mos integrated circuit μ PD754144, 754244

4-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

NE

The μ PD754244 is a 4-bit single-chip microcontroller which incorporates the EEPROMTM for key-less entry application.

It incorporates a 16×8 -bit EEPROM, a 4-Kbyte mask ROM to store software, a 128×4 -bit RAM to store the processing data, a processing CPU, and a carrier generator which easily outputs waveforms for infrared remote controller.

The details of functions are described in the following user's manual. Be sure to read it before designing.

μ PD754144, 754244 User's Manual: U10676E

FEATURES

- On-chip EEPROM: 16×8 bits (mapped to the data memory)
- On-chip key return reset function for key-less entry
- System clock oscillation circuit
- μPD754144: RC oscillator (external resistor and capacitor)
- μPD754244: Crystal/ceramic oscillator
- Low-voltage operation: VDD = 1.8 to 6.0 V
- Timer function (4 channels)
 - Basic interval timer/watchdog timer: 1 channel
 - 8-bit timer counter : 3 channels
- On-chip memory
 - Program memory (ROM) 4096 × 8 bits
 - Data memory (static RAM) 128 × 4 bits
- Instruction execution time variable function suited for power saving.
 - μPD754144:
 - 4, 8, 16, 64 μ s (at fcc = 1.0-MHz operation)
 - μPD754244:
 0.95, 1.91, 3.81, 15.3 μs (at fx = 4.19-MHz operation)
 0.67, 1.33, 2.67, 10.7 μs (at fx = 6.0-MHz operation)

APPLICATIONS

Automotive appliances such as key-less entry, compact data carrier, etc.

Unless contextually excluded, references in this data sheet to the μ PD754244 (crystal/ceramic oscillation: fx) mean the μ PD754144.

The μ PD754144 and μ PD754244 differ in the notation of their RC oscillation: whenever fx (RC oscillation notation for μ PD754244) is described, fcc should be substituted for the μ PD754144.

The information in this document is subject to change without notice.

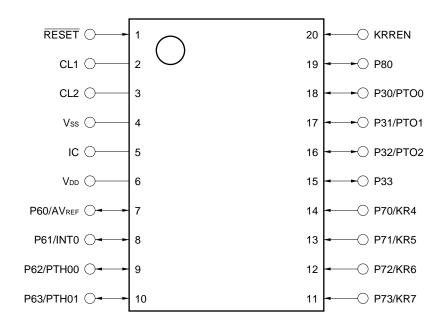
ORDERING INFORMATION

Part Number	Package
μPD754144GS-xxx-BA5	20-pin plastic SOP (300 mil, 1.27-mm pitch)
μ PD754144GS-xxx-GJG	20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)
μPD754244GS-xxx-BA5	20-pin plastic SOP (300 mil, 1.27-mm pitch)
μPD754244GS-xxx-GJG	20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)

Remark xxx indicates ROM code suffix.

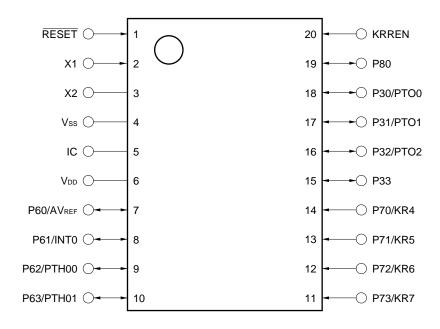
Functional Outline

P	arameter		μPD754144	μPD754244	
Instruction execution time		 4, 8, 16, 64 μs (at fcc = 1.0-MHz operation) 		 0.95, 1.91, 3.81, 15.3 μs (at fx = 4.19-MHz operation) 0.67, 1.33, 2.67, 10.7 μs (at fx = 6.0-MHz operation) 	
On-chip	Mask ROM	4096 >	< 8 bits (0000H-0FFFH)		
memory	RAM	128 ×	4 bits (000H-07FH)		
	EEPROM	16 × 8	bits (400H-41FH)		
System clock	oscillator		cillator nal resistor and capacitor)	Crystal/ceramic oscillator	
General-purpo	ose register		t operation: 8×4 banks t operation: 4×4 banks		
Input/output	CMOS input	4	On-chip pull-up resistor can be s	pecified by mask option.	
port	CMOS input/output	9	9 On-chip pull-up resistor connection can be specified by means of s		
	Total	13			
Start-up time	after reset	56/fcc		2 ¹⁷ /fx, 2 ¹⁵ /fx (selected by mask option)	
Stand-by mod	e release time	2 ⁹ /fcc		2 ²⁰ /fx, 2 ¹⁷ /fx, 2 ¹⁵ /fx, 2 ¹³ /fx	
				(selected by the setting of BTM)	
Timer		4 char			
			t timer counter b be used as 16-bit timer counter)	: 3 channels	
		Basic interval/watchdog timer		: 1 channel	
Bit sequential	buffer	16 bits			
Vectored inter	rupt	External: 1, Internal: 5			
Test input		External: 1 (key return reset function available)			
Standby function		STOP/HALT mode			
Operating ambient temperature		$T_{A} = -40$ to +85 °C			
Operating sup		V _{DD} = 1.8 to 6.0 V			
Package		 20-pin plastic SOP (300 mil, 1.27-mm pitch) 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch) 			


CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)6
2.	BLOCK DIAGRAM
3.	PIN FUNCTION93.1 Port Pins93.2 Non-port Pins103.3 Pin Input/Output Circuits113.4 Recommended Connection of Unused Pins12
4.	SWITCHING FUNCTION BETWEEN MK I MODE AND MK II MODE 13 4.1 Difference between Mk I and Mk II Modes 13 4.2 Setting Method of Stack Bank Select Register (SBS) 14
5.	MEMORY CONFIGURATION15
6.	EEPROM
7.	PERIPHERAL HARDWARE FUNCTIONS197.1 Digital Input/Output Ports197.2 Clock Generator197.3 Basic Interval Timer/Watchdog Timer227.4 Timer Counter237.5 Programmable Threshold Port (Analog Input Port)277.6 Bit Sequential Buffer16 Bits28
8.	INTERRUPT FUNCTION AND TEST FUNCTION
9.	STANDBY FUNCTION
10.	RESET FUNCTION 32 10.1 Configuration and Operation Status of RESET Function 32 10.2 Watchdog Flag (WDF), Key Return Flag (KRF) 36
11.	MASK OPTION
12.	INSTRUCTION SETS
13.	ELECTRICAL SPECIFICATIONS
14.	CHARACTERISTICS CURVES (REFERENCE VALUES)

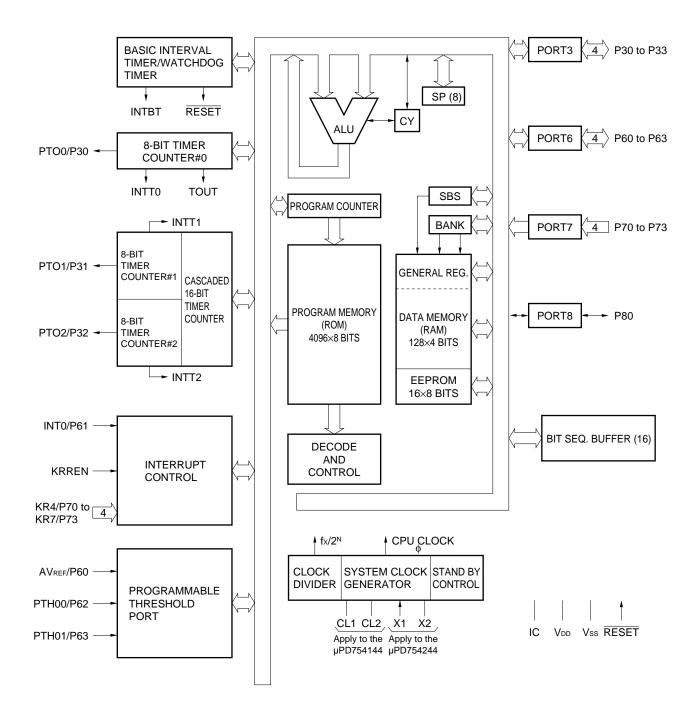
15. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUES) 7
16. PACKAGE DRAWINGS
17. RECOMMENDED SOLDERING CONDITIONS
APPENDIX A. COMPARISON OF FUNCTIONS AMONG μ PD754144, 754244, AND 75F42648
APPENDIX B. DEVELOPMENT TOOLS8
APPENDIX C. RELATED DOCUMENTS8


1. PIN CONFIGURATION (TOP VIEW)

- μPD754144
 - 20-pin Plastic SOP (300 mil, 1.27-mm pitch) μPD754144GS-xxx-BA5
 - 20-pin Plastic Shrink SOP (300 mil, 0.65-mm pitch) μPD754144GS-×××-GJG

IC: Internally Connected (Connect to VDD directly)

- μPD754244
 - 20-pin Plastic SOP (300 mil, 1.27-mm pitch) μPD754244GS-xxx-BA5
 - 20-pin Plastic Shrink SOP (300 mil, 0.65-mm pitch) μPD754244GS-×××-GJG



IC: Internally Connected (Connect to VDD directly)

Pin Identification

AVREF	: Analog reference	P70 to P73	: Port 7
CL1 and CL2	: System clock (RC)	P80	: Port 8
IC	: Internally connected	PTH00 and PTH01	: Programmable threshold port analog inputs 0 and 1
INT0	: External vectored interrupt 0	PTO0 to PTO2	: Programmable timer outputs 0 to 2
KR4 to KR7	: Key returns 4 to 7	RESET	: Reset
KRREN	: Key return reset enable	Vdd	: Positive power supply
P30 to P33	: Port 3	Vss	: Ground
P60 to P63	: Port 6	X1 and X2	: System clock (crystal/ceramic)

2. BLOCK DIAGRAM

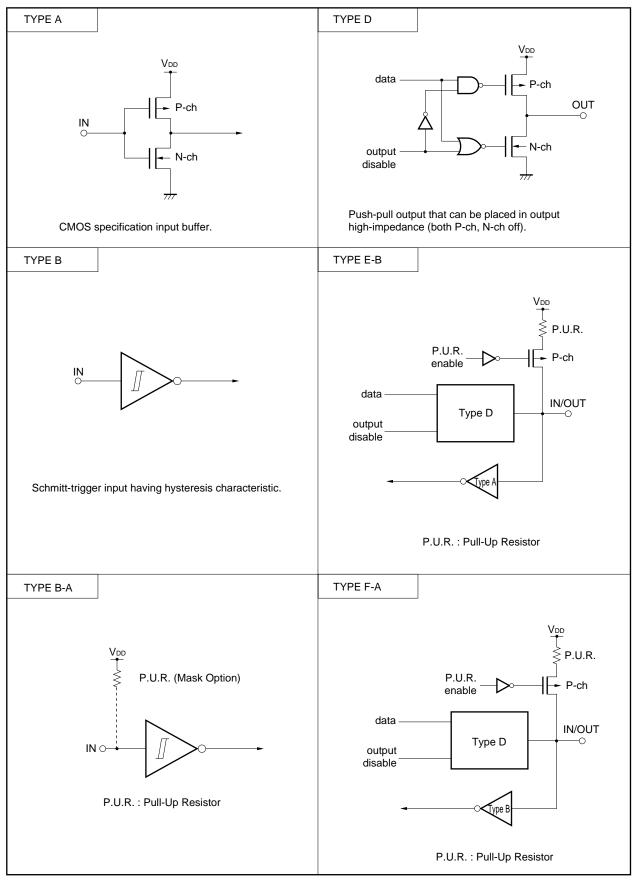
3. PIN FUNCTION

3.1 Port Pins

Pin Name	Input/Output	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit TYPE Note 1
P30	Input/Output	PTO0	Programmable 4-bit input/output port	-	Input	E-B
P31		PTO1	(PORT3). This port can be specified input/output bit-			
P32		PTO2	wise.			
P33		_	On-chip pull-up resistor connection can be specified by software in 4-bit units.			
P60	Input/Output	AVREF	Programmable 4-bit input/output port (PORT6).	-	Input	Ē-A
P61		INT0	This port can be specified input/output bit- wise.			
P62		PTH00	On-chip pull-up resistor can be specified by			
P63		PTH01	- software in 4-bit units ^{Note2} . Noise eliminator can be selected with P61/INT0.			
P70	Input	KR4	4-bit input port (PORT7).	-	Input	B-A
P71		KR5	On-chip pull-up resistor can be specified by software bit-wise.			
P72		KR6				
P73	1	KR7				
P80	Input/Output	-	1-bit input/output port (PORT8). On-chip pull-up resistor connection can be specified by software.	_	Input	Ē-A

Notes 1. Circled characters indicate the Schmitt-trigger input.

2. Do not specify an on-chip pull-up resistor connection when using the programmable threshold port.


3.2 Non-port Pins

Pin Name	Input/Output	Alternate Function	Function	After Reset	I/O Circuit TYPE ^{Note}
PTO0	Output	P30	Timer counter output pins	Input	E-B
PTO1		P31			
PTO2		P32			
INTO	Input	P61	Edge detection vectored interrupt input pinNoise elimination circuit can be selected.(detected edge can be selected)selected.Noise elimination circuit can be selected.input	Input	Ē-A
KR4 to KR7	Input	P70 to P73	Falling edge detection testable input pins	Input	B-A
PTH00	Input	P62	Threshold voltage-variable 2-bit analog input p	ns Input	(F)-A
PTH01		P63			
KRREN	Input	_	Key return reset enable pin The reset signal is generated at the falling edge of KRn while KRREN is high in STOP mode.	Input	B
AVREF	Input	P60	Reference voltage input pin	Input	Ē-A
CL1	-	_	Incorporated in the μ PD754144 only RC (for system clock oscillation) connection pin	_	-
CL2	-		External clock cannot be input.		
X1	Input	_	Incorporated in the µPD754244 only Crystal/ceramic resonator (for system clock oscillation) connection pin	-	_
Х2	_		When inputting the external clock, input the external clock to pin X1 and input the inverted phase of the external clock to pin X2.		
RESET	Input	_	System reset input pin (low-level active)	-	B-A
			Pull-up resistor can be incorporated (mask option).	
IC	-	_	Internally Connected Connect directly to V_{DD} .	-	-
Vdd	-	-	Positive supply pin	-	-
Vss		_	Ground potential	-	_

Note Circled characters indicate the Schmitt-trigger input.

3.3 Pin Input/Output Circuits

The μ PD754244 pin input/output circuits are shown schematically.

