NEC Microcomputers, Inc.

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The μ PD7520 is a μ COM-75 4-bit single chip microcomputer with a Programmable Display Controller capable of directly driving a multiplexed 8-segment, 8-digit LED Display. It has a 768 x 8 ROM, a 48 x 4 RAM, and 24 I/O lines for communication with and control of external circuitry. The μ PD7520 is manufactured with a lowpower consumption PMOS process, allowing use of a single power supply between -6V and -10V. The μ PD7520 executes 47 instructions of the μ COM-75 instruction set, and is available in a low-cost 28-pin plastic dual-in-line package.

FEATURES • 768 x 8 Bit ROM

- 48 x 4 Bit RAM
- 20 µs Instruction Cycle Time, Typical
- 47 Powerful Instructions
 - Table Look-Up Capability with LAMT Instruction
- 2-Level Subroutine Stack
- One 4-Bit Input Port
- One 4-Bit I/O Port
- One 2-Bit Output Port (Capable of Driving Piezo Element)
- Programmable Display Controller
 - 6 LED Direct Digit Drive Outputs (8 Possible Using P40-1)
 - 8 LED Direct Segment Drive Outputs
 - Selection of a 4, 5, 6, or 8-Digit Display Strobe Cycle
 - Can Directly Drive 8-Segment, Multiplexed Displays, or up to an 8 x 8 Dot Matrix
 - Automatic Synchronization of Segment and Digit Signals, Transparent to Program Execution
 - Segment Outputs also Function as Latched, 8-Bit Parallel Output Port
- Built-In Clock Signal Generation Circuitry
- Built-In Reset Circuitry
- Single Power Supply, Variable from 6V to 10V
- Low Power Consumption: 45 mW, Typical
- P-Channel MOS Technology
- 28-Pin Plastic Dip

PIN CONFIGURATION

P31	1	\cup	28	CLK
P30 🗖	2		27	RESET
P13	3		26	
P12	4		25	⊐ s ₀
P11	5		24	□ s₄
P10	6		23	🗖 S1
P43 🗖	7	μPD 75.20	22	⊐ s₅
P42	8	/520	21	$\Box s_2$
P41	9		20	□ s ₆
P40 🗖	10		19	□ s ₃
⊺₅ 🗖	11		18	🗖 \$7
⊺₄ 🗖	12		17	
™⊒	13		16	ד נ
∨ss ⊏	14		15	□ T 2

PIN NAMES

	-
s ₀ – s ₇	Segment Drive Output Port S
$T_0 - T_5$	Digit Drive Output Port T
P1 ₀ - P1 ₃	Input Port 1
P3 ₀ - P3 ₁	Output Port 3
P4 ₀ - P4 ₃	Input/Output Port 4
CLK	Clock Input
RESET	Reset
V _{GG}	Power Supply Negative
V _{SS}	Ground

