NEC Microcomputers, Inc.

DIGITAL SIGNAL PROCESSOR

DESCRIPTION The NEC μPD7720 Signal Processing Interface (SPI) is an advanced architecture microcomputer optimized for signal processing algorithms. Its speed and flexibility allow the SPI to efficiently implement signal processing functions in a wide range of environments and applications.

The NEC SPI is the state of the art in signal processing today, and for the future.

- Digital Filtering
- Fast Fourier Transforms (FFT)
- Dual-Tone Multi-Frequency (DTMF) Transmitters/Receivers
- High Speed Data Modems
- Equalizers
- Adaptive Control
- Sonar/Radar Image Processing
- Numerical Processing

PERFORMANCE BENCHMARKS	 Second Order Digital Filter (BiQuad) SINE/COS of Angles μ/A LAW to Linear Conversion FFT: 32 Point Complex 	2.25 μs 5.25 μs 0.50 μs 0.7 ms
	64 Point Complex	1.6 ms

FEATURES • Fast Instruction Execution - 250 ns

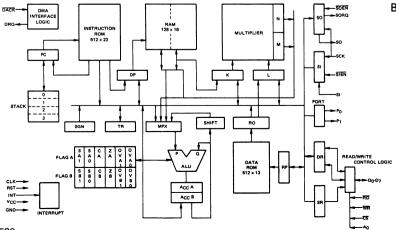
- 16 Bit Data Word
- Multi-Operation Instructions for Optimizing Program Execution
- Large Memory Capacities

— Program ROM	512 x 23 Bits

-	Coefficient ROM	510 x 13 Bits

- Data RAM 128 x 16 Bits
- Fast (250 ns) 16 x 16-31 Bit Multiplier
- Dual Accumulators
- Four Level Subroutine Stack for Program Efficiency
- Multiple I/O Capabilities
 - Serial
 - Parallel
 - DMA
- Compatible with Most Microprocessors, Including:
 - μPD8080
 - μPD8085
- μPD8086
- μPD780 (Z80^{TM*})
- Power Supply +5V
- Technology NMOS
- Package 28 Pin Dip

^{*}Z80 is a trademark of Zilog Corporation.


	-		
NC	1	-0	28 VCC
DACK	2		27 🗖 A0
DRQ 🗖	3		26 🗖 टड
P0 🗖	4		25 🗖 RD
P1 🗖	5		24 🗖 WR
₽o□	6		23 SORO
₽1□	7	μ PD7720D	22 🗖 SO
D2	8		21 🗖 SI
D3	9		20 SOEN
D₄I	10		19 🗖 SIEN
D5	11		18 🗖 SCK
D6 🗆	12		17 🛛 INT
D7 🗖	13		16 🗖 RST
GND 🗖	14		15 CLK

Fabricated in high speed NMOS, the µPD7720 SPI is a complete 16-bit microcomputer FUNCTIONAL DESCRIPTION on a single chip. ROM space is provided for program and coefficient storage, while the on-chip RAM may be used for temporary data, coefficients and results. Computational power is provided by a 16-bit Arithmetic/Logic Unit (ALU) and a separate 16 x 16 bit fully parallel multiplier. This combination allows the implementation of a "sum of products" operation in a single 250 nsec instruction cycle. In addition, each arithmetic instruction provides for a number of data movement operations to further increase throughput. Two serial I/O ports are provided for interfacing to codecs and other serially-oriented devices while a parallel port provides both data and status information to conventional μP for more sophisticated applications. Handshaking signals, including DMA controls, allow the SPI to act as a sophisticated programmable peripheral as well as a stand alone microcomputer.

Memory is divided into three types, Program ROM, Data ROM, and Data RAM. The 512 x 23 bit words of Program ROM are addressed by a 9-bit Program Counter which can be modified by an external reset, interrupt, call, jump, or return instruction.

The Data ROM is organized in 512×13 bit words and is also addressed through a 9-bit ROM pointer (RP Reg.) which may be modified as part of an arithmetic instruction so that the next value is available for the next instruction. The Data ROM is ideal for storing the necessary coefficients, conversion tables and other constants for all your processing needs.

The Data RAM is 128 x 16 bit words and is addressed through a 7-bit Data Pointer (DP Reg.). The DP has extensive addressing features that operate simultaneously with arithmetic instructions so that no added time is taken for addressing or address modification.