3.4 Recommended Connection of Unused Pins

Pin	Recommended Connecting Method		
P30/PTO0	Input state : Independently connect to Vss or VDD via a resistor.		
P31/PTO1	Output state: Leave open.		
P32/PTO2			
P33			
P60/AVREF			
P61/INT0			
P62/PTH00			
P63/PTH01			
P70/KR4	Connect to Vbb.		
P71/KR5			
P72/KR6			
P73/KR7			
P80	Input state : Independently connect to Vss or Vbb via a resistor.		
	Output state: Leave open.		
KRREN	When this pin is connected to VDD, internal reset signal is gener- ated at the falling edge of the KRn pin in the STOP mode. When this pin is connected to Vss, internal reset signal is not generated even if the falling edge of KRn pin is detected in the STOP mode.		
IC	Connect directly to VDD.		

Table 3-1. List of Recommended Connection of Unused Pins

4. SWITCHING FUNCTION BETWEEN MK I MODE AND MK II MODE

4.1 Difference between Mk I and Mk II Modes

The μ PD754244 75XL CPU has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by the bit 3 of the Stack Bank Select register (SBS).

- Mk I mode: Instructions are compatible with the 75X series. Can be used in the 75XL CPU with a ROM capacity of up to 16 Kbytes.
- Mk II mode: Incompatible with 75X series. Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16 Kbytes.

	Mk I Mode	Mk II Mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA laddr1 instruction CALLA laddr1 instruction	Not available	Available
CALL laddr instruction	3 machine cycles	4 machine cycles
CALLF Ifaddr instruction	2 machine cycles	3 machine cycles

Table 4-1. Differences between Mk I Mode and Mk II Mode

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.

With regard to the number of stack bytes during execution of subroutine call instructions, the usable area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected.

However, when the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format. The SBS is set by a 4-bit memory manipulation instruction.

When using the Mk I mode, the SBS must be initialized to 1000B at the beginning of a program. When using the Mk II mode, it must be initialized to 0000B.

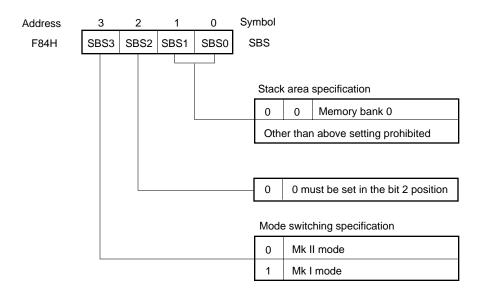


Figure 4-1. Stack Bank Select Register Format

Caution Because SBS. 3 is set to "1" after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to "0" to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program memory (ROM) ••• 4096 x 8 bits
 - Addresses 0000H and 0001H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a $\overline{\text{RESET}}$ signal is generated are written. Reset and start are possible at an arbitrary address.

• Addresses 0002H to 000FH

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt service can be started at an arbitrary address.

- Addresses 0020H to 007FH Table area referenced by the GETI instruction^{Note}.
- **Note** The GETI instruction realizes a 1-byte instruction on behalf of an arbitrary 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the program steps.

• Data memory

٠	Data area	
	Static RAM	••• 128 words x 4 bits (000H to 07FH)
	EEPROM	••• 16 words x 8 bits (400H to 41FH)
•	Peripheral hardware area	••• 128 words x 4 bits (F80H to FFFH)

Address	7	6	5	4		0			
0000H	MBE	RBE	0	0	Internal reset start address	(high-order 4 bits)		· ·	
0001H		1	1		Internal reset start address	(low-order 8 bits)			
0002H	MBE	RBE	0	0	INTBT start address	(high-order 4 bits)	CALLF !fado	Ir instruction	
0003H		1	1		INTBT start address	(low-order 8 bits)	entry a	ddress	
0004H	MBE	RBE	0	0	INT0 start address	(high-order 4 bits)			
0005H					INT0 start address	(low-order 8 bits)			
0006H									
0007H									
0008H								Branch ac	
0009H								BR !: BRCB BR B	!caddr
000AH	MBE	RBE	0	0	INTT0 start address	(high-order 4 bits)		BR B BR B BRA !a	CXA
000BH					INTT0 start address	(low-order 8 bits)		CALL CALLA !	!addr
000CH	MBE	RBE	0	0	INTT1/INTT2 start address	(high-order 4 bits)		instruc	ctions
000DH		1	1	1	INTT1/INTT2 start address	(low-order 8 bits)		GETI Bra	anch/call
000EH	MBE	RBE	0	0	INTEE start address	(high-order 4 bits)		Addre	
000FH		1			INTEE start address	(low-order 8 bits)		BR \$addr i	
								relative brar (−15 to −1,	
	Ĩ						Ē		
0020H									
007FH				GET i	nstruction reference table				
0080H									
(L T					2	Ļ		
07FFH								,	
0800H						-			
	Ĩ						Ē		
0FFFH									

Figure 5-1. Program Memory Map

Note Can be used in the MkII mode only.

Remark In addition to the above, a branch can be made to an address with the low-order 8-bits only of the PC changed by means of a BR PCDE or BR PCXA instruction.

Figure 5-2. Data Memory Map

6. EEPROM

The μ PD754244 incorporates 16 words × 8 bit EEPROM (Electrically Erasable PROM) as well as static RAM (128 words × 4 bit) as a data memory.

The EEPROM incorporated into the μ PD754244 has the following features.

- (1) Written data is retained if power is turned off.
- (2) 8-bit data manipulation (auto-erase/auto-write) is available by memory manipulation instruction as well as for static RAM. However available instructions are restricted.
- (3) It can reduce loads of software because the auto-erase and/or auto-write operation is performed by hardware.
- (4) Write operation control using the interrupt request
 - The interrupt request is generated under following conditions.
 - Terminates write operation
 - Write status flag

It is possible to check whether enables or disables write operation by bit manipulation instructions.

7. PERIPHERAL HARDWARE FUNCTIONS

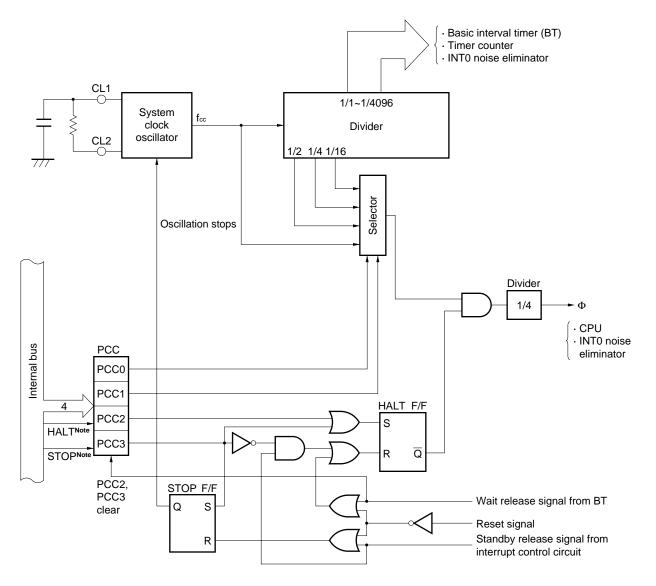
7.1 Digital Input/Output Ports

The following two types of I/O ports are provided.

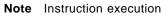
CMOS input (Port 7) : 4
 CMOS I/O (Ports 3, 6, 8) : 9
 Total : 13

Table 7-1. Types and Features of Digital Ports

Port Name	Function	Operation and Features	Remarks
PORT3	4-bit I/O	Can be set to input or output mode bit-wise.	Also used as PTO0 to PTO2 pins.
PORT6			Also used as AV $_{\text{REF}}$ INT0, PTH00, and PTH01 pins.
PORT7	4-bit input	4-bit input only port	Also used as KR4 to KR7 pins.
		On-chip pull-up resistor connection can be specified	
		by mask option bit-wise.	
PORT8	1-bit I/O	Can be set to input or output mode bit wise.	_


7.2 Clock Generator

The clock generator provides the clock signals to the CPU and peripheral hardware. Its configuration is shown in Figures 7-1 and 7-2.


The operation of the clock generator is set with the processor clock control register (PCC). The instruction execution time can be changed.

• μPD754144

- 4, 8, 16, 64 μ s (when the system clock fcc operates at 1.0 MHz)
- μPD754244
 - 0.95, 1.91, 3.81, 15.3 μs (when the system clock fx operates at 4.19 MHz)
 - 0.67, 1.33, 2.67, 10.7 μ s (when the system clock fx operates at 6.0 MHz)

Figure 7-1. µPD754144 (RC Oscillation) Clock Generator Block Diagram

Remarks 1. fcc: System clock frequency

- **2.** Φ = CPU clock
- 3. PCC: Processor Clock Control Register
- 4. One clock cycle (tcr) of the CPU clock is equal to one machine cycle of the instruction.

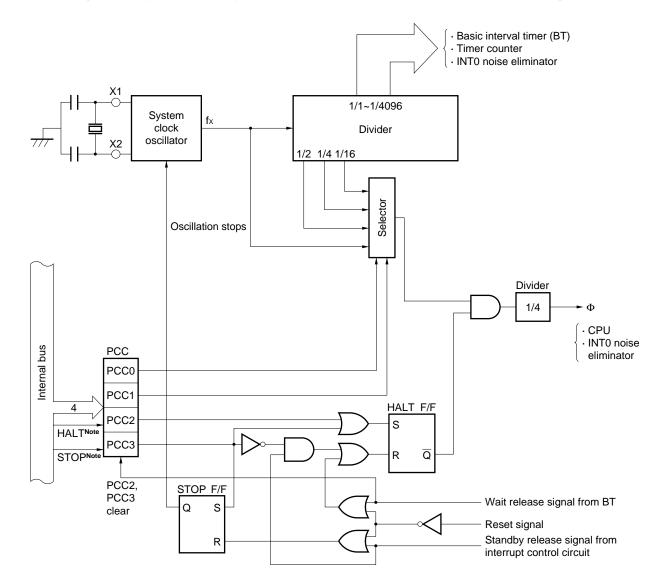
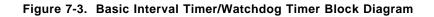
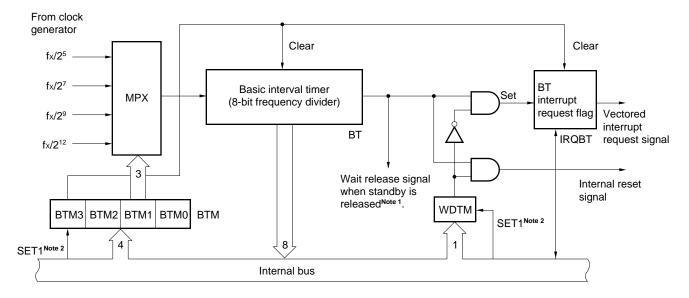


Figure 7-2. µPD754244 (Crystal/Ceramic Oscillation) Clock Generator Block Diagram

Note Instruction execution

Remarks 1. fx: System clock frequency


- **2.** Φ = CPU clock
- 3. PCC: Processor Clock Control Register
- 4. One clock cycle (tcr) of the CPU clock is equal to one machine cycle of the instruction.


NEC

7.3 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- (a) Interval timer operation to generate a reference time interrupt
- (b) Watchdog timer operation to detect a runaway of program and reset the CPU
- (c) Selects and counts the wait time when the standby mode is released (μ PD754244 only)^{Note 1}
- (d) Reads the contents of counting

- **Notes 1.** In the μ PD754144 (RC oscillation), the wait time cannot be specified when the standby mode is released. The oscillation stabilization wait time is negligible in the μ PD754144 and this device returns to the normal operation mode after counting 2⁹/fcc (512 μ s: @ fcc = 1.0-MHz operation). In the μ PD754244 (crystal/ceramic oscillation), on the other hand, the wait time can be specified when the standby mode is released.
 - **2.** Instruction execution.

7.4 Timer Counter

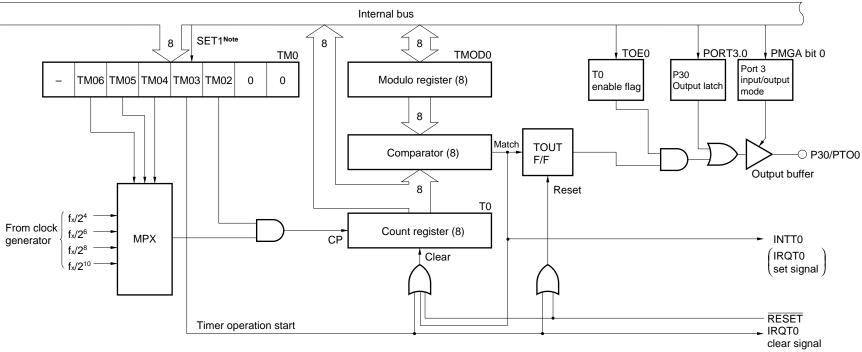
The μ PD754244 incorporates three channels of timer counters. Its configuration is shown in Figures 7-4 to 7-6.

The timer counter has the following functions.

- (a) Programmable interval timer operation
- (b) Square wave output of any frequency to PTO0-PTO2 pins
- (c) Count value read function

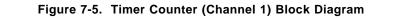
The timer counter can operate in the following four modes as set by the mode register.

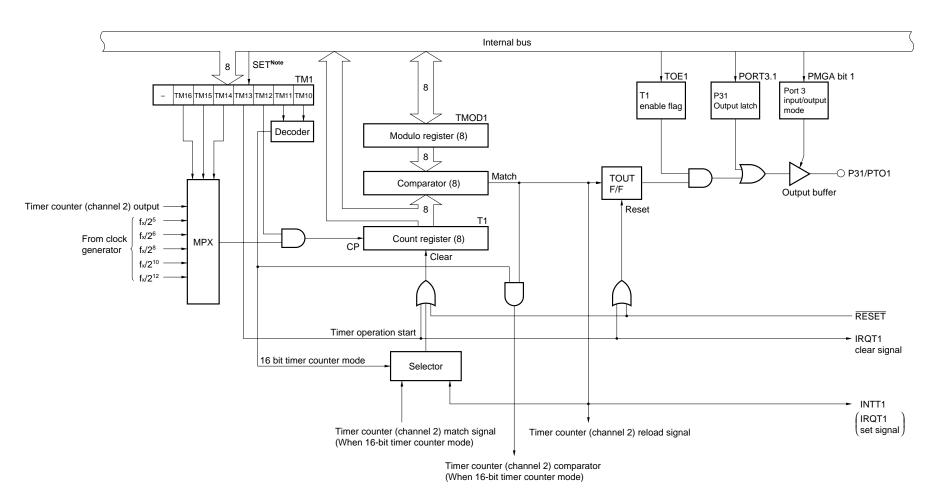
Table 7-2.	Mode Lis	st
------------	----------	----


Mode	Channel 0	Channel 1	Channel 2	TM11	TM10	TM21	TM20
8-bit timer counter mode	0	0	0	0	0	0	0
PWM pulse generator mode	×	×	0	0	0	0	1
16-bit timer counter mode	×	(C	1	0	1	0
Carrier generator mode	×	(С	0	0	1	1

Remark O: Available

 \times : Not available


NEC



Note Instruction execution

Caution When setting data to TM0, be sure to set bits 0 and 1 to 0.