DC CHARACTERISTICS

 $T_a = -10^{\circ}C$ to +70°C, $V_{GG} = -6V$ to -10V

			LIMITS							
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TES				
Input Voltage				-2		Porte 1 / RESET	VGG = -9V ± 1V			
High	VIH			-1.8		10161,4,112321	VGG = -6V to -10V			
Input Voltage		VGG+1.5				Ports 1 / RESET	VGG = -9V ± 1V			
Low	VIL VIL	V _{GG} +0.8				101031,4,112321	$V_{GG} = -6V$ to $-10V$			
Clock Voltage High	V _{ØH}			-0.8	v	CLK, External Cloc	k			
Clock Voltage Low	V _{ØL}	-5.0			v	CLK, External Cloc	k			
Input Current		45		200		Port 1 BESET	VI = 0V, VGG = -9V ± 1V			
High	ЧН	40		200	μΑ		VI = 0V, VGG = -6V to -10V			
Input Leakage Current High	ігін			+5	μА	Port 4, V _I = 0V				
Input Leakage	ILIL1			-5	μA	Port 1, RESET, V _I = -10V, V _{GG} = -10V				
Current Low	ILIL2			5	μA	Port 4, V _I = -10V				
Clock Current High	Iøн			0.5	mA	CLK, External Clock, V _{¢H} = 0V, V _{GG} = −9V ± 1V				
Clock Current Low	ΙφL			-2.1	mA	CLK, External Clock, $V_{\phi L} = -5V$, VGG = -9V ± 1V				
Output Voltage Low	VOL	V _{GG} +0.5			v	Port 3, No Load				
Output Current	lou	-1.0				$V_0 = -1.0^{10}$	V, V _{GG} = –9V ± 1V			
High	'OH1	-0.6				$V_0 = -1.0^{\circ}$	V, V _{GG} = -6V			
	lou-	-2.0			mΔ	Port 4 $V_0 = -1.0^{\circ}$	V, V _{GG} = -9V ± 1V			
*	- Ong	-1.2				V _O = -1.0	V, VGG = -6V			
		-5	-10		Į	V _O = -2.0	V, VGG = -9V ± 1V			
	юн _з	-3	-6		mA	Port S, $V_0 = -2.0^{\circ}$	$V, V_{GG} = -6V$			
		-1	-3			v0 1.0	v, vGG = -0v to -10v			
		-24	-48			$V_0 = -2.0$	$\frac{V, V_{GG} = -9V \pm 1V}{V_{GG} = -9V \pm 1V}$			
	'OH4	-13	-27			Port T, $V_0 = -1.0$	V, VGG = -6V			
0		· · · ·				Vo = Voo	+1.54 Man = .04 + 14 (1)			
Output Current		1	2				$+3.5V$, VGG = $-9V \pm 1V$			
	^I OL1	0.1	0.2	· · · · ·	mA	Port 3, Vo = -4.5	$V_{,V_{GG}} = -6V_{(1)}$			
		0.1	0.2		1	V _O = -2.5	V, V _{GG} = -6V			
× •		4.5	9			Vo = Vgg	+ 5.0V, VGG = -9V ± 1V			
	IOL2	1	2		mA	Port S, VO = VGG	; + 3.5V, V _{GG} = -6V to -10V			
Output Leakage Current High	Ігон			+5	μΑ	Ports 4, T, $V_0 = 0$	1			
Output Leakage Current Low	ILOL			-5	μΑ	Ports 4, T, V _O =1	10V			
Supply Current	IGG	•	-5	-9.8	mA	T _a = 25°C, V _{GG} = -9V, No Load				

.

Note: 1 Current within 2.5 ms after turning to the low level ($T_a = 25^{\circ}C$).

Internal Registers

The ALU, the Accumulator, and the Carry Flag together comprise the central portion of the μ PD7520 architecture. The ALU performs the arithmetic and logical operations, and checks for various results. The Accumulator stores the results generated by the ALU, and acts as the major interface point between the RAM, the I/O ports, and the H and L registers. The Carry Flag can be addressed directly, and can be set during an addition.

Data Pointer Registers

The 2-bit H register and 4-bit L register are two registers which reside externally to the 48 x 4 bit RAM. They function as the Data Pointer, addressing the rows and columns of the RAM, respectively. They are individually accessible, and the L register can be automatically incremented or decremented.

RAM

The μ PD7520 has a static 48 x 4 bit RAM organized into 3 rows by 16 columns. The RAM is used for general purpose data storage or data transfers, and is also used to store Display Data for access by the segment latch of the Display Controller.

ROM

The ROM is the mask-programmable portion of the μ PD7520 which stores the application program. It is organized into a single 768 x 8 bit field. Execution of the program resident in the ROM is independent of field or page boundary limitations.

Program Counter and Stack Register

The Program Counter is a 10-bit register which contains the address of a particular instruction being executed. It is incremented during normal operation, but can be modified by various JUMP and CALL instructions. The Stack Register is a LIFO push-down stack register used to save the value of the Program Counter when a subroutine is called. It is organized as 2 words x 10 bits to accommodate 2 levels of subroutine calls.

FUNCTIONAL DESCRIPTION

μPD7520

			LIMITS			TEST		CAPACITANCE
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDIT	IONS	
Input Capacitance	CI			15	pF	Port 1, RESET		
Output Capacitance	с _о			20	pF	Ports 3, S, T,	f = 1 MHz	
Input/Output Capacitance	C10			20	pF	Port 4	1 - 1 10112	
Clock Capacitance	C _¢			30	pF	CLK		

$T_a = -10^{\circ}C$ to $+70^{\circ}C$, $V_{GG} = -6V$ to -10V

			LIMITS			TEST			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS			
Clock Frequency	fosc	225	300	375	kHz	R_{f} = 1M Ω , V_{GG} = -9V ± 1V, T_{a} = 25°C			
		180	300	450	kHz	R _f = 1MΩ, V _{GG} = -9V ± 1V			
	fφ	100		330	kHz				
Clock Rise and Fall Times	t _r , tf			2	μs	CLK External Clock			
Clock Pulse Width High	^t ¢W _H	1.5		3	μs	CER, External Clock			
Clock Pulse Width Low	^t ¢WL	1.5		3	μs				