PIN CONFIGURATION

MEMORY

BLOCK DIAGRAM

I

PIN IDENTIFICATION

PIN	NAME	1/0	FUNCTION
1	NC	1	No Connection.
2	DACK	1	DMA Request Acknowledge. Indicates to the μ PD7720 that the Data Bus is ready for a DMA transfer. ($\overline{DACK} = \overline{CS} \bullet A_0 = 0$)
3	DRQ	0	DMA Request signals that the μ PD7720 is requesting a data transfer on the Data Bus.
4,5	P0, P1	0	P_0 , P_1 are general purpose output control lines.
6-13	D ₀ -D ₇	1/O Tristate	Port for data transfer between the Data Register or Status Register and Data Bus.
14	GND		
15	CLK	I	Single phase Master Clock input.
16	RST	I	Reset initializes the μ PD7720 internal logic and sets the PC to 0.
17	INT	I	Interrupt. A low to high transition on this pin will (if interrupts are enabled by the program) execute a call instruction to location 100H.
18	SCK	I	Serial Data Input/Output Clock. A serial data bit is transferred when this pin is high.
19	SIEN	I	Serial Input Enable. This line enables the shift clock to the Serial Input Register.
20	SOEN	I	Serial Output Enable. This pin enables the shift clock to the Serial Output Register.
21	SI	I	Serial Data Input. This pin inputs 8 or 16 bit serial data words from an external device such as an A/D converter.
22	SO	0	Serial Data Output. This pin outputs 8 or 16 bit data words to an external device such as an D/A converter.
23	SORQ	0	Serial Data Output Request. Specifies to an external device that the Serial Data Register has been loaded and is ready for output. SORQ is reset when the entire 8 or 16 bit word has been transferred.
24	WR	1	Write Control Signal writes the contents of data bus into the Data Register.
25	RD	1	Read Control Signal. Enables an output to the Data Port from the Data or Status Register.
26	cs	I	Chip Select. Enables data transfer with Data or Status Port with $\overline{\text{RD}}$ or $\overline{\text{WR}}$.
27	A ₀	I	Selects Data Register for Read/Write (low) or Status Register for read (high).
28	Vcc		+5V Power

μ PD7720

General

One of the unique features of the SPI's architecture is its arithmetic facilities. With a separate multipler, ALU, and multiple internal data paths, the SPI is capable of carrying out a multiply, an add, or other arithmetic operation, and move data between internal registers in a single instruction cycle.

ALU

The ALU is a 16-bit 2's complement unit capable of executing 16 distinct operations on virtually any of the SPI's internal registers, thus giving the SPI both speed and versatility for efficient data management.

Accumulators (ACCA/ACCB)

Associated with the ALU are a pair of 16-bit accumulators, each with its own set of flags, which are updated at the end of each arithmetic instruction (except NOP). In addition to Zero Result, Sign Carry, and Overflow Flags, the SPI incorporates auxilliary Overflow and Sign Flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as 3 successive additions or subtractions.

FLAG A	SA1	SA0	СА	ZA	OVA1	OVA0
FLAG B	SB1	SB0	СВ	ZB	OVB1	OVB0

ACC A/B FLAG REGISTERS

Sign Register (SGN)

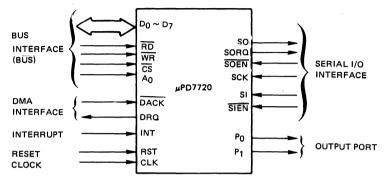
When OVA1 (or OVB1) is set, the SA1 (or SB1) bit will hold the corrected sign of the overflow. The SGN Register will use SA1 (SB1) to automatically generate saturation constants 7FFFH(+) or 8000H(-) to permit efficient limiting of a calculated valve.

Multiplier

Thirty-one bit results are developed by a 16 x 16 bit 2's complement multiplier in 250 ns. The result is automatically latched in 2-16-bit registers M&N (LSB in N is zero) at the end of each instruction cycle. The ability to have a new product available and to be able to use it in each instruction cycle, provides significant advantages in maximizing processing speed for real time signal processing.

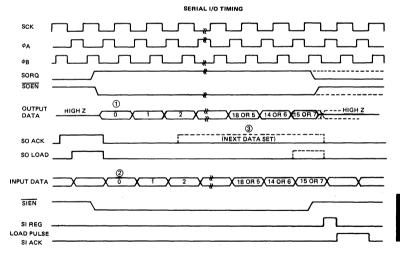
Stack

The SPI contains a 4-level program stack for efficient program usage and interrupt handling.