Note Instruction execution

ZEO

Internal bus <u>]</u>8] <u>∫</u>8<u></u>]] 8 [SETNote 8 TMOD2 TC2 TM2 TMODH PORT3.2 PMGA bit 2 High-level period setting modulo register (8) Port 3 TM26 TM25 TM24 TM23 TM22 TM21 TM20 Modulo register (8) TOE2 REMC NRZB NRZ Output 0 input/output latch 787 787 mode Reload Decoder MPX (8) Selector 18 L O P32/PTO2 Match Output buffer TOUT Comparator (8) F/F ____8 [¯] Selector fx Reset Timer counter (channel 1) f_x/2 Τ2 clock input From clock Overflow fx/24 Count register (8) MPX generator CP f_x/2⁶ Clear Carrier generator mode f_x/2⁸ f_x/2¹⁰ INTT2 (IRQT2 16-bit timer counter mode set signal - IRQT2 clear signal Timer operation start RESET Timer counter (channel 1) clear signal (When 16-bit timer mode) Timer counter (channel 1) match signal Timer counter (channel 1) match signal (When 16-bit timer counter mode) (When Carrier generator mode)

Figure 7-6. Timer Counter (Channel 2) Block Diagram

Note Instruction execution

Caution When setting data to TC2, be sure to set bit 7 to 0.

7.5 Programmable Threshold Port (Analog Input Port)

The μ PD754244 provides analog input pins (PTH00, PTH01) whose threshold voltage (reference voltage) is selectable within sixteen steps. The following operations can be performed with these analog input pins.

- (1) Comparator operation
- (2) 4-bit resolution A/D converter operation (controlled by software)

Caution Do not specify an on-chip pull-up resistor connection for Port 6 when using the programmable threshold port.

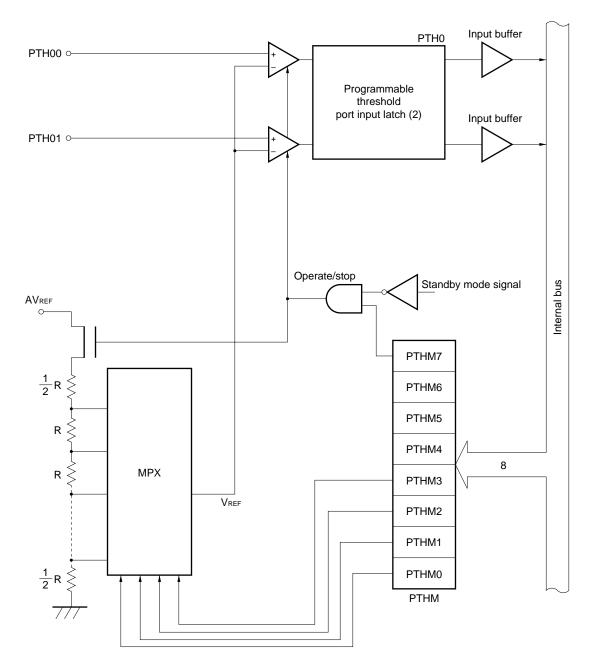
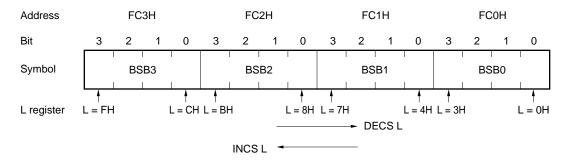



Figure 7-7. Programmable Threshold Port Block Diagram

7.6 Bit Sequential Buffer 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing large data bit-wise.

Figure 7-8. Bit Sequential Buffer Format

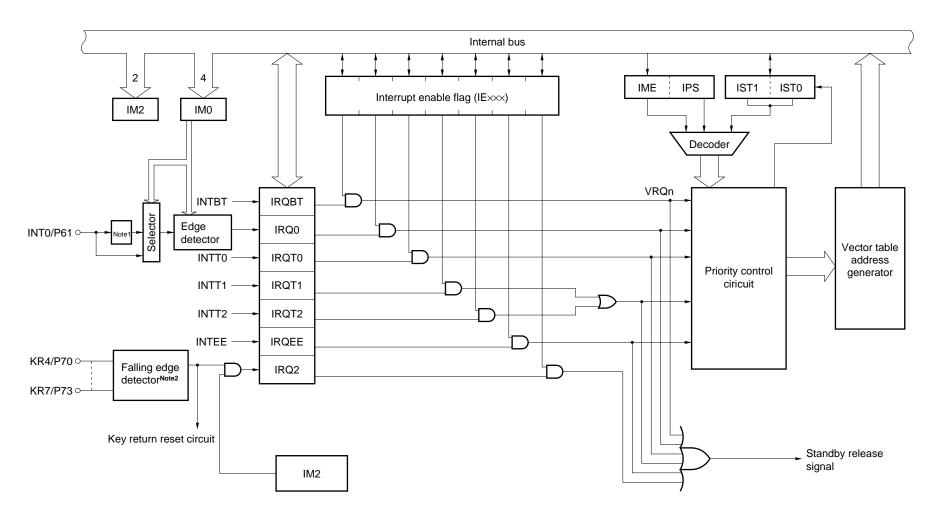
Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.

2. In the pmem. @L addressing, the BSB can be manipulated regardless of MBE/MSB specification.

8. INTERRUPT FUNCTION AND TEST FUNCTION

Figure 8-1 shows the interrupt control circuit. Each hardware device is mapped in the data memory space.

The interrupt control circuit of the μ PD754244 has the following functions.


(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acknowledgement by the interrupt enable flag (IExxx) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQ×××). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQ2) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

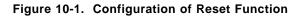
Notes 1. Noise eliminator (Standby release is disable when noise eliminator is selected.)

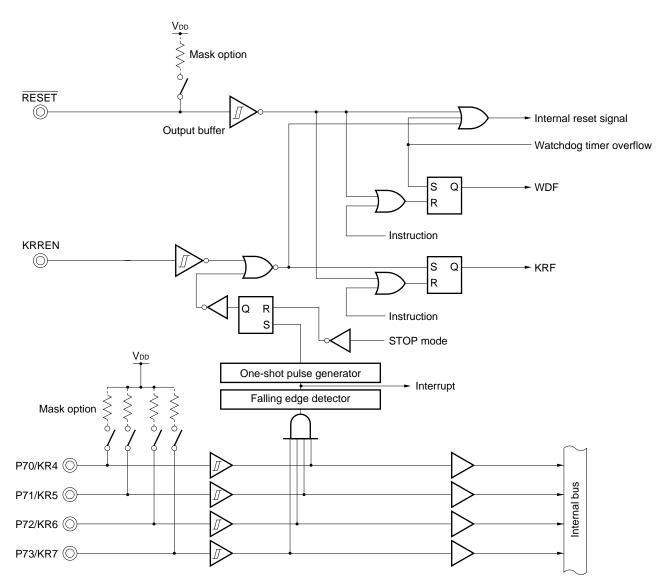
2. The INT2 pin is not provided. Interrupt request flag (IRQ2) is set at the KRn pin falling edge when IM20 = 1 and IM21 = 0.

9. STANDBY FUNCTION

In order to reduce power dissipation while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD754244.

Item Mode		STOP Mode	HALT Mode	
Set instruction		STOP instruction	HALT instruction	
Operation status	Clock generator	Operation stops.	Only the CPU clock Φ halts (oscillation continues).	
	Basic interval timer/ watchdog timer	Operation stops.	Operable BT mode: The IRQBT is set in the basic time interval. WT mode: Reset is generated by the BT overflow.	
	Timer	Operation stops.	Operable.	
External interrupt CPU		INT0 is not operable. ^{Note} INT2 is operable during KRn falling period only.		
		The operation stops.		
Release signal		 Reset signal Interrupt request signal sent from interrupt enabled peripheral hardware System reset signal (key return reset) generated by KRn falling edge when the KRREN pin = 1 	 Reset signal Interrupt request signal sent from interrupt enabled peripheral hardware 	


Table 9-1. Operation Status in Standby Mode


Note Can operate only when the noise eliminator is not used (IM02 = 1) by bit 2 of the edge detection mode register (IM0).

10. RESET FUNCTION

10.1 Configuration and Operation Status of RESET Function

There are three kinds of reset input: the external reset signal (RESET), the reset signal sent from the basic interval/watchdog timer, and the reset signal generated by a falling edge signal from KRn in the STOP mode. When any of these reset signals is input, an internal reset signal is generated. The configuration is shown in Figure 10-1.

Each hardware is initialized by the $\overrightarrow{\text{RESET}}$ signal generation as listed in Table 10-1. Figure 10-2 shows the timing chart of the reset operation.

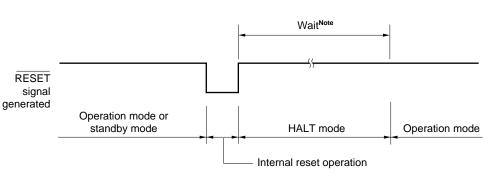


Figure 10-2. Reset Operation by RESET Signal Generation

 2^{17} /fx (21.8 ms : @ 6.0-MHz operation, 31.3 ms: @ 4.19-MHz operation) 2^{15} /fx (5.46 ms : @ 6.0-MHz operation, 7.81 ms: @ 4.19-MHz operation)

Note In the μ PD754144, the wait time is fixed to 56/fcc (56 μ s: @ 1.0-MHz operation). In the μ PD754244, the wait time can be selected from the following two time settings by means of the mask option.

	Hardware	RESET signal generation in the standby mode	RESET signal generation	
Program counter (PC)		Sets the low-order 4 bits of	Sets the low-order 4 bits of	
		program memory's address	program memory's address	
		0000H to the PC11-PC8 and the contents of address 0001H to	0000H to the PC11-PC8 and the	
		the PC7-PC0.	contents of address 0001H to the PC7-PC0.	
PSW (Carry flag (CY)	Held	Undefined	
:	Skip flag (SK0 to SK2)	0	0	
1	nterrupt status flag (IST0, IST1)	0	0	
I	Bank enable flag (MBE, RBE)	Sets the bit 6 of program memory's address 0000H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000H to the RBE and bit 7 to the MBE.	
Stack poir	nter (SP)	Undefined	Undefined	
Stack ban	k select register (SBS)	1000B	1000B	
Data mem	ory (RAM)	Held	Undefined	
Data mem	ory (EEPROM)	Held ^{Note 1}	Held ^{Note 2}	
EEPROM	write control register (EWC)	0	0	
General-p	urpose register (X, A, H, L, D, E, B, C)	Held	Undefined	
Bank sele	ct register (MBS, RBS)	0, 0	0, 0	
Basic interv	val Counter (BT)	Undefined	Undefined	
timer/watch	dog Mode register (BTM)	0	0	
timer	Watchdog timer enable flag (WDTM)	0	0	
Timer cou	nter Counter (T0)	0	0	
(channel C) Modulo register (TMOD0)	FFH	FFH	
	Mode register (TM0)	0	0	
	TOE0, TOUT F/F	0, 0	0, 0	
Timer cou	nter Counter (T1)	0	0	
(channel 1) Modulo register (TMOD1)	FFH	FFH	
	Mode register (TM1)	0	0	
	TOE1, TOUT F/F	0, 0	0, 0	
Timer cou	nter Counter (T2)	0	0	
(channel 2	2) Modulo register (TMOD2)	FFH	FFH	
	High-level period setting modulo register (TMOD2H)	FFH	FFH	
	Mode register (TM2)	0	0	
	TOE2, TOUT F/F	0, 0	0, 0	
	REMC, NRZ, NRZB	0, 0, 0	0, 0, 0	

Table 10-1. Hardware Status After Reset (1/3)

Notes 1. Undefined if STOP mode is entered during an EEPROM write operation. Also undefined if HALT mode is entered during a write operation and a RESET signal is input during a write operation.

2. If a RESET signal is input during an EEPROM write operation, the data at that address is undefined.

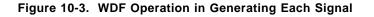
	Hardware	RESET signal generation in the standby mode	RESET signal generation in operation	
Programmable threshold port mode register (PTHM)		00H	00H	
Clock generator	Processor clock control register (PCC)	0	0	
Interrupt	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)	
function	Interrupt enable flag (IE×××)	0	0	
	Interrupt priority selection register (IPS)	0	0	
	INT0, 2 mode registers (IM0, IM2)	0, 0	0, 0	
Digital port	Output buffer	Off	Off	
	Output latch	Cleared (0)	Cleared (0)	
	I/O mode registers (PMGA, C)	0	0	
	Pull-up resistor setting register (POGA, B)	0	0	
Bit sequential buffer (BSB0-BSB3)		Held	Undefined	

Table 10-1. Hardware Status After Reset (2/3)

Table 10-1. Hardware Status After Reset (3/3)

Hardware	RESET signal generation by key return reset	RESET signal generation in the standby mode	RESET signal generation by WDT during operation	RESET signal generation during operation
Watchdog flag (WDF)	Hold the previous status	0	1	0
Key return flag (KRF)	1	0	Hold the previous status	0

10.2 Watchdog Flag (WDF), Key Return Flag (KRF)


The WDF is cleared by a watchdog timer overflow signal, and the KRF is set by a reset signal generated by the KRn pins. As a result, by checking the contents of WDF and KRF, it is possible to know what kind of reset signal is generated.

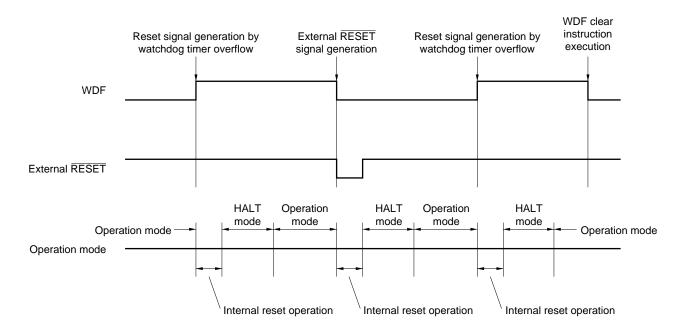

As the WDF and KRF are cleared only by external signal or instruction execution, if once these flags are set, they are not cleared until an external signal is generated or a clear instruction is executed. Check and clear the contents of WDF and KRF after reset start operation by executing SKTCLR instruction and so on.

Table 10-2 lists the contents of WDF and KRF corresponding to each signal. Figure 10-3 shows the WDF operation in generating each signal, and Figure 10-4 shows the KRF operation in generating each signal.