V_{SS} $V_{\phi H}$ $V_{\phi L}$ V_{GG}

AC CHARACTERISTICS

CLOCK WAVEFORM

The NEC Microcomputers' NDS Development System is available for the development of software source code, editing, and assembly into object code. In addition, the ASM-75 Cross Assembler is available for systems supporting the ISIS-II (TM Intel Corp.) Operating System, and the CASM-75 Cross Assembler is available for systems supporting the CP/M (® Digital Research Corp.) Operating System.

The EVAKIT-7520 Evaluation Board is available for production device evaluation and prototype system debugging.

DEVELOPMENT TOOLS

Clock and Reset Circuitry

The Clock Circuitry for the μ PD7520 can be implemented by connecting a resistor from the CLK input to V_{GG}. The Power-On-Reset Circuitry for the μ PD7520 can be implemented by connecting a capacitor from the RESET input to V_{SS}.

I/O Capability

The μ PD7520 has 24 I/O lines for communication with and control of external circuitry. The Port configuration is selectable under software control via the Mode Select Register as follows:

P10-3	4-Bit Schmidt Input
P20-1	2-Bit Latched Output Option, Accessible through
	Port T (T4-5)
P30-1	2-Bit Latched Output
P40-3	4-Bit Input/Latched Output
S ₀₋₇	Latched 8-Bit Parallel/Segment Drive Output
T ₀₋₅	6-Bit High-Current/Digit Drive Output
т ₆₋₇	Additional 2-Bit Digit Drive Output Option, Accessible through Port 4 $(\mbox{P4}_{0-1})$
	P10-3 P20-1 P30-1 P40-3 S0-7 T0-5 T6-7

DISPLAY CONTROLLER BLOCK DIAGRAM

ş

μPD7520

The Display Controller is the major feature of the μ PD7520. It automatically performs scan or display strobe operations which would otherwise require considerable software.

The Display Controller interfaces to a common-anode LED display without external components. Connections from the Display Controller to the display are made from Port S to the cathodes (segments), and from Port T to the anodes (digit enables). Up to 6 digits can be driven directly by the μ PD7520 in this manner. A total of 8 digit drives are available by using the two digit drives accessible through Port 40-1, and adding only two small driver transistors and four resistors externally. When Port T4-5 is not used to drive a display, it may be used as a high current driver, accessible through Port 20-1.

During operation, a 3-to-8 decoder selects which digit of a Display Buffer in the RAM will be multiplexed onto the display. The contents of the pair of RAM locations, corresponding to the digit chosen from the Display Buffer, are transferred to the 8 latched outputs of Port S, and the corresponding Port T digit drive is enabled. After 13 machine cycles have been completed, the digit drive is disabled, the decoder is updated to select the next digit of the Display Buffer to be multiplexed onto the display, and this cycle is repeated. Thus, the μ PD7520 program needs only to load the properly decoded display data into the Display Buffer and it immediately appears on the display. Operation in this manner is completely transparent to the μ PD7520, and requires no intervention once the proper display mode has been selected.

The use of a Mode Select Register enhances the utility of the Display Controller by allowing a choice of a 4, 5, 6, or 8 digit display strobe cycle output, or a direct latched output. A choice can also be made between one of the two possible Display Buffers, resident in either Row 0 or Row 2 of the RAM.

The Mode Select Register (MSR) is a separate 4-bit register of the Display Controller which determines the function that the Display Controller will perform. The value of the MSR can range from 0_{16} to F₁₆, and it can be modified by data in the Accumulator. This is accomplished by execution of the OPL (output-to-port) instruction, where L (the lower 4-bits of the data pointer) is set to the value B₁₆ in order to address the MSR. Execution of this instruction transfers the contents of the Accumulator into the MSR, and the Display Controller begins operating according to the following table:

M ₃	M2	M1	MO	DISPLAY CONTROLLER OPERATION			
0	0	0	0	Reset (S ₀₋₇ : High level); (T ₀₋₅ : OFF)			
0	0	0	1	8-bit parallel output: $S_{0-3} \leftarrow (0EH)$; $S_{4-7} \leftarrow (0FH)$; $(T_{0-3}: OFF)$			
0	0	1	0	Not used			
0	0	1	1	Not used			
0	1	0	0	4-digit display (T ₀₋₃); Segment data: 00H-07H			
0	1	0	1	5-digit display (T ₀₋₄); Segment data: 00H-09H			
0	1	1	0	6-digit display (T ₀₋₅); Segment data: 00H-0BH			
0	1	1	1	8-digit display (T ₀₋₇); Segment data: 00H-0FH			
1	0	0	0	Not used			
1	0	0	1	8-bit parallel output: $S_{0-3} \leftarrow (2EH)$; $S_{4-7} \leftarrow (2FH)$; $(T_{0-3}: OFF)$			
1	0	1	0	Not used			
1	0	1	1	Not used			
1	1	0	0	4-digit display (T ₀₋₃); Segment data: 20H-27H			
1	1	0	1	5-digit display (T ₀₋₄); Segment data: 20H-29H			
1	1	1	0	6-digit display (T ₀₋₅); Segment data: 20H-2BH			
1	1	1	1	8-digit display (T ₀₋₇); Segment data: 20H-2FH			

DISPLAY CONTROLLER

MODE SELECT REGISTER

The MSB, M_3 , of the Mode Select Register defines the Row of RAM (0 or 2) to be used for the Display Buffer and M_2 distinguishes between a digit strobe cycle output, or a direct latched output.

INSTRUCTION SET SYMBOL DEFINITIONS

The following abbreviations are used in the description of the μ PD7520 instruction set:

SYMBOL **EXPLANATION AND USE** А Accumulator address Immediate address С Carry Flag data Immediate data Bit "n" of immediate data or immediate address Dn н Register H HL Register pair HL L Register L P() Parallel Input/Output Port addressed by the value within the brackets PCn Bit "n" of Program Counter s Number of bytes in next instruction when Skip Condition occurs STACK Stack Register () The contents of RAM addressed by the value within the brackets] The contents of ROM addressed by the value within the brackets] Load, Store, or Transfer ~ \leftrightarrow Exchange ____ Complement ¥ LOGICAL Exclusive-OR

INSTRUCTION SET

	INSTRUCTION CODE							SKIP					
MNEMONIC	FUNCTION	DESCRIPTION	D7	De	D5	D4	D3	D ₂	D1	D ₀	BYTES	CYCLES	CONDITION
LOAD													
LAI data	A ← D ₃₋₀	Load A with 4 bits of imme- diate data; execute succeeding LAI instructions as NOP instructions	0	0	0	1	D3	D2	D ₁	Do	1	1	String
LHI data	H ← D ₁₋₀	Load H with 2 bits of imme- diate data	0	0	1	0	1	0	D1	DO	1	1	·
LHLI data	HL ← D ₄₋₀	Load HL with 5 bits of immediate data; execute succeeding LHLI instructions as NOP instructions	1	1	0	D4	D3	D2	D1	DO	1	1	String
LAMT	A ← [PC9 ₋₆ , 0, C, A] _H	Load the upper 4 bits of ROM Table Data at address PCg ₋₆ , 0, C, A to A	0	1	0	1	1	1	1	0	1	2	
	(HL) ← [PC9_6, 0, C, A] L	Load the lower 4 bits of ROM Table Data at address PCg_6, 0, C, A to the RAM location addressed by HL											
L	A ← (HL)	Load A with the contents of RAM addressed by HL	0	1	0	1	0	0	1	0	1	1	
LIS	A ← (HL) L = L + 1 Skip if L = 0H	Load A with the contents of RAM addressed by HL; incre- ment L; skip if L = 0H	0	1	0	1	0	0	0	1	1	1 + S	L = 0H
LDS	A ← (HL) L = L – 1 Skip if L = FH	Load A with the contents of RAM addressed by HL; decrement L; skip if L = FH	0	1	0	1	0	0	0	0	1	1 + S	L = FH
LADR address	A ← (D ₅₋₀)	Load A with the contents of RAM addressed by 6 bits of immediate data	0	0 0	1 D5	1 D4	1 D3	0 D2	0 D1	0 D0	2	2	
	STORE												
ST	(HL) ← A	Store A into the RAM location addressed by HL	0	1	0	1	0	1	1	1	1	• 1	
STII data	(HL) ← D ₃₋₀ L ← L + 1	Store 4 bits of immediate data into the RAM location addressed by HL; increment L	0	1	0	0	D3	D ₂	D1	DO	_ 1	1	

μPD7520

INSTRUCTION SET (CONT.)