Interrupt

A single level interrupt is supported by the SPI. Upon sensing a high level on the INT terminal, a subroutine call to location 100H is executed. The EI bit of the status register is automatically reset to 0 thus disabling the interrupt facilities until reenabled under program control.

ARITHMETIC CAPABILITIES


INPUT/OUTPUT General

The NEC SPI has 3 communication ports; 2 serial and one 8-bit parallel, each with their own control lines for interface handshaking. The parallel port also includes DMA control lines (DRQ and DACK) for high speed data transfer and reduced processor overhead. A general purpose 2 bit output (see Figure 1) port, rounds out a full complement of interface capability.

Serial I/O

Two shift registers (SI, SO) that are software-configurable to 8 or 16 bits and are externally clocked (SCK) provide simple interface between the SPI and serial peripherals such as, A/D and D/A converters, codecs, or other SPIs.

1 Data clocked out on falling edge of SCK.

② Data clocked in on rising edge of SCK.

3 Broken line denotes consecutive sending of next data.

PARALLEL I/O The 8-bit parallel I/O port may be used for transferring data or reading the SPI's status. Data transfer is handled through a 16-bit Data Register (DR) that is software-configurable for double or single byte data transfers. The port is ideally suited for operating with 8080, 8085 and 8086 processor buses and may be used with other processors and computer systems.

CS	A ₀	WR	RD	OPERATION
1 X	x ð x	× 1	$\left\{ \begin{array}{c} x \\ 1 \end{array} \right\}$	{ No effect on internal operation. D₀-D⁊ are at high impedance levels.
0	0	0	1	Data from D0-D7 is latched to DR ()
0	0	1	0	Contents of DR are output to D0-D7 (1)
0	1	0	1	lilegal
0	1	1	0	Eight MSBs of SR are output to D0-D7
0	x	0	0	Illegal

PARALLEL R/W OPERATION

① Eight MSBs or 8 LSBs of data register (DR) are used depending on DR status bit (DRS).

The condition of $\overrightarrow{DACK} = 0$ is equivalent to $A_0 = \overrightarrow{CS} = 0$.

Status Register (SR)

MSB

LSB

												_				
RQM	USF1	USFO	DRS	DMA	DRC	soc	SIC	EI	0	0	0	° O	0	P1	PO	
		L	·								_	_	-			

The status register is a 16-bit register in which the 8 most significant bits may be read by the system's MPU for the latest I/O and processing status.

RQM (Request for Master):	A read or write from DR to IDB sets RQM = 1. An Ext read (write) resets RQM = 0.
USF1 — (User Flag 1):) USF0 — (User Flag 0):)	General purpose flags which may be read by an external processor for user defined signalling
DRS – (DR Status):	For 16 bit DR transfers (DRC = 0) DRS = 1 after first 8 bits have been transferred, DRS = 0 after all 16 bits
DMA (DMA Enable):	DMA = 0 (Non DMA transfer mode) DMA = 1 (DMA transfer mode)
DRC – (DR Control):	DRC = 0 (16 bit mode), DRC = 1 (8 bit mode)
SOC - (SO Control):	SOC = 0 (16 bit mode), $SOC = 1$ (8 bit mode)
SIC – (SI Control):	SIC = 0 (16 bit mode), SIC = 1 (8 bit mode)
EI – (Enable Interrupt):	EI = 0 (interrupts disabled), EI = 1 (interrupts enabled)
PO/P1 (Ports 0 and 1):	PO and P1 directly control the state of output pins PO and P1

INSTRUCTIONS T

The SPI has 3 types of instructions all of which are one word, 23 bits long and execute in 250 ns.

	22 21	20 19	18 17	16 15	14	13 12	11 10 9	8	7	65	4	3	2	1	0
OP	00	P- SELECT	A	LU	A S L	DPL	DP _H ⋅M	R P D C B		SRC			DS	т	
RT	01				Sa	ime as O	P instruction	1							

A) Arithmetic/Move-Return (OP = 00/RT = 01)

There are two instructions of this type, both of which are capable of executing all ALU functions listed in Table 2 on the value specified by the ALU input (i.e., P select field see Table 1).