Hardware	External RESET signal generation	Reset signal generation by watch- dog timer overflow	Reset signal generation by the KRn input	WDF clear instruction execution	KRF clear instruction execution
Watchdog flag (WDF)	0	1	Hold	0	Hold
Key return flag (KRF)	0	Hold	1	Hold	0

Table 10-2. WDF and KRF Contents Correspond to Each Signal

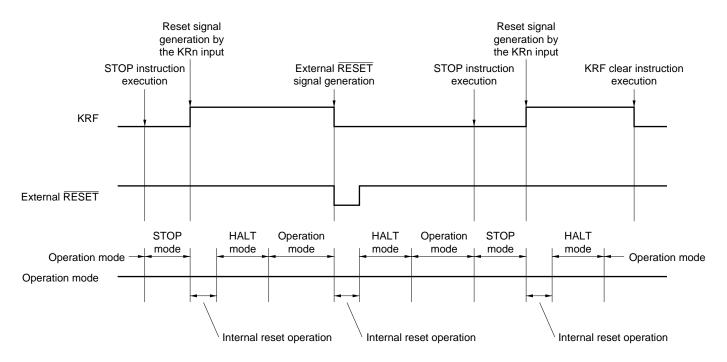


Figure 10-4. KRF Operation in Generating Each Signal

11. MASK OPTION

The μ PD754244 has the following mask options:

Mask option of P70/KR4 to P73/KR7

On-chip pull-up resistor connection can be specified for these pins.

- (1) Do not connect an on-chip pull-up resistor
- (2) Connect the 100-k Ω (typ.) pull-up resistor bit-wise
- Mask option of RESET pin

On-chip pull-up resistor connection can be specified for this pin.

- (1) Do not connect an on-chip pull-up resistor
- (2) Connect the 100-k Ω (typ.) pull-up resistor

• Standby function mask option (μ PD754244 only) ^{Note}

The wait time when the $\overline{\text{RESET}}$ signal is input can be selected.

- (1) 2¹⁷/fX (21.8 ms: @ fx = 6.0-MHz operation, 31.3 ms: @ fx = 4.19-MHz operation)
- (2) 2^{15} /fX (5.46 ms: @ fx = 6.0-MHz operation, 7.81 ms: @ fx = 4.19-MHz operation)
- **Note** This mask option is not provided for the μ PD754144, and its wait time is fixed to 56/fcc (56 μ s: @ fcc = 1.0-MHz operation).

12. INSTRUCTION SETS

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to "RA75X ASSEMBLER PACKAGE USERS' MANUAL — LANGUAGE (EEU-1367)". If there are several elements, one of them is selected. Capital letters and the + and – symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.

Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, refer to " μ PD754144, 754244 user's manual (U10676E)".

Expression format	Description method
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL–, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr	000H-FFFH immediate data or label
addr1	000H-FFFH immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (where bit $0 = 0$) or label
PORTn	PORT3, 6, 7, 8
IE×××	IEBT, IET0-IET2, IE0, IE2, IEEE
RBn	RB0-RB3
MBn	MB0, MB4, MB15

Note mem can be only used for even address in 8-bit data processing.

)	Legend	in explanation of operation
	А	: A register, 4-bit accumulator
	В	: B register
	С	: C register
	D	: D register
	Е	: E register
	Н	: H register
	L	: L register
	Х	: X register
	XA	: XA register pair; 8-bit accumulator
	BC	: BC register pair
	DE	: DE register pair
	HL	: HL register pair
	XA'	: XA' extended register pair
	BC'	: BC' extended register pair
	DE'	: DE' extended register pair
	HL'	: HL' extended register pair
	PC	: Program counter
	SP	: Stack pointer
	CY	: Carry flag, bit accumulator
	PSW	: Program status word
	MBE	: Memory bank enable flag
	RBE	: Register bank enable flag
	PORTn	: Port n (n = 3, 6, 7, 8)
	IME	: Interrupt master enable flag
	IPS	: Interrupt priority selection register
	IE×××	: Interrupt enable flag
	RBS	: Register bank selection register
	MBS	: Memory bank selection register
	PCC	: Processor clock control register
		: Separation between address and bit
	(××)	: The contents addressed by $\times\!\!\times$
	××Н	: Hexadecimal data

(3) Explanation of symbols under addressing area column

*1	MB = MBE•MBS (MBS = 0, 4, 15)	
*2	MB = 0	
*3	MBE = 0 : MB = 0 (000H to 07FH) MB = 15 (F80H to FFFH) MBE = 1 : MB = MBS (MBS = 0, 4, 15)	Data memory addressing
*4	MB = 15, fmem = FB0H to FBFH, FF0H to FFFH	
*5	MB = 15, pmem = FC0H to FFFH	
*6	addr = 000H to FFFH	↑
*7	addr = (Current PC) - 15 to (Current PC) - 1 (Current PC) + 2 to (Current PC) + 16	
	addr1 = (Current PC) - 15 to (Current PC) - 1 (Current PC) + 2 to (Current PC) + 16	Program memory addressing
*8	caddr = 000H to FFFH	
*9	faddr = 0000H to 07FFH	
*10	taddr = 0020H to 007FH	
*11	addr1 = 000H to FFFH	↓

Remarks 1. MB indicates memory bank that can be accessed.

- 2. In *2, MB = 0 independently of how MBE and MBS are set.
- 3. In *4 and *5, MB = 15 independently of how MBE and MBS are set.
- 4. *6 to *11 indicate the areas that can be addressed.

(4) Explanation of number of machine cycles column

S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: S = 0
- When the skipped instruction is a 1- or 2-byte instruction: S = 1
- When the skipped instruction is a 3-byte instruction^{Note}: S = 2

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr, or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (= tcr); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer	MOV	A, #n4	1	1	$A \leftarrow n4$		String effect A
instruction		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	XA ← n8		String effect A
		HL, #n8	2	2	$HL \leftarrow n8$		String effect B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @HL+	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L+1$	*1	L = 0
		A, @HL–	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L-1$	*1	L = FH
		A, @rpa1	1	1	A ← (rpa1)	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	$(HL) \gets A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
		A, mem	2	2	$A \leftarrow (mem)$	*3	
		XA, mem	2	2	$XA \gets (mem)$	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	$(mem) \gets XA$	*3	
		A, reg	2	2	$A \gets reg$		
		XA, rp'	2	2	$XA \leftarrow rp'$		
		reg1, A	2	2	reg1 ← A		
		rp'1, XA	2	2	rp'1 ← XA		
	ХСН	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @HL+	1	2+S	A \leftrightarrow (HL), then L \leftarrow L+1	*1	L = 0
		A, @HL-	1	2+S	A \leftrightarrow (HL), then L \leftarrow L–1	*1	L = FH
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A \leftrightarrow reg1$		
		XA, rp'	2	2	$XA \leftrightarrow rp'$		
Table	MOVT	XA, @PCDE	1	3	XA ← (PC 11-8+DE)ROM		
reference instructions		XA, @PCXA	1	3	$XA \leftarrow (PC_{^{11-8}} + XA)_{\text{ROM}}$		
		XA, @BCDE	1	3	$XA \gets (BCDE)_{ROM^{Note}}$	*6	
		XA, @BCXA	1	3	$XA \leftarrow (BCXA)_{ROM}^{Note}$	*6	

Note Set "0" in register B.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	$CY \leftarrow (fmem.bit)$	*4	
Instructions		CY, pmem.@L	2	2	$CY \gets (pmem_{72} + L_{32}.bit(L_{10}))$	*5	
		CY, @H+mem.bit	2	2	CY ← (H+mem₃₋₀.bit)	*1	
		fmem.bit, CY	2	2	$(fmem.bit) \leftarrow CY$	*4	
		pmem.@L, CY	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow CY$	*5	
		@H+mem.bit, CY	2	2	(H+mem _{3−0} .bit) ← CY	*1	
	ADDS	A, #n4	1	1+S	$A \leftarrow A+n4$		carry
instructions		XA, #n8	2	2+S	$XA \leftarrow XA+n8$		carry
		A, @HL	1	1+S	$A \leftarrow A\text{+}(HL)$	*1	carry
		XA, rp'	2	2+S	$XA \leftarrow XA + rp'$		carry
		rp'1, XA	2	2+S	$rp'1 \leftarrow rp'1+XA$		carry
	ADDC	A, @HL	1	1	$A,CY \gets A\text{+}(HL)\text{+}CY$	*1	
		XA, rp'	2	2	$XA, CY \gets XA\text{+}rp'\text{+}CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1+XA+CY$		
	SUBS	A, @HL	1	1+S	$A \leftarrow A\text{-}(HL)$	*1	borrow
		XA, rp'	2	2+S	$XA \leftarrow XA\text{rp'}$		borrow
		rp'1, XA	2	2+S	rp'1 ← rp'1–XA		borrow
	SUBC	A, @HL	1	1	A, CY \leftarrow A–(HL)–CY	*1	
		XA, rp'	2	2	$XA, CY \gets XArp'CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1-XA-CY$		
	AND	A, #n4	2	2	$A \leftarrow A \land n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \land rp'$		
		rp'1, XA	2	2	$rp'1 \leftarrow rp'1 \land XA$		
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \lor rp'$		
		rp'1, XA	2	2	$rp'1 \leftarrow rp'1 \lor XA$		
	XOR	A, #n4	2	2	A ← A ₩ n4		
		A, @HL	1	1	$A \leftarrow A \not \forall (HL)$	*1	
		XA, rp'	2	2	XA ← XA v rp'		
		rp'1, XA	2	2	rp'1 ← rp'1 v XA		
Accumulator	RORC	A	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$		
manipulation instructions	NOT	A	2	2	$A \leftarrow \overline{A}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Increment	INCS	reg	1	1+S	$reg \leftarrow reg+1$		reg=0
and Decrement instructions		rp1	1	1+S	rp1 ← rp1+1		rp1=00H
Instructions		@HL	2	2+S	$(HL) \leftarrow (HL)+1$	*1	(HL)=0
		mem	2	2+S	$(mem) \leftarrow (mem)+1$	*3	(mem)=0
	DECS	reg	1	1+S	reg ← reg–1		reg=FH
		rp'	2	2+S	rp' ← rp'−1		rp'=FFH
	SKE	reg, #n4	2	2+S	Skip if reg = n4		reg=n4
Carry flag manipulation instruction		@HL, #n4	1	2+S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	2	1+S	Skip if A = (HL)	*1	A = (HL)
		XA, @HL	2	2+S	Skip if XA = (HL)	*1	XA = (HL)
		A, reg	2	2+S	Skip if A = reg		A=reg
		XA, rp'	2	2+S	Skip if XA = rp'		XA=rp'
	SET1	CY	1	1	CY ← 1		
	CLR1	CY	1	1	$CY \leftarrow 0$		
	SKT	CY	1	1+S	Skip if CY = 1		CY=1
	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		
	SET1	mem.bit	2	2	$(mem.bit) \leftarrow 1$	*3	
•		fmem.bit	2	2	(fmem.bit) ← 1	*4	
		pmem.@L	2	2	$(pmem_{7\text{-}2}+L_{3\text{-}2}.bit(L_{1\text{-}0})) \leftarrow 1$	*3 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1	
		@H+mem.bit	2	2	(H+mem₃–₀.bit) ← 1		
	CLR1	mem.bit	2	2	2+S $rp' \leftarrow rp'-1$ 2+SSkip if reg = n42+SSkip if A = (HL)2+SSkip if A = (HL)2+SSkip if XA = (HL)2+SSkip if XA = reg2+SSkip if XA = rp'1CY \leftarrow 11CY \leftarrow 01+SSkip if CY = 11CY $\leftarrow \overline{CY}$ 2(mem.bit) \leftarrow 12(fmem.bit) \leftarrow 12Skip if (fmem.bit) \leftarrow 13Skip if (fmem.bit) \leftarrow 14Skip if (mem.bit) \leftarrow 15Skip if (mem.bit) \leftarrow 16Skip if (mem.bit) \leftarrow 17Skip if (mem.bit) \leftarrow 12(fmem.bit) \leftarrow 02(fmem.bit) \leftarrow 02(fmem.bit) \leftarrow 02Skip if (mem.bit) $=$ 12+SSkip if (fmem.bit) $=$ 12+SSkip if (fmem.bit) $=$ 12+SSkip if (fmem.bit) $=$ 12+SSkip if (fmem.bit) $=$ 02+SSkip if (fmem.bit) $=$ 02+SSkip if (fmem.bit) $=$ 02+SSkip if (fmem.bit) $=$ 0	*3	
manipulation instructions		fmem.bit	2	2	(fmem.bit)← 0	*4	
		pmem.@L	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow 0$	*5	
		@H+mem.bit	2	2	(H+mem₃₋₀.bit) ← 0	*1	
	SKT	mem.bit	2	2+S	Skip if (mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if (fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if (H+mem₃₀.bit)=1	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	2+S	Skip if (mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if (fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if (H+mem₃₋₀.bit)=0	*1	(@H+mem.bit)=0

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Memory bit	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit)=1 and clear	*4	(fmem.bit)=1
manipulation instructions		CLR fmem.bit 2 2+S Skip if (fmem.bit)=1 and clear pmem.@L 2 2+S Skip if (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))=1 and clear @H+mem.bit 2 2+S Skip if (H+mem ₃₋₀ .bit)=1 and clear		*5	(pmem.@L)=1		
		@H+mem.bit	2	2+S	Skip if (H+mem₃-₀.bit)=1 and clear	*1	(@H+mem.bit)=1
	AND1	CY, fmem.bit	2	2	$CY \leftarrow CY \land (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{72}\text{+}L_{32}.bit(L_{10}))$	*5	
		CY, @H+mem.bit	2	2	$CY \gets CY \land (H\text{+}mem_{3\text{-}0}.bit)$	*1	
	OR1	CY, fmem.bit	2	2	$CY \leftarrow CY \lor (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \lor (pmem_{72}\text{+}L_{32}.bit(L_{10}))$	*5	
		CY, @H+mem.bit	2	2	$CY \gets CY \lor (H\text{+}mem_{3\text{-}0}.bit)$	*1	
	XOR1	CY, fmem.bit	2	2	$CY \leftarrow CY \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \not \leftarrow (pmem_{7\text{-}2}\text{+}L_{3\text{-}2}\text{.bit}(L_{1\text{-}0}))$	*5	
		CY, @H+mem.bit	2	2	CY ← CY v (H+mem₃₀.bit)	*1	
Branch instructions	BR ^{Note 1}	addr	-	_	$\begin{array}{l} PC_{11 \rightarrow 0} \leftarrow addr \\ \left(\begin{array}{c} Select \ appropriate \ instruction \ among \\ BR \ !addr \ BRCB \ !caddr, \ and \ BR \ \$addr \\ according \ to \ the \ assembler \ being \ used. \end{array} \right) \end{array}$	*6	
		addr1	_	_	PC ₁₁₋₀ ← addr Select appropriate instruction among BR !addr BRA !addr1, BRCB !caddr and BR \$addr1 according to the assembler being used.	*11	
		! addr	3	3	$PC_{^{11-0}} \leftarrow addr$	*6	
		\$addr	1	2	$PC_{^{11-0}} \leftarrow addr$	*7	
		\$addr1	1	2	$PC_{11-0} \leftarrow addr1$		
		PCDE	2	3	$PC_{^{11-0}} \gets PC_{^{11-8}}\text{+}DE$		
		РСХА	2	3	$PC_{^{11-0}} \gets PC_{^{11-8}}\text{+}XA$		
		BCDE	2	3	$PC_{^{11-0}} \gets BCDE^{Note\ 2}$	*6	
		ВСХА	2	3	$PC_{^{11-0}} \gets BCXA^{Note \; 2}$	*6	
	BRANote 1	!addr1	3	3	$PC_{11-0} \leftarrow addr1$	*11	
	BRCB	!caddr	2	2	$PC_{^{11-0}} \leftarrow caddr_{^{11-0}}$	*8	

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode.