Γ					INS	RUCI		ODE					SKIP
MNEMONIC	FUNCTION	DESCRIPTION	D7	D6	D5	D4	D3	D ₂	D1	Do	BYTES	CYCLES	CONDITION
EXCHANGE													
ХАН	A ₁₋₀ ↔ H ₁₋₀ A ₃₋₂ ← 00H	Exchange A with H	0	1	1	1	1	0	1	0	1	1	
XAL	A⇔L	Exchange A with L	0	1	1	1	1	0	1	1	1	1	
x	A ↔ (HL)	Exchange A with the contents of RAM addressed by HL	0	1	0	1	0	1	1	0	1	1	
XIS	A ↔ (HL) L ← L + 1 Skip if L = 0H	Exchange A with the contents of RAM addressed by HL; increment L: skin if L = 0H	0	1	0	1	0	1	0	1	1	1+5	L ≈ 0H
XDS	A ↔ (HL) L ← L − 1 Skip if L = FH	Exchange A with the contents of RAM addressed by HL; decrement L; skip if L = FH	0	1	0	1	0	1	0	0	1	1+5	L = FH
XADR address	A ↔ (D ₅₋₀)	Exchange A with the contents of RAM addressed by 6 bits of immediate data	0 0	0 0	1 D5	1 D4	1 D3	0 D2	0 D1	1 D0	2	2	
	I	ARITH	IMETI	C AND	LOGI	CAL						L	L
AISC data	A ← A + D ₃₋₀ Skip if overflow	Add 4 bits of immediate data to A; Skip if overflow is generated	0	0	0	0	D3	D ₂	D1	DO	1	1 + S	Overflow
ASC	A ← A + (HL) Skip if overflow	Add the contents of RAM addressed by HL to A; skip if overflow is generated	0	1	1	1	1	1	0	1	1	1+S	Overflow
ACSC	A, C ← A + (HL) + C Skip if C = 1	Add the contents of RAM addressed by HL and the carry flag to A; skip if carry is generated	0	1	1	1	1	1	0	0	1	1+5	C = 1
EXL	A ← A ¥ (HL)	Perform a LOGICAL Exclusive—OR operation between the contents of RAM addressed by HL and	0	1	1	1	1	1	1	0	1	1	
		A; store the result in A	L										
ACCUMULATOR AND CARRY FLAG													
СМА	A ← Ā	Complement A	0	1	1	1	1	1	1	1	1	1	
RC SC	C ← 0	Reset Carry Flag	0	1	1	1	1	0	0	0			
		Set Carry Flag					•					· ·	I
	p	INCREM	AENTA	AND D	ECREJ	MENT							
ILS	L←L+1 Skip if L=0H	Increment L; Skip if L = 0H	0	1	0	1	1	0	0	1	1	1+5	L = 0H
IDRS address	(D ₅₋₀) ← (D ₅₋₀) + 1 Skip if (D ₅₋₀) = 0H	Increment the contents of RAM addressed by 6 bits of immediate data; Skip if the contents = 0H	0 0	0 0	1 D5	1 D4	1 D3	1 D2	0 D1	1 D ₀	2	2+5	(D ₅₋₀) = 0H
DLS	L ← L − 1 Skip if L = FH	Decrement L; Skip if L = FH	0	1	0	1	1	0	0	0	1	1+5	L = FH
DDRS address	(D ₅₋₀) ← (D ₅₋₀) - 1 Skip if (D ₅₋₀) = FH	Decrement the contents of RAM addressed by 6 bits of	0	0	1	1	1	1	0	0	2	2+5	(D ₅₋₀) = FH
		immediate data, skip if the contents = FH	0	0	D5	D4	D3	D ₂	D1	DO			
		BI	TMAN	IPUL/	TION								
RMB data	(HL) _{bịt} ← 0	Reset a single bit (denoted by D1D0) of the RAM location addressed by HL to zero	0	1	1	0	1	0	D1	Do	1	1	
SMB data	(HL) _{bit} ← 1	Set a single bit (denoted by D1D0) of the RAM location addressed by HL to one	0	1	1	0	1	1	D1	Do	1	1	
	1	JUMP	, CALI	, AND	RETU	RN					J	4	
JMP address	PC9_0 ← D9_0	Jump to the address specified by 10 bits of immediate data	0 D7	0 D6	1 D5	0 D4	0 D3	0 D2	Dg D1	D8 D0	2	2	[
JAM data	PC9-8 ← D1-0 PC7-4 ← A PC3-0 ← (HL)	Jump to the address specified by 2 bits of immediate data, A, and the RAM contents addressed by HL	0	0 0	1 0	1 1	1 0	1 0	1 D1	1 D0	2	2	
JCP address	PC ₅₋₀ ← D ₅₋₀	Jump to the address specified by the higher-order bits PCg_6 of the PC, and 6 bits of immediate data	1	0	D5	D4	D3	D2	D1	Do	1	1	

INSTRUCTION SET (CONT.)