Table 1. OP, RT	т	able	1.	OP,	RT
-----------------	---	------	----	-----	----

	P-Select Field	
Mnemonic	D ₂₀ D ₁₉	ALU Input
RAM	0 0	RAM
IDB	0 1	*Internal Data Bus
м	1 0	M Register
N	. 1 1	N Register

*Any value on the on-chip data bus. Value may be selected from any of registers listed in Table 7 source register selections.

μPD7720

Table	2.	OP,	RT
-------	----	-----	----

Flags	Affected

		ALU	Field			Flag A	SA1	SA0	CA	ZA	OVA1	OVA0
Mnemonic	D18	D17	D16	D15	ALU Function	Flag B	SB1	SB0	СВ	ZB	OVB1	OVB0
NOP	0	0	0	0	No Operation		-	-	-		-	-
OR	0	0	0	1	OR		ø	\$	\$	ø	ø	ø
AND	0	0	1	0	AND		ø	\$	\$	ø	ø	ø
XOR	0	0	1	1	Exclusive OR		ø	\$	\$	ø	ø	ø
SUB	0	1	0	0	Subtract		\$	\$	\$	\$	\$	ø
ADD	0	1	0	1	ADD		\$,	\$	\$	\$	\$	\$
SBB	0	1	1	0	Subtract with Borrow		\$	\$	\$	¢	\$	\$
ADC	0	1	1	1	Add with Carry		\$	\$	\$	\$	\$	\$
DEC	1	0	0	0	Decrement ACC		\$	\$	\$	\$	\$	\$
INC	1	0	0	1	Increment ACC		\$	\$	\$	\$	\$	\$
СМР	1	0	1	0	Complement ACC (1's Complement)		\$	\$	\$	ø	ø	ø
SHR1	1	0	1	1	1-bit R-Shift		\$	\$	÷∳	ø	ø	ø
SHL1	1	1	0	0	1-bit L-Shift		\$	\$	\$	ø	ø	ø
SHL2	1	1	0	1	2-bit L-Shift		ø	\$	\$	ø	ø	ø
SHL4	1	1	1	0	4-bit L-Shift		ø	\$	\$	ø	ø	ø
хснд	1	1	1	1	8-bit Exchange		ø	\$	\$	ø	ø	ø

Affected by result
No affect
Reset

Table 3. OP, RT

	ASL Field	
Mnemonic	D14	ACC Selection
ACCA	0	A _{CC} A
ACCB	1	A _{CC} B

Table 4. OP, RT

	DPL	Field	
Mnemonic	D ₁₃	D12	DP3-DP0
DPNOP	0	0	No Operation
DPINC	0	1	Increment DPL
DPDEC	1	0	Decrement DPL
DPCLR	1	1	Clear DPL

Table 5. OP, RT

	DP	₁ -M Fi	eld		;										
Mnemonic	D ₁₁	D10	Dg	Exclusive OR											
MO	0	0	0	(DP ₆	DP ₅ DP ₄) ¥ (0 0	0)									
M1	0	0	1	DP6	$DP_5 DP_4 \neq (0 0)$	1)									
M2	0	1	0	DP ₆	DP ₅ •DP ₄ ¥ (0 1	0)									
M3	0	1	1	DP ₆	DP ₅ DP ₄ ¥ (0 1	1)									
M4	1	0	0	DP ₆	DP ₅ DP ₄ ¥ (1 0	0)									
M5	1	0	1	DP ₆	$DP_5 DP_4 \neq (1 0)$	1)									
M6	1	1	0	DP6	DP ₅ DP ₄ ¥ (1 1	0)									
M7	1	1	1	DP6	DP ₅ DP ₄ ¥ (1 1	1									

2) 22

Table 6.	OP,RT
----------	-------

	RPDCR	
Mnemonic	D ₈	Operation
RPNOP	0	No Operation
RPDEC	1	Decrement RP

Besides the arithmetic functions these instructions can also modify (1) the RAM Data Pointer DP, (2) the Data ROM Pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register (the possible source and destination registers are listed in Tables 7 and 8 respectively). The difference in the two instructions of this type is that one executes a subroutine or interrupt return at the end of the instruction cycle while the other does not.