2. "0" must be set to B register.

N	EC

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control instructions	CALLA ^{Note}	!addr1	3	3	$\begin{array}{l} (SP-2) \leftarrow \times, \times, MBE, RBE \\ (SP-6) (SP-3) (SP-4) \leftarrow PC_{11\text{-}0} \\ (SP-5) \leftarrow 0, 0, 0, 0 \\ PC_{11\text{-}0} \leftarrow addr1, SP \leftarrow SP-6 \end{array}$	*11	
	CALL ^{Note}	!addr	3	3	$\begin{array}{l} (SP-3) \leftarrow MBE, RBE, 0, 0 \\ (SP-4) (SP-1) (SP-2) \leftarrow PC_{^{11-0}} \\ PC_{^{11-0}} \leftarrow addr, SP \leftarrow SP-4 \end{array}$	*6	
				4	$\begin{array}{l} ({\rm SP-2}) \leftarrow \times, \times, {\rm MBE, RBE} \\ ({\rm SP-6}) \ ({\rm SP-3}) \ ({\rm SP-4}) \leftarrow {\rm PC_{11-0}} \\ ({\rm SP-5}) \leftarrow 0, 0, 0, 0 \\ {\rm PC_{11-0}} \leftarrow {\rm addr}, {\rm SP} \leftarrow {\rm SP-6} \end{array}$		
	CALLF ^{Note}	!faddr	2	2	$\begin{array}{l} (SP-3) \leftarrow MBE, RBE, 0, 0 \\ (SP-4) (SP-1) (SP-2) \leftarrow PC_{^{11-0}} \\ PC_{^{11-0}} \leftarrow 0+faddr, SP \leftarrow SP-4 \end{array}$	*9	
				3	$\begin{array}{l} (\text{SP-2}) \leftarrow \times, \times, \text{MBE, RBE} \\ (\text{SP-6}) (\text{SP-3}) (\text{SP-4}) \leftarrow \text{PC}_{11\text{-0}} \\ (\text{SP-5}) \leftarrow 0, 0, 0, 0 \\ \text{PC}_{11\text{-0}} \leftarrow 0\text{+faddr}, \text{SP} \leftarrow \text{SP-6} \end{array}$		
	RET ^{Note}		1	3	$PC_{11-0} \leftarrow (SP) (SP+3) (SP+2)$ MBE, RBE, 0, 0 \leftarrow (SP+1), SP \leftarrow SP+4		
					$ \begin{array}{l} \times,\times, MBE,RBE\leftarrow(SP+4)\\ 0,0,0,0,\leftarrow(SP+1)\\ PC_{1^{1-0}}\leftarrow(SP)\;(SP+3)\;(SP+2),SP\leftarrowSP+6 \end{array} $		
	RETS ^{Note}		1	3+S	$\begin{array}{l} MBE, RBE, 0, 0 \leftarrow (SP+1) \\ PC_{^{11-0}} \leftarrow (SP) \ (SP+3) \ (SP+2) \\ SP \leftarrow SP+4 \\ then skip unconditionally \end{array}$		Unconditional
					$\begin{array}{l} 0, 0, 0, 0 \leftarrow (SP+1) \\ PC_{1t \circ 0} \leftarrow (SP) (SP+3) (SP+2) \\ \times, \times, MBE, RBE \leftarrow (SP+4) \\ SP \leftarrow SP+6 \\ then \ skip \ unconditionally \end{array}$		
	RETINote		1	3	$\begin{array}{l} \text{MBE, RBE, 0, 0 \leftarrow (SP+1)} \\ \text{PC}_{11-0} \leftarrow (SP) (SP+3) (SP+2) \\ \text{PSW} \leftarrow (SP+4) (SP+5), SP \leftarrow SP+6 \end{array}$		
					$ \begin{array}{c} 0, 0, 0, 0 \leftarrow (\text{SP+1}) \\ \text{PC}_{11-0} \leftarrow (\text{SP}) (\text{SP+3}) (\text{SP+2}) \\ \text{PSW} \leftarrow (\text{SP+4}) (\text{SP+5}), \text{SP} \leftarrow \text{SP+6} \end{array} $		
	PUSH	rp	1	1	$(SP-1) (SP-2) \leftarrow rp, SP \leftarrow SP-2$		
		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS, SP \leftarrow SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP+1) (SP), SP \leftarrow SP+2$		
		BS	2	2	$MBS \gets (SP+1), RBS \gets (SP), SP \gets SP+2$		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation Addr a		Skip condition
Interrupt	EI		2	2	IME (IPS.3) ← 1		
control instructions		IExxx	2	2	IExxx ← 1		
	DI		2	2	IME (IPS.3) ← 0		
		IExxx	2	2	$ E \times \times \leftarrow 0$		
Input/output instructions	IN ^{Note 1}	A, PORTn	2	2	A ← PORTn (n = 3, 6, 7, 8)		
Instructions	OUT ^{Note 1}	PORTn, A	2	2	$PORTn \leftarrow A$ (n = 3, 6, 8)		
CPU control instructions	HALT		2	2	Set HALT Mode (PCC.2 \leftarrow 1)		
Instructions	STOP		2	2	Set STOP Mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	$RBS \leftarrow n$ (n = 0-3)		
instructions		MBn	2	2	$MBS \gets n \qquad \qquad (n = 0, 4, 15)$		
	GETI ^{Notes 2, 3}	taddr	1	3	• When TBR instruction $PC_{11-0} \leftarrow (taddr)_{3-0} + (taddr+1)$	*10	
					• When TCALL instruction (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, 0 PC ₁₁₋₀ \leftarrow (taddr) ₃₋₀ + (taddr+1) SP \leftarrow SP-4		
					 When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed. 		Depending on the reference instruction
				3	• When TBR instruction $PC_{11-0} \leftarrow (taddr)_{3-0} + (taddr+1)$	*10	
				4	• When TCALL instruction (SP-6) (SP-3) (SP-4) \leftarrow PC ₁₁₋₀ (SP-5) \leftarrow 0, 0, 0, 0 (SP-2) $\leftarrow \times, \times, MBE, RBE$ PC ₁₁₋₀ \leftarrow (taddr) ₃₋₀ + (taddr+1) SP \leftarrow SP-6		
				3	When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

- **Notes 1.** While the IN instruction and OUT instruction are being executed, MBE must be set to 0, or MBE must be set to 1 and MBS must be set to 15.
 - 2. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.
 - **3.** The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

13. ELECTRICAL SPECIFICATIONS

13.1 μ**PD754144**

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Test Conditions	Ratings	Unit
Power supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	VI			-0.3 to VDD + 0.3	V
Output voltage	Vo			-0.3 to VDD + 0.3	V
Output current, high	utput current, high Іон Per pin		P30, P31, P33, P60 to P63, P80	-10	mA
			P32	-20	mA
		For all pins		-30	mA
Output current, low	Iol	Per pin		20	mA
		For all pins		90	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance (T_A = 25° C, V_{DD} = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сім	f = 1 MHz			15	рF
Output capacitance	Соит	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	pF

System Clock Oscillator Characteristics (TA = -40 to +85 $^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
RC oscillator	CL1 CL2	Oscillation frequency (fcc) ^{Note}		0.4		2.0	MHz

Note Only the oscillator characteristics are shown. For the instruction execution time and oscillation frequency characteristics, refer to **AC Characteristics**.

Caution When using the oscillation circuit of the system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

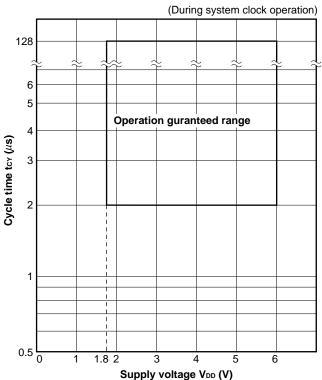
DC Characteristics (T_A = -40 to +85 $^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
High-level output	Іон	Per pin	P30, P31, P33,			-5	mA
current			P60 to P63, P80				
			P32, V _{DD} = 3.0 V,		-7	-15	mA
			$V_{OH} = V_{DD} - 2.0 V$				
		Total of all pins				-20	mA
Low-level output	Iol	Per pin				15	mA
current		Total of all pins				45	mA
High-level input	VIH1	Port 3	$2.7 \text{ V} \leq V_{\text{DD}} \leq 6.0 \text{ V}$	0.7Vdd		Vdd	V
voltage			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.9Vdd		Vdd	V
	VIH2	Ports 6 to 8,	$2.7 \text{ V} \leq V_{\text{DD}} \leq 6.0 \text{ V}$	0.8Vdd		Vdd	V
		KRREN, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.9Vdd		Vdd	V
Low-level input	VIL1	Port 3	$2.7 \text{ V} \leq V_{\text{DD}} \leq 6.0 \text{ V}$	0		0.3Vdd	V
voltage			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1Vdd	V
	VIL2	Ports 6 to 8,	$2.7 \text{ V} \leq V_{\text{DD}} \leq 6.0 \text{ V}$	0		0.2Vdd	V
		KRREN, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1Vdd	V
High-level	Vон	V _{DD} = 4.5 to 6.0 V, I _{OH} = -1.0 mA		Vdd - 1.0			V
output voltage		V _{DD} = 1.8 to 6.0 V,	Іон = -100 μА	Vdd - 0.5			V
Low-level	Vol	V _{DD} = 4.5 to 6.0 V	Port 3, IoL = 15 mA		0.6	2.0	V
output voltage			Ports 6, 8,			0.4	V
			IoL = 1.6 mA				
		V _{DD} = 1.8 to 6.0 V, Іон = 400 <i>µ</i> А				0.5	V
High-level input	Іцн	VIN = VDD				3.0	μA
leakage current							
Low-level input	Пле	$V_{IN} = 0 V$				-3.0	μA
leakage current							
High-level output	Ігон	Vout = Vdd				3.0	μA
leakage current							
Low-level output	ILOL	Vout = 0 V				-3.0	μA
leakage current							
On-chip pull-up	RL1	VIN = 0 V	Ports 3, 6, 8	50	100	200	kΩ
resistance	RL2	1	Port 7, RESET	50	100	200	kΩ
			(mask option)				

DC Characteristics (T _A = -40 to $+85^{\circ}$ C, V _{DD} = 1.8 to 6.0 V)	
--	--

Parameter	Symbol		С	Conditions		MIN.	TYP.	MAX.	Unit
Power supply	IDD1	1.0-MHz	VDD = 5	5.0 V ± 10% ^{No}	te 2		0.7	2.1	mA
current Note 1		RC oscillation	Vdd = 3	3.0 V ± 10% ^{No}	te 3		0.3	1.0	mA
	IDD2	R = 22 kΩ	HALT	HALT V _{DD} = 5.0 V ± 10%			0.5	1.8	mA
		C = 22 pF	mode	mode V _{DD} = 3.0 V ± 10%			0.25	0.9	mA
	IDD1	1.0-MHz	VDD = 5	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$			1.15	3.5	mA
		RC oscillation	Vdd = 3	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$			0.55	1.6	mA
	IDD2	R = 5.1 kΩ	HALT	VDD = 5.0 V	± 10%		0.95	2.8	mA
		C = 120 pF	mode	VDD = 3.0 V	± 10%		0.5	1.5	mA
	I DD3	STOP	Vdd = '	1.8 to 6.0 V				5	μA
		mode			T _A = 25°C			1	μA
			VDD = 3.0 V ±10%				0.1	3	μA
					$T_{A} = -40$ to $+40^{\circ}C$		0.1	1	μA

Notes 1. The current flowing through the on-chip pull-up resistor, the current during EEPROM writing time, and the current when the program threshold port (PTH) is operating are not included.


2. When the device is operated in the high-speed mode by setting the processor clock control register (PCC) to 0011H.

3. When the device is operated in the low-speed mode by setting PCC to 0000H.

AC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 6.0 V)

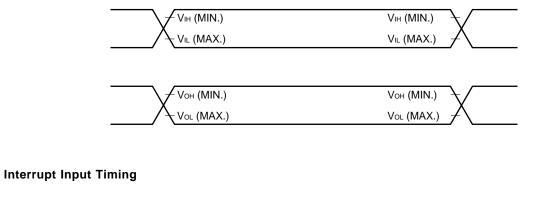
Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note1	tcy			2.0	4.0	128	μs
(Minimum instruction execution							
time = 1 machine cycle)							
RC oscillation frequency	fcc	R = 22 kΩ,	V _{DD} = 3.6 to 6.0 V	0.9	1.0 Note 2	1.2	MHz
		C = 22 pF	V _{DD} = 2.2 to 3.6 V	0.75	1.0 Note 2	1.15	MHz
			V _{DD} = 1.8 to 3.6 V	0.5	1.0 Note 2	1.15	MHz
			V _{DD} = 1.8 to 6.0 V	0.5	1.0 Note 2	1.2	MHz
		R = 5.1 kΩ,	V _{DD} = 3.6 to 6.0 V	0.91	1.0 Note 2	1.1	MHz
		C = 120 pF	V _{DD} = 2.2 to 3.6 V	0.76	1.0 Note 2	1.05	MHz
			V _{DD} = 1.8 to 3.6 V	0.51	1.0 Note 2	1.05	MHz
			V _{DD} = 1.8 to 6.0 V	0.51	1.0 Note 2	1.1	MHz
Interrupt input high- and	tinth, tintl	INT0	IM02 = 0	Note 3			μs
low-level width			IM02 = 1	10			μs
		KR4 to KR7		10			μs
RESET low-level width	trsl			10			μs

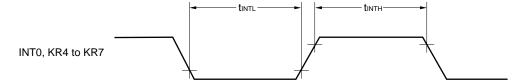
- Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the time constants of the connected resistor (R) and capacitor (d) and the processor clock control register (PCC). The figure on the right shows the cycle time tcγ characteristics against the supply voltage VDD when the system clock is used.
 - **2.** This is the typical value when $V_{DD} = 3.6$ V.
 - **3.** 2tcy or 128/fcc depending on the setting of the interrupt mode register (IM0).

tcy vs. VDD

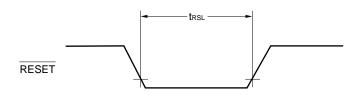
EEPROM Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

Parameter	Symbol	Cond	Conditions			MAX.	Unit
EEPROM	IEEW	1.0 MHz, $V_{DD} = 5.0 \text{ V} \pm 10\%$			4.0	12	mA
write current		RC oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%$		2.0	6	mA
EEPROM	teew	1.0 MHz, RC oscillation Note	3.8	4.6	10.0	ms	
write time							
EEPROM	EEWT	$T_A = -40$ to +70°C	100000			times/byte	
write times		T _A = −40 to +85°C		80000			times/byte

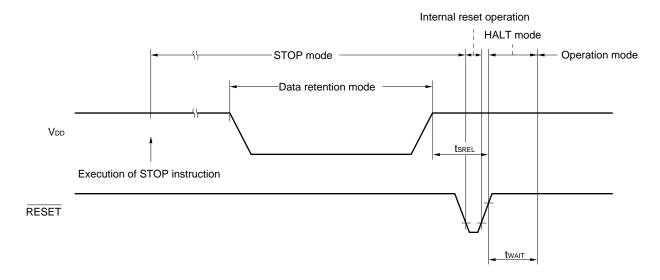

Note Set EWTC 4 to 6 so as to be 18×2^8 /fcc (4.6 ms: @ fcc = 1.0-MHz operation), considering the variation of the RC oscillation.