					INS	TRUCI	TION C	T		SKIP			
MNEMONIC	FUNCTION	DESCRIPTION	D7	D6	D5	D4	D3	D2	D1	DO	BYTES	CYCLES	CONDITION
CALL address	STACK ← PC + 2 PC9_0 ← D9_0	Store a return address (PC + 2) in the stack; call the subroutine program at the location speci- fied by 10 bits of immediate data	0 D7	0 D6	1 D5	1 D4、	0 D3	0 D2	D9 D1	D8 D0	2	2	
CAL address	STACK ← PC + 1 PC ₉₋₀ ← 01D4D3 000D2D1D0	Store a return address (PC + 1) in the stack; call the subroutine program at one of the 32 spe- cial locations specified by 5 bits of immediate data	1	1	1	D4	D3	D2	D1	D ₀	1	1	
RT	PC ← STACK	Return from Subroutine	0	1	0	1	0	0	1	1	1	1	
RTS	PC ← STACK Skip unconditionally	Return from Subroutine; skip unconditionally	0	1	0	1	1	0	1	1	1	1 + S	Unconditional
			:	SKIP									
SKC	Skip if C = 1	Skip if carry flag is true	0	1	0	1	1	0	1	0	1	1 + S	C = 1
SKMBT data	Skip if (HL) _{bit} = 1	Skip if the single bit (denoted by D_1D_0) of the RAM location addressed by HL is true	0	1	1	0	0	1	D1	D ₀	1	1 + S	(HL) _{bit} = 1
SKMBF data	Skip if (HL) _{bit} = 0	Skip if the single bit (denoted by D ₁ D ₀) of the RAM loca- tion addressed by HI. is false	0	1	1	0	0	0	D1	D ₀	1	1 + S	(HL) _{bit} = 0
SKABT data	Skip if A _{bit} = 1	Skip if the single bit (depoted by D1D0) of A is true	0	1	1	1	0	1	D1	D ₀	1	1 + S	A _{bit} = 1
SKAEI data	Skip if A = data	Skip if A equals 4 bits of immediata data	0	0 1	1 1	1 0	1 D3	1 D2	1 D1	1 D0	2	2 + S	A = data
SKAEM	Skip if A = (HL)	Skip if A equals the RAM con- tents addressed by HL	0	1	0	1	1	1	1	1	1	1+5	A = (HL)
			PARA	LLEL	1/0								.
IPL	A ← P(L)	Input the Port addressed by L to A	0	1	1	1	0	0	0	0	1	1	
IP1	A ← P1	Input Port 1 to A	0	1	1	1	0	0	0	1	1	1	
OPL	P(L) ← A	Output A to the port addressed by L	0	1	1	1	0	0	1	0	1	1	
OP3	P3 ← A ₁₋₀	Output the lower 2 bits of A to Port 3	0	1	1	1	0	0	1	1	1	1	
			CPU (ONT	ROL						•		.
NOP		Perform no operation; con- sume one machine cycle	0	0	0	0	0	0	0	0	1	1	

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	to +70°C
Storage Temperature	o +125°C
Supply Voltage	0.3 Volts
Input Voltage	0.3 Volts
Output Voltage	0.3 Volts
Output Current (IOH Total)	- 100 mA
(IOL Total)	90 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE OUTLINE µPD7520C

PLASTIC

ITEM	MILLIMETERS	INCHES					
Α	38.0 MAX.	1.496 MAX.					
В	2.49	0.098					
с	2.54	0.10					
D	0.5 ± 0.1	0.02 ± 0.004					
E	33.02	1.3					
F	1.5	0.059					
G	2.54 MIN.	0.10 MIN.					
н	0.5 MIN.	0.02 MIN.					
I	5.22 MAX.	0.205 MAX.					
J	5.72 MAX.	0.225 MAX.					
к	15.24	0.6					
L	13.2	0.52					
м	0.25 + 0.10 0.05	0.01 + 0.004 0.002					

7520DS-10-80-CAT