		SRC	Field	d	
Mnemonic	D7	D6	D5	D4	Specified Register
NON	0	0	0	0.	NO Register
А	0	0	0	1	ACC A (Accumulator A)
В	0	0	1	0	ACC B (Accumulator B)
TR	0	0	1	1	TR Temporary Register
DP	0	1	0	0	DP Data Pointer
RP	0	1	0	1	RP ROM Pointer
RO	0	1	1	0	RO ROM Output Data
SGN	0	1	1	1	SGN Sign Register
DR	1	0	0	0	DR Data Register
DRNF	1	0	0	1	DR Data No Flag ①
SR	1	0	1	0	SR Status
SIM	1	0	1	1	SI Serial in MSB (2)
SIL	1	1	0	0	SI Serial in LSB ③
к	1	.1	0	1	K Register
L	1	1	1	0	L Register
MEM	1	1	1	1	RAM

Table 7.	OP, I	RT
----------	-------	----

1 DR to IDB RQM not set. IN DMA DRQ not set.

② First bit in goes to MSB, last bit to LSB.

③ First bit in goes to LSB, last bit to MSB (bit reversed).

Table 7 - List of Registers Specified by the Source Field (SRC)

		DST	Field	d								
Mnemonic	D3	D ₂	D1	D ₀	Specified Register							
@NON	0	0	0	0	NO Register							
@A	0	Ò	0	1	ACC A (Accumulator A)							
@B	0	0	1	0	ACC B (Accumulator B)							
@TR	0	0	1	1	TR Temporary Register							
@DP	0	1	0	0	DP Data Pointer							
@RP	0	1	0	1	RP ROM Pointer							
@DR	0	1	1	0	DR Data Register							
@SR	0	1	1	1	SR Status Register							
@SOL	1	0	0	0	SO Serial Out LSB ①							
@SOM	1	0	0	1	SO Serial Out MSB ②							
@K	1	0	1	0	K (Mult)							
@KLR	1	0	1	1	$IDB \rightarrow K ROM \rightarrow L$ ③							
@KLM	1	1	0	0	Hi RAM \rightarrow K IDB \rightarrow L ④							
@L	1	1	0	1	L (Mult)							
@NON	1	1	1	0	NO Register							
@MEM	1	1	1	1	RAM							

Table 8. OP, RT, LDI

1 LSB is first bit out.

② MSB is first bit out.

③ Internal data bus to K and ROM to L register.

④ Contents of RAM address specified by DP₆ = 1 (i.e., 1, DP₅, DP₄, DP₀) is placed in K register. IDB is placed in L.

Table 8 - List of Registers Specified by the Destination Field (DST)

B) Jump/Call/Branch

22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	Ş	2	1	0	
1())	Е	RCH	1			CND						٢	١A							/	7	

JP Instruction Field Specifications

Three types of execution address modification instructions are accommodated by the processor and are listed in Table 9. All of the instructions, if unconditional or the specified condition is true, take their next program execution address from the Next Address field (NA), otherwise PC = PC + 1.

Table 9. Branch Field Selections (BRCH)

20	19	18	Instruction
1	0	0	Uncondition jump
1	0	1	Subroutine call
0	1	0	Condition jump

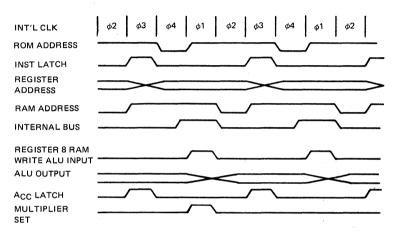
For the conditional jump instruction, the condition field specifies the jump condition. Table 10 lists all the instruction mnemonics of the J/C/B OP codes.

The SPI offers all the execution modification instructions necessary for efficient, data, I/O and arithmetic control.