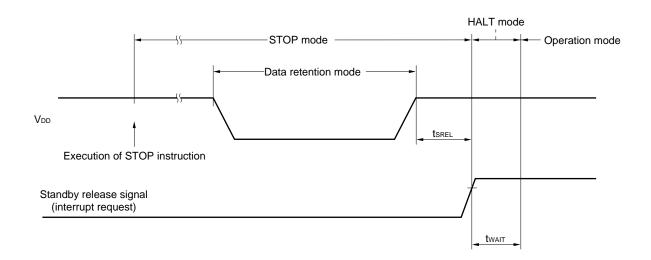

Comparator Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Comparison accuracy	VACOMP				±100	mV
Threshold voltage	Vтн		Note		Note	V
PTH input voltage	VIPTH		0		Vdd	V
AVREF input voltage	VIAVREF		1.8		Vdd	V
Comparator circuit	IDD5	When bit 7 of PTHM is set to 1		1		mA
current consumption						


Note The threshold voltage becomes as follows by settings bits 0 to 3 of PTHM. $V_{TH} = V_{IAVREF} x (n + 0.5)/16 (n = 0 to 15)$

AC Timing Test Points


RESET Input Timing


Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics ($T_A = -40$ to $+85^{\circ}C$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	t srel		0			μs
Oscillation stabilization	t wait	Release by RESET		56/fcc		μs
wait time		Release by interrupt request		512/fcc		μs

Data Retention Timing (on releasing STOP mode by RESET)

Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

13.2 μ**PD754244**

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Test Conditions	Ratings	Unit
Power supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	Vi			-0.3 to VDD + 0.3	V
Output voltage	Vo			-0.3 to VDD + 0.3	V
Output current, high	Іон	Per pin	P30, P31, P33, P60 to P63, P80	-10	mA
			P32	-20	mA
		For all pins		-30	mA
Output current, low	OL Note	Per pin		20	mA
		For all pins		90	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance (T_A = 25° C, V_{DD} = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	pF

• μ**PD754244**

System Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 6.0 V)

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	x1 x2	Oscillation frequency (fx) ^{Note1}		1.0		6.0 ^{Notes2, 3, 4}	MHz
		Oscillation stabilization time ^{Note 5}	After V _{DD} reaches MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency(fx) ^{Note1}		1.0		6.0 ^{Notes2, 3, 4}	MHz
		Oscillation stabilization time Note3	V _{DD} = 4.5 to 6.0 V			10	ms
						30	ms
External clock	X1 X2	X1 input frequency (fx) ^{Note1}		1.0		6.0 ^{Notes2, 3, 4}	MHz
		X1 input high- and low-level widths (txH, txL)		83.3		500	ns

Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to **AC Charac**teristics.

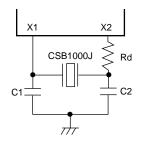
- If the oscillation frequency is 2.1 MHz < fx ≤ 4.19 MHz at 1.8 V ≤ V_{DD} < 2.0 V, set the processor control register (PCC) to a value other than 0011. If the PCC is set to 0011, the rated machine cycle time of 1.9 µs is not satisfied.
- If the oscillation frequency is 4.19 MHz < fx ≤ 6.0 MHz at 1.8 V≤ V_{DD} < 2.0 V, set the processor control register (PCC) to a value other than 0011 or 0010. If the PCC is set to 0011 or 0010, the rated machine cycle time of 1.9 µs is not satisfied.
- 4. If the oscillation frequency is 4.19 MHz < fx ≤ 6.0 MHz at 2.0 V≤ V_{DD} < 2.7 V, set the processor control register (PCC) to a value other than 0011. If the PCC is set to 0011, the rated machine cycle time of 0.95 μs is not satisfied.</p>
- 5. Oscillation stabilization time is a time required for oscillation to stabilize after application of VDD, or after the STOP mode has been released.

Caution When using the oscillation circuit of the system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

Recommended Oscillator Constants

Ceramic resonator (T_A = -20 to $+80^{\circ}$ C)


Manufacturer	Part Number	Frequency	Recomme	nded Circuit	Oscillatio	on Voltage	Remark
			Consta	ant (pF)	Rang	e (Vdd)	
		(MHz)	C1	C2	MN. (V)	MAX. (V)	
Kyocera	KBR-1000F/Y	1.0	100	100	1.8	6.0	—
	KBR-2.0MS	2.0	47	47			
	KBR-4.19MSB	4.19	33	33			
	KBR-4.19MKC		—	—			Model with capacitor
	PBRC4.19A		33	33			—
	PBRC4.19B		_	_			Model with capacitor
	KBR-6.0MSB	6.0	33	33			_
	KBR-6.0MKC		_	_			Model with capacitor
	PBRC6.00A		33	33	1		_
	PBRC6.00B		_	—]		Model with capacitor

Ceramic resonator (T_A = -40 to $+80^{\circ}$ C)

Manufacturer	Part Number	Frequency		nded Circuit		on Voltage	Remark
			Consta	ant (pF)	Rang	le (Vdd)	
		(MHz)	C1	C2	MIN. (V)	MAX. (V)	
Murata Mfg.	CSB1000J Note	1.0	100	100	2.0	6.0	Rd = 2.2 kΩ
Co., Ltd.	CSA2.00MG040	2.0					_
	CST2.00MG040		—	—			Model with capacitor
	CSA4.19MG	4.19	30	30	1.9		—
	CST4.19MGW		_	_	1		Model with capacitor
	CSA4.19MGU		30	30	1.8		—
	CST4.19MGWU		_	_			Model with capacitor
	CSA6.00MG	6.0	30	30	2.5		—
	CST6.00MGW		_	_	1		Model with capacitor
	CSA6.00MGU		30	30	1.8		—
	CST6.00MGWU						Model with capacitor
ток	CCR1000K2	1.0	100	100	2.0		—
	CCR4.19MC3	4.19	_	_			Model with capacitor
	FCR4.19MC5						
	CCR6.0MC3	6.0					
	FCR6.0MC5						

Note When using the CSB1000J (1.0 MHz) made by Murata Mfg. Co., Ltd. as a ceramic resonator, a limiting resistor (Rd = $2.2 \text{ k}\Omega$) is necessary (refer to the figure below). This resistor is not necessary when using the other recommended resonators.

NEC

Caution The oscillator constants and oscillation voltage range indicate conditions for stable oscillation, but do not guarantee oscillation frequency accuracy. If oscillation frequency accuracy is required for actual circuits, it is necessary to adjust the oscillation frequency of the oscillator in the actual circuit. Please contact directly the manufacturer of the resonator to be used.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level output	Іон	Per pin	P30, P31, P33,			-5	mA
current			P60 to P63, P80				
			P32, VDD = 3.0 V,		-7	-15	mA
			$V_{OH} = V_{DD} - 2.0 V$				
		Total of all pins				-20	mA
Low-level output	lol	Per pin				15	mA
current		Total of all pins				45	mA
High-level input	VIH1	Port 3	$2.7 \text{ V} \leq V_{\text{DD}} \leq 6.0 \text{ V}$	0.7Vdd		Vdd	V
voltage			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.9Vdd		Vdd	V
	VIH2	Ports 6 to 8,	$2.7~V \leq V_{\text{DD}} \leq 6.0~V$	0.8Vdd		Vdd	V
		KRREN, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.9Vdd		Vdd	V
	Vінз	X1		Vdd - 0.1		Vdd	V
Low-level input	VIL1	Port 3	$2.7~V \leq V_{\text{DD}} \leq 6.0~V$	0		0.3Vdd	V
voltage			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1Vdd	V
	VIL2	Ports 6 to 8,	$2.7 \text{ V} \leq V_{\text{DD}} \leq 6.0 \text{ V}$	0		0.2Vdd	V
		KRREN, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1Vdd	V
	Vінз X1		X1			0.1	V
High-level	Vон	V _{DD} = 4.5 to 6.0 V, Iон = -1.0 mA		Vdd - 1.0			V
output voltage		V _{DD} = 1.8 to 6.0 V,	V _{DD} = 1.8 to 6.0 V, Іон = -100 µА				V
Low-level	Vol	V _{DD} = 4.5 to 6.0 V	Port 3, IoL = 15 mA		0.6	2.0	V
output voltage			Ports 6, 8,			0.4	V
			lo∟ = 1.6 mA				
		V _{DD} = 1.8 to 6.0 V,	Іон = 400 μА			0.5	V
High-level input	Ішні	Vin = Vdd	Pins other than X1			3.0	μA
leakage current	ILIH2		X1			20	μA
Low-level input	ILIL1	$V_{IN} = 0 V$	Pins other than X1			-3.0	μA
leakage current	ILIH2		X1			-20	μA
High-level output	Ігон	Vout = Vdd				3.0	μA
leakage current							
Low-level output	ILOL	Vout = 0 V				-3.0	μA
leakage current							
On-chip pull-up	RL1	Vin = 0 V	Port 3, 6, 8	50	100	200	kΩ
resistance	RL2		Port 7, RESET	50	100	200	kΩ
			(mask option)				

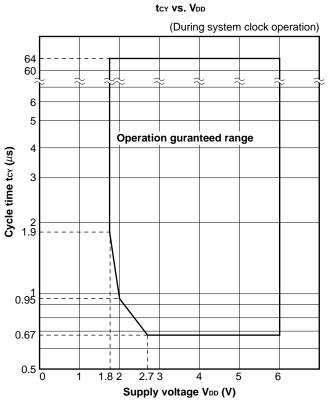
 \star

• µ**PD754244**

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

Parameter	Symbol		Conditions					MAX.	Unit
Power supply	IDD1	4.19-MHz	VDD = 5	.0 V ± 10% ^N	ote 2		1.5	5.0	mA
current Note 1		crystal	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$				0.23	1.0	mA
	IDD2	oscillation	HALT V _{DD} = 5.0 V ± 10%			0.64	3.0	mA	
		C1 = C2 = 22 pF	mode $V_{DD} = 3.0 \text{ V} \pm 10\%$			0.20	0.9	mA	
	Іддз	X1 = 0 V	VDD = 1	V _{DD} = 1.8 to 6.0 V				5	μA
		STOP mode	TA		T _A = 25°C			1	μA
			Vdd = 3.0 V ± 10%				0.1	3	μA
					$T_{A} = -40$ to $+40^{\circ}C$		0.1	1	μA

Notes 1. The current flowing through the on-chip pull-up resistor, the current during EEPROM writing time, and the current during the program threshold port (PTH) operation are not included.


2. When the device is operated in the high-speed mode by setting the processor clock control register (PCC) to 0011H

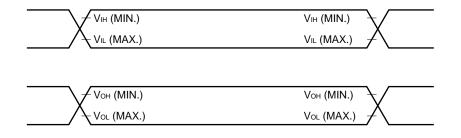
3. When the device is operated in the low-speed mode by setting PCC to 0000H

AC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

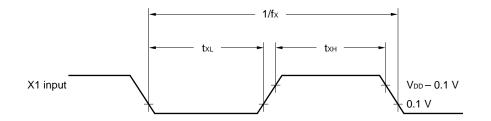
Parameter	Symbol	Test Co	MIN.	TYP.	MAX.	Unit	
CPU clock cycle time Note 1	tcy	V _{DD} = 1.8 to 2.0 V		1.9		64.0	μs
(Minimum instruction execution		V _{DD} = 2.0 to 2.7 V		0.95		64.0	μs
time = 1 machine cycle)		V _{DD} = 2.7 to 6.0 V		0.67		64.0	μs
Interrupt input high- and	tinth, tintl	INT0	IM02 = 0	Note 2			μs
low-level width			IM02 = 1	10			μs
		KR4 to KR7		10			μs
RESET low-level width	trsl			10			μs

- Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the oscillation frequency of the connected resonator (or external clock) and the processor clock control register (PCC). The figure on the right shows the cycle time tcy characteristics against the supply voltage VDD when the system clock is used.
 - 2tcr or 128/fx depending on the setting of the interrupt mode register (IM0).

