | _ | | | | | | | | RUKB | 64 word x 40 bit | _ | | | | | | | | | RUKD | 128 word x 40 bit | _ | _ | | ## **NEC ASIC DESIGN CENTERS** #### **WEST** 401 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL 415 965-6533 FAX 415 965-6788 One Embassy Centre 9020 S.W. Washington Square Road, Suite 400 Tigard, OR 97223 TEL 503 671-0177 FAX 503 643-5911 200 E. Sandpointe, Bldg. 8, Suite 150 Santa Ana, CA 92707 TEL 714 546-0501 FAX 714 432-8793 #### SOUTH CENTRAL/SOUTHEAST 16475 Dallas Parkway, Suite 380 Dallas, TX 75248 TEL 214 250-4522 FAX 214 931-8680 Research Triangle Park 2525 Meridian Parkway, Suite 320 Durham, NC 27713 TEL 919 544-4132 FAX 919 544-4109 #### NORTH CENTRAL/NORTHEAST • 1500 W. Shure Drive, Suite 240 Arlington Heights, IL 60004 TEL 708 398-3600 FAX 708 577-9219 One Natick Executive Park Natick, MA 01760 TEL 508 655-8833 FAX 508 653-2915 ## THIRD-PARTY DESIGN CENTERS ### **WEST** ## SOUTH CENTRAL/SOUTHEAST NORTH CENTRAL/NORTHEAST Koos Technical Services, Inc. 385 Commerce Way, Suite 101 Longwood, FL 32750 TEL 407 260-8727 FAX 407 260-6227 Integrated Silicon Systems Inc. 2222 Chapel Hill Nelson Highway Durham, NC 27713 TEL 919 361-5814 FAX 919 361-2019 # NEC Electronics Inc. CORPORATE HEADQUARTERS 401 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL 415 960-6000 TLX 3715792 ©1992 NEC Electronics Inc./Printed in U.S.A For literature, call toll-free 8 a.m. to 4 p.m. Pacific time: **1-800-632-3531** No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document IEU-7922. IP-8090 (990) APR 0 6 1999 029789 4_ 1