Mnemonic	D ₂₀	D19	D ₁₈	D17	D16	D15	D14	D13	Conditions
JMP	1.	0	0	0	0	0	0	0	No Condition
CALL	1	0	1	0	0	• 0	0	0	No Condition
JNCA	0	1	0	0	0	0	0	0	CA = 0
JCA	0	1	0	0	0	0	0	1	CA = 1
JNCB	0	1	0	0	0	0	1	0	CB = 0
JCB	0	1	0	0	0	0	1	1	CB = 1
JNZA	0	1	0	0	0	1	0	0	ZA = 0
JZA	0	1	0	0	0	1	0	1	ZA = 1
JNZB	0	1	0	0	0	1	1	0	ZB = 0
JZB	0	1	0	0	0	1	1	1	ZB = 1
JNOVA0	0	1	0	0	1	0	0	0	OVA0 = 0
JOVA0	0	1	0	0	1	0	0	1	OVA0 = 1
JNOVB0	0	1	0	0	1	0	1	0	OVB0 = 0
JOVB0	0	1	0	0	1	0	1	1	OVB0 = 1
JNOVA1	0	1	0	0	1	1	0	0	OVA1 = 0
JOVA1	0	1	0	0	1	1	0	1	0VA1 = 1
JNOVB1	0	1	0	0	1	1	1	0	OVB1 = 0
JOVB1	0	1	0	0	1	1	1	1	OVB1 = 1
JNSA0	0	1	0	1	0	0	0	0	SA0 = 0
JSA0	0	1	0	1	0	0	0	1	SA0 = 1
JNSB0	0	1	0	1	0	0	1	0	SB0 = 0
JSB0	0	1	0	1	0	0	1	1	SB0 = 1
JNSA1	0	1	0	1	0	1	0	0	SA1 = 0
JSA1	0	1	0	1	0	1	0	1	SA1 = 1
JNSB1	0	1	0	1	0	1	1	0	SB1 = 0
JSB1	0	1	0	1	0	1	1	1	SB1 = 1
JDPL0	0	1	0	1	1	0	0	0	DPL = 0
JDPLF	0	1	0	1	1	0	0	1	DPL = F (HEX)
JNSIAK	0	1	0	1	1	0	1	0	SI ACK = 0
JSIAK	0	1	0	1	1	-0	1	1	SI ACK = 1
JNSOAK	0	1	0	1	1	1	0	0	SO ACK = 0
JSOAK	0	1	0	1	1	1	0	1	SO ACK = 1
JNRQM	0	1	0	1	1	1	1	0	RQM = 0
JRQM	0	1	0	1	1	1	1	1	RQM = 1

Table 10. Condition Field Specifications


*BRCH or CND values not in this table are prohibited.


µPD7720

C) Load Data (LDI)

22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
11								ł	2								/		D	sт	

The Load Data instruction will take the 16-bit value contained in the Immediate Data field (ID) and place it in the location specified by the Destination field (DST) (see Table 8).

INSTRUCTION EXECUTION TIMING

	Voltage (V _{CC} Pin)
RATINGS*	Voltage, Any Input \ldots Voltage, Any Input \ldots Voltage, Any Input \ldots Voltage, Any Input \ldots
	Voltage, Any Output
	Operating Temperature $\dots \dots \dots$
	Storage Temperature

Note: 1 With respect to GND.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent : damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

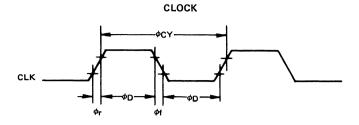
DC CHARACTERISTICS

 $T_a = -10 \sim +70^{\circ}$ C, $V_{CC} = +5V \pm 5\%$

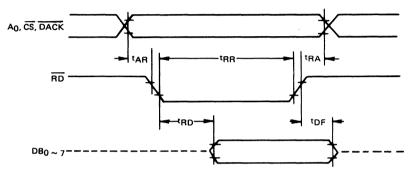
PARAMETER	SYMBOL	MIN	түр	MAX	UNIT	CONDITION
Input Low Voltage	VIL	-0.5		0.8	v	
Input High Voltage	VIH	2.0		V _{CC} +0.5	v	
CLK Low Voltage	V _{øL}	-0.5		0.45	v	
CLK High Voltage	V _{ØH}	3.5		Vcc +0.5	v	
Output Low Voltage	VOL			0.45	V	IOL = 2.0 mA
Output High Voltage	∨он	2.4			V	I _{OH} = -400 μA
Input Load Current	LIL			-10	μA	VIN = 0V
Input Load Current	LIH			10	μA	VIN = VCC
Output Float Leakage	LOL			-10	μA	VOUT = VCC
Output Float Leakage	LOH			10	μA	V _{OUT} = 0.47V
Power Supply Current	Icc		200	280	mA	

CAPACI	TANCE
--------	-------

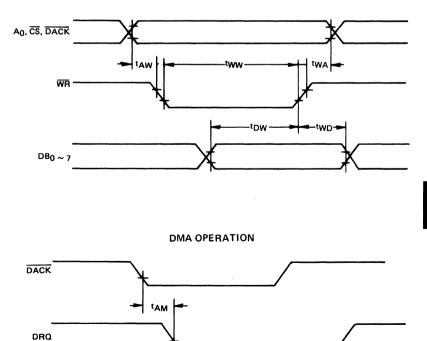
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK, SCK Input Capacitance	Cφ			20	pF	
Input Pin Capacitance	CIN		·	10	ρF	f _c = 1 MHz
Output Pin Capacitance	COUT			20	рF	