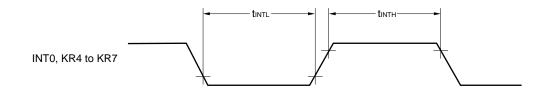
EEPROM Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)

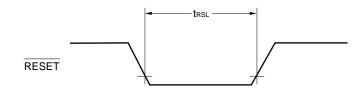

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
EEPROM	IEEW	4.19 MHz,	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$		4.5	15	mA
write current		crystal oscillation	$V_{DD} = 3.0 V \pm 10\%$		2.0	6	mA
EEPROM	teew			3.8		10.0	ms
write time							
EEPROM	EEWT	$T_{A} = -40$ to +70°C		100000			times/byte
write times		T _A = -40 to +85°C		80000			times/byte

Comparator Characteristics (TA = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 6.0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Comparison accuracy	VACOMP				±100	mV
Threshold voltage	Vтн		Note		Note	V
PTH input voltage	Vipth		0		Vdd	V
AVREF input voltage	VIAVREF		1.8		Vdd	V
Comparator circuit	IDD5	When bit 7 of PTHM is set to 1		1		mA
current consumption						

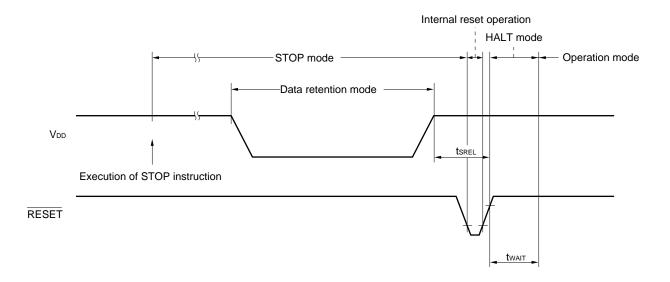
Note The threshold voltage becomes as follows by settings bits 0 to 3 of PTHM. VTH = VIAVREF x (n + 0.5)/16 (n = 0 to 15)


AC Timing Test Points (Excluding X1 Input)

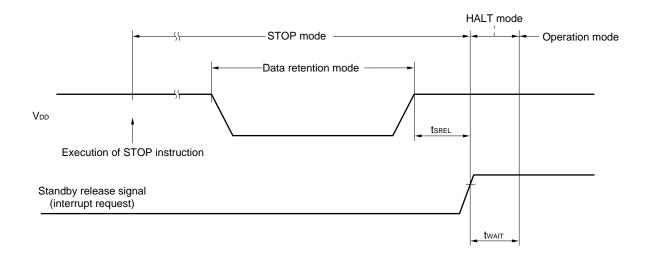

Clock Timing

Interrupt Input Timing

RESET Input Timing

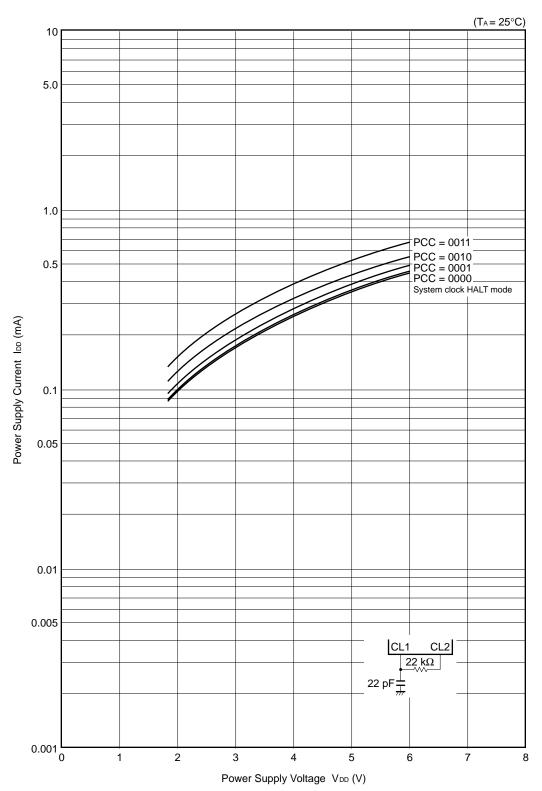

Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics (TA = -40 to +85 °C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsrel		0			μs
Oscillation stabilization	t wait	Release by RESET		Note 2		ms
wait time Note 1		Release by interrupt request		Note 3		ms


- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU operation is stopped to avoid unstable operation at oscillation start.
 - **2.** $2^{17}/fx$ and $2^{15}/fx$ can be selected with mask option.
 - 3. Depends on setting of basic interval timer mode register (BTM) (see table below).

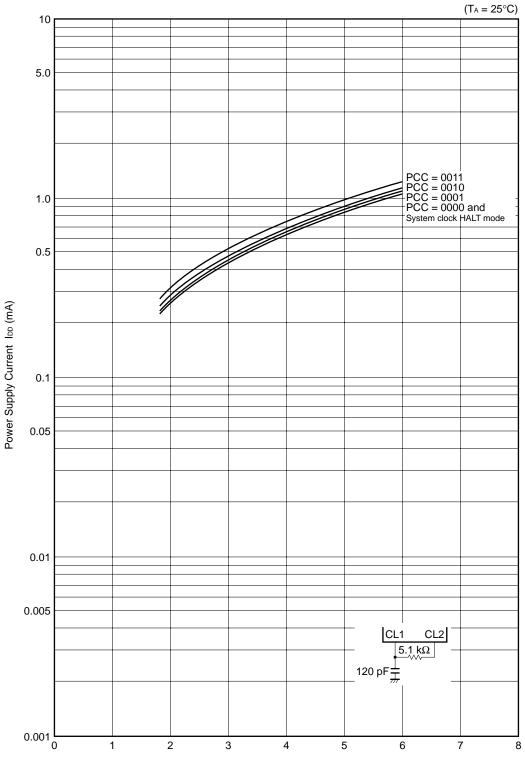
BTM3	BTM2	BTM1	BTM0	Wait Time		
				When fx = 4.19 MHz	When fx = 6.0 MHz	
-	0	0	0	2 ²⁰ /fx (Approx. 250 ms)	2 ²⁰ /fx (Approx. 175 ms)	
_	0	1	1	2 ¹⁷ /fx (Approx. 31.3 ms)	2 ¹⁷ /fx (Approx. 21.8 ms)	
_	1	0	1	2 ¹⁵ /fx (Approx. 7.81 ms)	2 ¹⁵ /fx (Approx. 5.46 ms)	
-	1	1	1	2 ¹³ /fx (Approx. 1.95 ms)	2 ¹³ /fx (Approx. 1.37 ms)	

Data Retention Timing (on releasing STOP mode by RESET)


Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

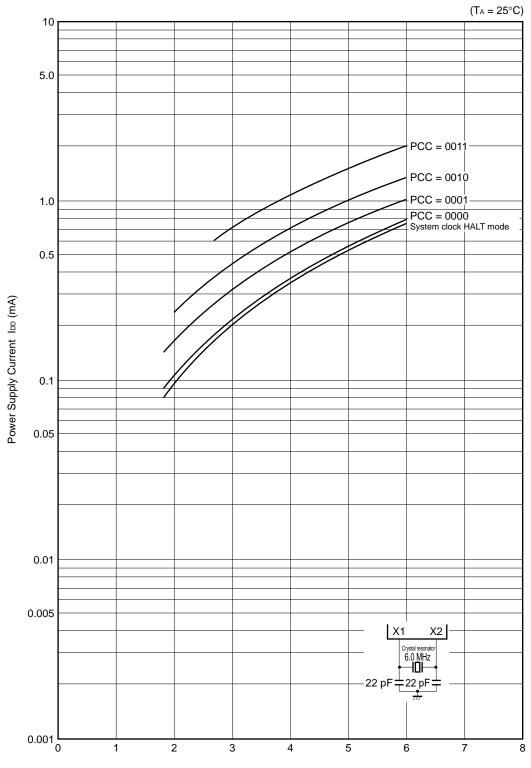
14. CHARACTERISTICS CURVES (REFERENCE VALUES)

14.1 μ**PD754144**

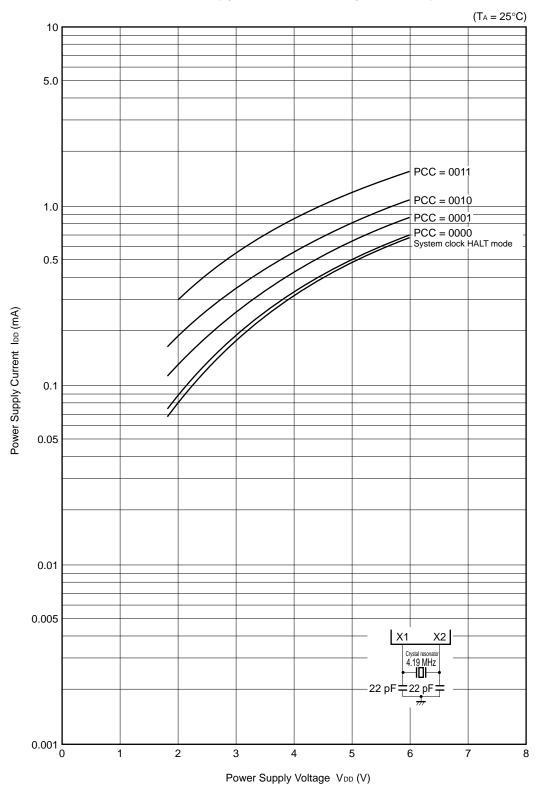

NEC

IDD VS. VDD (RC Oscillation, R = 22 k Ω , C = 22 pF)

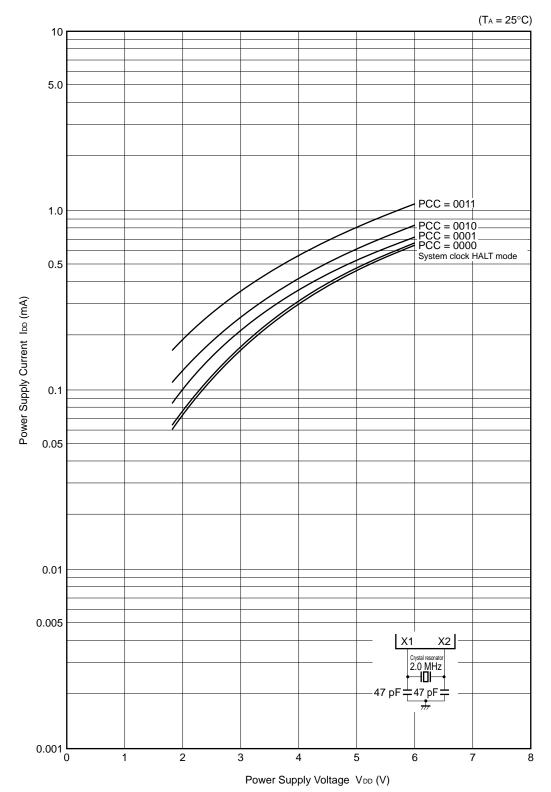
NEC


• µPD754144

 I_{DD} vs. V_{DD} (RC Oscillation, R = 5.1 k\Omega, C = 120 pF)

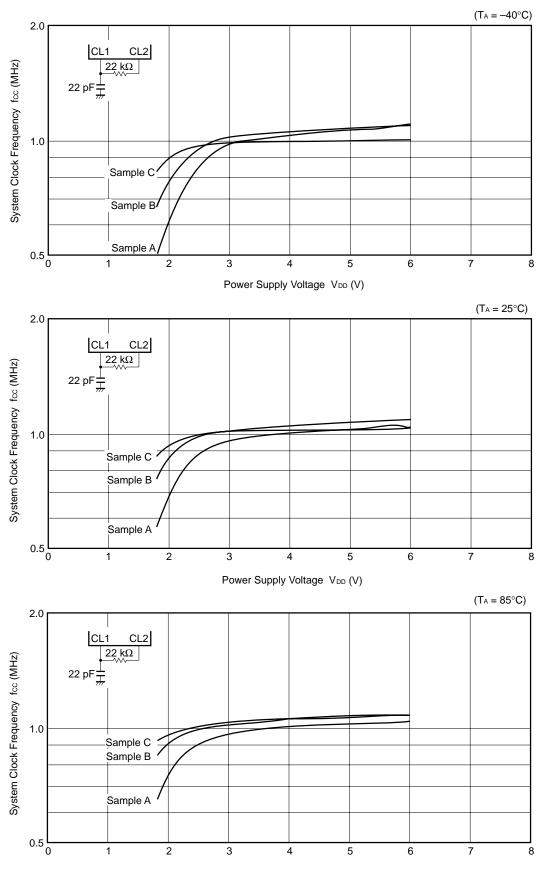

Power Supply Voltage VDD (V)

14.2 μ**PD754244**



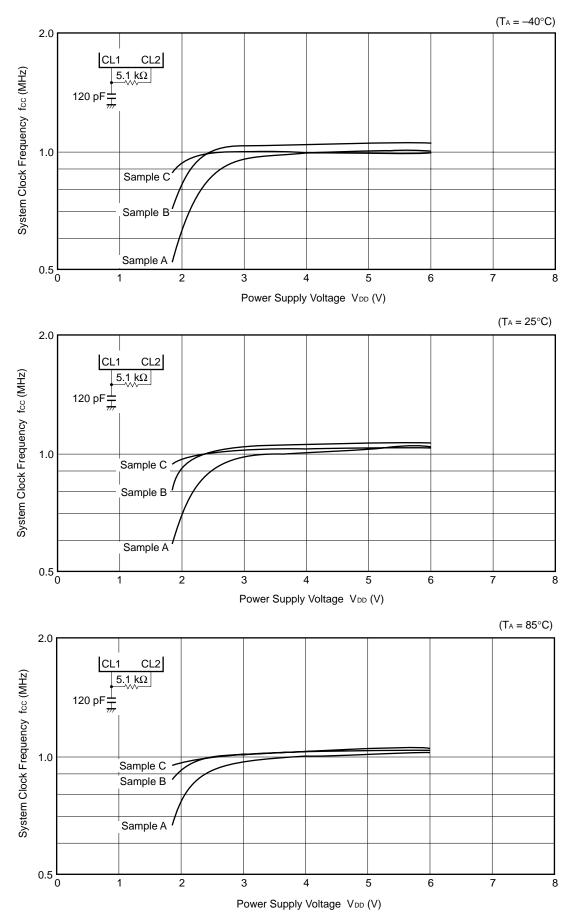
IDD vs. VDD (System Clock: 6.0-MHz Crystal Resonator)

Power Supply Voltage VDD (V)

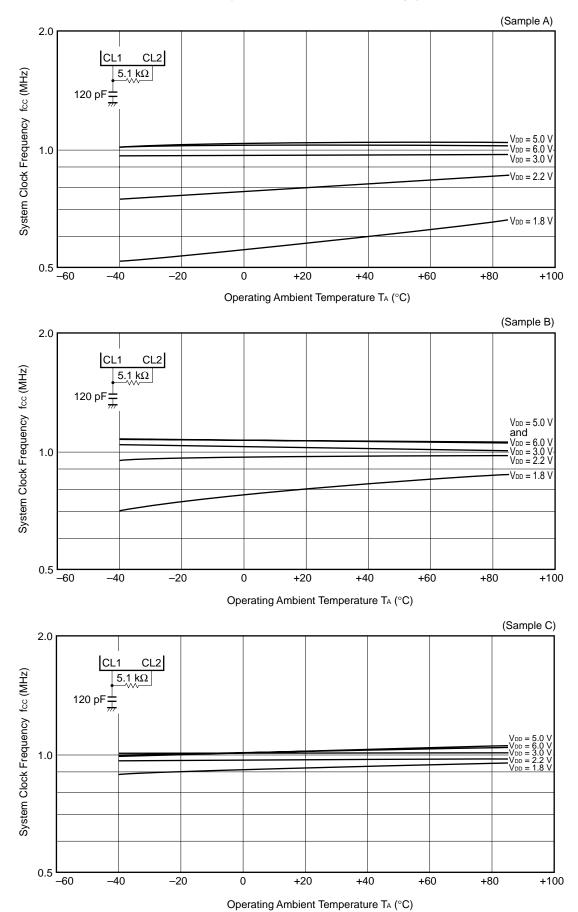

IDD VS. VbD (System Clock: 4.19-MHz Crystal Resonator)