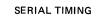

μPD7720

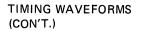
 $T_a = -10 \sim +70^{\circ}$ C, $V_{CC} = +5V \pm 5\%$

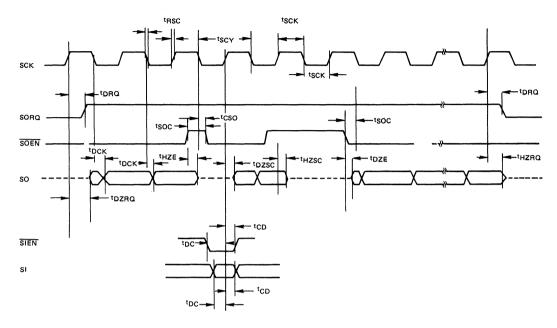

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITION
CLK Cycle Time	ΦCY	125		2000	ns	
CLK Pulse Width	φD	50			ns	
CLK Rise Time	¢R			20	ns	
CLK Fall Time	ΦF			20	ns	
Address Setup Time for RD	^t AR	0			ns	
Address Hold Time for RD	^t RA	0			ns	
RD Pulse Width	t _{RR}	200			ns	
Data Delay from RD	tRD			150	ns	C _L = 100 pF
Read to Data Floating	tDF	20		100	ns	CL = 100 pF
Address Setup Time for WR	tAW	0			ns	
Address Hold Time for WR	tWA	0			ns	
WR Pulse Width	tww	200			ns	
Data Setup Time for WR	tDW	150			ns	
Data Hold Time for WR	twd	0			ns	
DRQ Delay	^t AM			150	ns	CL = 100 pF
SCK Cycle Time	tSCY	480		DC	ns	
SCK Pulse Width	^t SCK	230			ns	
SCK Rise/Fall Time	tRSC			20	ns	
SORQ Delay	t DRQ	30		150	ns	CL = 100 pF
SOEN Setup Time	tsoc	50			ns	
SOEN Hold Time	tCSO	10			ns	
SO Delay	^t DCK			150	ns	
SO Delay from SORQ	^t DZRQ	*				
SO Delay from SCK	tDZSC	*				
SO Delay from SOEN	^t DZE	*				
SOEN to SO Floating	tHZE	*				
SCK to SO Floating	tHZSC	*				
SORO to SO Floating	tHZRO	*				
SIEN, SI Setup Time	tDC	50			ns	
SIEN, SI Hold Time	^t CD	20			ns	
P ₀ , P ₁ Delay	tDP			300	ns	
RST Pulse Width	^t RST	4			ØCY	
INT Pulse Width	• ^t INT	8			ΦCΥ	

*To be specified

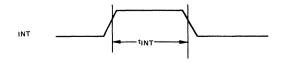

AC CHARACTERISTICS

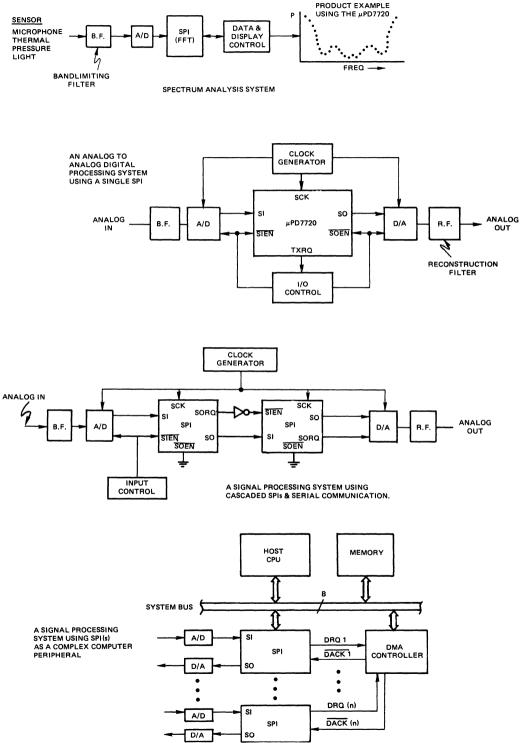






WRITE OPERATION





РОЯТ ОUТРИТ СLК Ро, Р1

μPD7720

7720DS-12-80-CAT