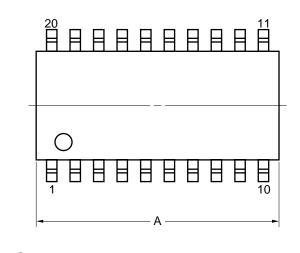
IDD VS. VDD (System Clock: 2.0-MHz Crystal Resonator)

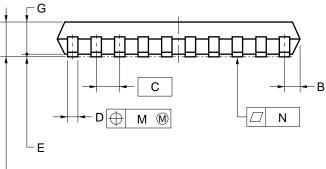

NEC

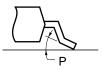

15. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUES)

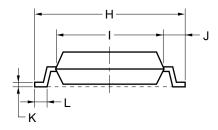
fcc vs. Vbb (RC Oscillation, R = 22 k Ω , C = 22 pF)


fcc vs. T_A (RC Oscillation, $R = 22 \text{ k}\Omega$, C = 22 pF)


fcc vs. VDD (RC Oscillation, R = 5.1 k Ω , C = 120 pF)

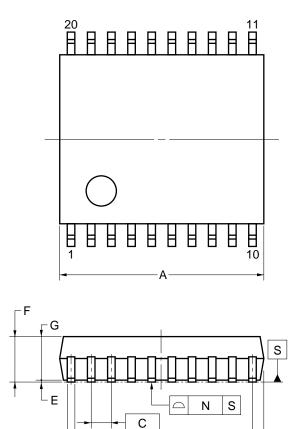

fcc vs. T_A (RC Oscillation, R = 5.1 k Ω , C = 120 pF)


16. PACKAGE DRAWINGS

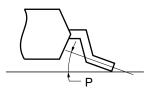

20-pin Plastic SOP (300 mils)

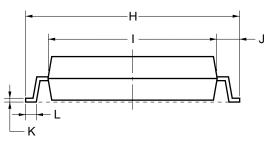
detail of lead end

NOTE


۰F

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
A	12.7±0.3	0.500±0.012
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.42^{+0.08}_{-0.07}$	$0.017^{+0.003}_{-0.004}$
E	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071 MAX.
G	1.55±0.05	0.061±0.002
Н	7.7±0.3	0.303±0.012
I	5.6±0.2	$0.220^{+0.009}_{-0.008}$
J	1.1	0.043
К	$0.22^{+0.08}_{-0.07}$	$0.009^{+0.003}_{-0.004}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
Ν	0.10	0.004
Р	3° ^{+7°} -3°	3° ^{+7°} -3°


P20GM-50-300B, C-5

20-pin Plastic shrink SOP (300 mils)

detail of lead end

ΝΟΤΕ

1. Controlling dimension — millimeter.

MM

 \oplus

D

2. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

--− B

ITEM	MILLIMETERS	INCHES
А	6.7±0.3	$0.264^{+0.012}_{-0.013}$
В	0.575 MAX.	0.023 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	$0.32^{+0.08}_{-0.07}$	$0.013^{+0.003}_{-0.004}$
Е	0.125±0.075	0.005±0.003
F	2.0 MAX.	0.079 MAX.
G	1.7±0.1	$0.067^{+0.004}_{-0.005}$
Н	8.1±0.3	0.319±0.012
I	6.1±0.2	0.240±0.008
J	1.0±0.2	$0.039^{+0.009}_{-0.008}$
к	$0.15_{-0.05}^{+0.10}$	$0.006^{+0.004}_{-0.002}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	0.12	0.005
N	0.10	0.004
Р	3°+7° -3°	3° ^{+7°} -3°

P20GM-65-300B-3

17. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD754244 under the following recommended conditions.

For the details on the recommended soldering conditions, refer to Information Document "Semiconductor Device Mounting Technology Manual (C10535E)".

For the soldering method and conditions other than those recommended, consult an NEC representative.

Table 17-1. Soldering Conditions of Surface Mount Type (1/2)

(1) µPD754244GS-xxx-GJG: 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds max. (210°C min.),	
	Number of reflow process: 2 max.	
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds max. (200°C min.),	VP15-00-2
	Number of reflow process: 2 max.	
Wave soldering	Solder bath temperature: 260°C max., Flow time: 10 seconds max.,	WS60-00-1
	Number of flow process: 1	
	Preheating temperature: 120°C max. (package surface temperature)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per side of device)	-

Caution Do not use different soldering methods together (except for partial heating).

(2) µPD754144GS-xxx-GJG: 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds max. (210°C min.),	
	Number of reflow process: 3 max.	
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds max. (200°C min.),	VP15-00-3
	Number of reflow process: 3 max.	
Wave soldering	Solder bath temperature: 260°C max., Flow time: 10 seconds max.,	WS60-00-1
	Number of flow process: 1	
	Preheating temperature: 120°C max. (package surface temperature)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per side of device)	-

Caution Do not use different soldering methods together (except for partial heating).

Table 17-1. Soldering Conditions of Surface Mount Type (2/2)

μPD754144GS-xxx-BA5: 20-pin plastic SOP (300 mil, 1.27-mm pitch)
 μPD754244GS-xxx-BA5: 20-pin plastic SOP (300 mil, 1.27-mm pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds max. (210°C min.),	IR35-107-2
	Number of reflow process: 2 max.	
	Exposure limit: 7 days ^{Note} (afterward, 10-hour pre-baking at 125°C is required)	
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds max. (200°C min.),	VP15-107-2
	Number of reflow process: 2 max.	
	Exposure limit: 7 days ^{Note} (afterward, 10-hour pre-baking at 125°C is required)	
Wave soldering	Solder bath temperature: 260°C max., Flow time: 10 seconds max.,	WS60-107-1
	Number of flow process: 1	
	Preheating temperature: 120°C max. (package surface temperature)	
	Exposure limit: 7 days ^{Note} (afterward, 10-hour pre-baking at 125°C is required)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per side of device)	-

Note Maximum number of days during which the product can be stored at a temperature of 25°C and a relative humidity of 65% or less after dry-pack package is opened.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. COMPARISON OF FUNCTIONS AMONG $\mu\text{PD754144},$ 754244, AND 75F4264

Item		μPD754144	μPD754244	μPD75F4264 ^{Note}	
Program memory		Mask ROM		Flash memory	
		0000H to 0FFFH		0000H to 0FFFH	
		(4096 x 8 bits)		(4096 x 8 bits)	
Data	Static RAM	000H to 07FH	·		
memory		(128 x 4 bits)			
	EEPROM	400H to 41FH		400H to 43FH	
		(16 x 8 bits)		(32 x 8 bits)	
CPU		75XL CPU			
General-purp	ose register	(4 bits x 8 or 8 bits x 4) x 4 b	anks		
Instruction ex	ecution time	• 4, 8, 16, 64 μs	• 0.67, 1.33, 2.67, 10.7 μs		
		(@ fcc = 1.0-MHz	(@ fx = 6.0-MHz operation)		
		operation)	• 0.95, 1.91, 3.81, 15.3 μs		
			(@ fx = 4.19-MHz operation)		
I/O port	CMOS input	4 (on-chip pull-up resistor car	h be connected by mask option)	
	CMOS I/O	9 (on-chip pull-up resistor connection can be specified by means of software)			
	Total	13			
System clock	oscillator	RC oscillator	Ceramic/crystal oscillator		
		(resistor and capacitor are			
		connected externally)			
Start-up time	after reset	56/fcc	2 ¹⁷ /fx, 2 ¹⁵ /fx (can be	2 ¹⁵ /fx	
			selected by mask option)		
Standby mod	le release time	2 ⁹ /fcc	2 ²⁰ /fx, 2 ¹⁷ /fx, 2 ¹⁵ /fx, 2 ¹³ /fx	1	
			(can be selected by the settir	ng of BTM)	
Timer		4 channels			
		• 8-bit timer counter: 3 chann	els (can be used as 16-bit time	er counter)	
		Basic interval timer/watchdo	og timer: 1 channel		
A/D converte	r	None		8-bit resolution x 2	
				channels (successive	
				approximation, hardware	
				control)	
				Can be operated	
				from V _{DD} = 1.8 V	
Programmab	le threshold port	2 channels			
Vectored inte	errupt	External: 1, internal: 5			
Test input		External: 1 (key return reset function available)			
Power supply	/ voltage	V _{DD} = 1.8 to 6.0 V			
Operating an	nbient temperature	T _A = -40 to +85°C			
Package		20-pin plastic SOP (300 mil, 1.27-mm pitch) 20-pin plastic SOP			
i ackage		• 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)			

Note Under development

APPENDIX B DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD754244.

In the 75XL series, the relocatable assembler which is common to the series is used in combination with the device file of each product.

Language processor

RA75X relocatable assembler	Host machine		Part number	
		OS	Distribution media	(product name)
	PC-9800 series	MS-DOS™	3.5-inch 2HD	μS5A13RA75X
		Ver. 3.30 to Ver. 6.2 ^{Note}	5-inch 2HD	μS5A10RA75X
	IBM PC/AT™ and	Refer to	3.5-inch 2HC	μS7B13RA75X
	compatible machines	"OS for IBM PC"	5-inch 2HC	μS7B10RA75X

Device file	Host machine	Host machine		
	nost machine	OS	Distribution media	(product name)
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13DF754244
		Ver. 3.30 to Ver. 6,2 ^{Note}	5-inch 2HD	μS5A10DF754244
	IBM PC/AT and	Refer to	3.5-inch 2HC	μS7B13DF754244
	compatible machines	"OS for IBM PC"	5-inch 2HC	μS7B10DF754244

Note Ver.5.00 or later have the task swap function, but it cannot be used for this software.

Remark Operation of the assembler and device file are guaranteed only on the above host machine and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD754244.

The system configurations are described as follows.

Hardware	IE-75000-R Note 1	In-circuit emulator for debugging the hardware and software when developing applica- tion systems that use the 75X series and 75XL series. When developing the μ PD754244, the emulation board IE-75300-R-EM and emulation probe EP-754144GS-R that are sold separately must be used with the IE-75000-R. By connecting with the host machine, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.						
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing applica- tion systems that use the 75X series and 75XL series. When developing the μ PD754244, the emulation board IE-75300-R-EM and emulation probe EP-754144GS-R which are sold separately must be used with the IE-75001-R. By connecting the host machine, efficient debugging can be made.						
	IE-75300-R-EM		Emulation board for evaluating the application systems that use the μ PD754244. It must be used with the IE-75000-R or IE-75001-R.					
	EP-754144GS-R	Emulation probe for the μPD754244GS. It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the flexible boards EV-9500GS-20 (supporting 20-pin plastic shrink						
	EV-9500GS-20 EV-950IGS-20		GS-20 (supporting 20-p					
Software	IE control program	Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix I/F and controls the above hardware on a host machine.						
		Host machine			Part No.			
			OS	Distribution media	(product name)			
		PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13IE75X			
			Ver. 3.30 to Ver. 6.2 ^{Note 2}	5-inch 2HD	μ\$5A10IE75X			
		IBM PC/AT and its	Refer to	3.5-inch 2HC	μS7B13IE75X			
	compatible machine "OS for IBM PC"		5-inch 2HC	μS7B10IE75X				

Notes 1. Maintenance parts

2. Ver.5.00 or later have the task swap function, but it cannot be used for this software.

Remark Operation of the IE control program is guaranteed only on the above host machines and OSs.

OS for IBM PC

The following IBM PC OS's are supported.

OS	Version
PC DOS™	Ver. 5.02 to Ver. 6.3 J6.1/V ^{Note} to J6.3/V ^{Note}
MS-DOS	Ver. 5.0 to Ver. 6.22 5.0/V ^{Note} to J6.2/V ^{Note}
IBM DOS™	J5.02/V ^{Note}

Note Supported only English mode.

Caution Ver. 5.0 and later have the task swap function, but it cannot be used for operating systems above.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device related documents

Document Name	Document Number	
	Japanese	English
μPD754144, 754244 Data Sheet	U10040J	This document
μPD754144, 754244 User's Manual	U10676J	U10676E
75XL Series Selection Guide	U10453J	U10453E

Development tool related documents

	Desument Name		Document Number	
Document Name		Japanese	English	
Hardware	e IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	U11354E
	EP-754144GS-R User's Manual		U10695J	U10695E
Software	RA75X Assembler Package User's Manual Operation		EEU-731	EEU-1346
	Language		EEU-730	EEU-1363

Other related documents

Document Name	Document Number	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Static Electricity Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Microcomputer Related Product Guide - Other Manufacturers	U11416J	_

Caution These documents are subject to change without notice. Be sure to read the latest documents.

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044
800-729-9288		NEC Electronics Hong Kong Ltd.
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH	Velizy-Villacoublay, France	Seoul, Korea
Duesseldorf, Germany	Tel: 01-30-67 58 00	Tel: 02-528-0303
Tel: 0211-65 03 02	Fax: 01-30-67 58 99	Fax: 02-528-4411
Fax: 0211-65 03 490		
	NEC Electronics (France) S.A.	NEC Electronics Singapore Pte. Ltd.
NEC Electronics (UK) Ltd.	Spain Office	United Square, Singapore 1130
Milton Keynes, UK	Madrid, Spain	Tel: 65-253-8311
Tel: 01908-691-133	Tel: 01-504-2787	Fax: 65-250-3583
Fax: 01908-670-290	Fax: 01-504-2860	
		NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.1.	NEC Electronics (Germany) GmbH	Taipei, Taiwan
Milano, Italy	Scandinavia Office	Tel: 02-719-2377
Tel: 02-66 75 41	Taeby, Sweden	Fax: 02-719-5951
Fax: 02-66 75 42 99	Tel: 08-63 80 820	
	Fax: 08-63 80 388	NEC do Brasil S.A.
		Cumbica-Guarulhos-SP, Brasil
		Tel: 011-6465-6810

87

Fax: 011-6465-6829

[MEMO]

The μ PD754244 is manufactured and sold based on a licence contract with CP8 Transac regarding the EEPROM microcomputer patent.

This product cannot be used for an IC card (SMART CARD).

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5

EEPROM is a trademark of NEC Corporation.

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.