DATA SHEET

MOS INTEGRATED CIRCUIT μ**PD78P0308, 78P0308Y**

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78P0308 and 78P0308Y are members of the μ PD780308 and 780308Y Subseries of the 78K/0 Series, in which the on-chip mask ROM of the μ PD780308 and 780308Y is replaced with a one-time PROM.

Because this device can be programmed by users, it is ideally suited for system evaluation, small-scale and multiple-device production, and early development and time-to-market.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

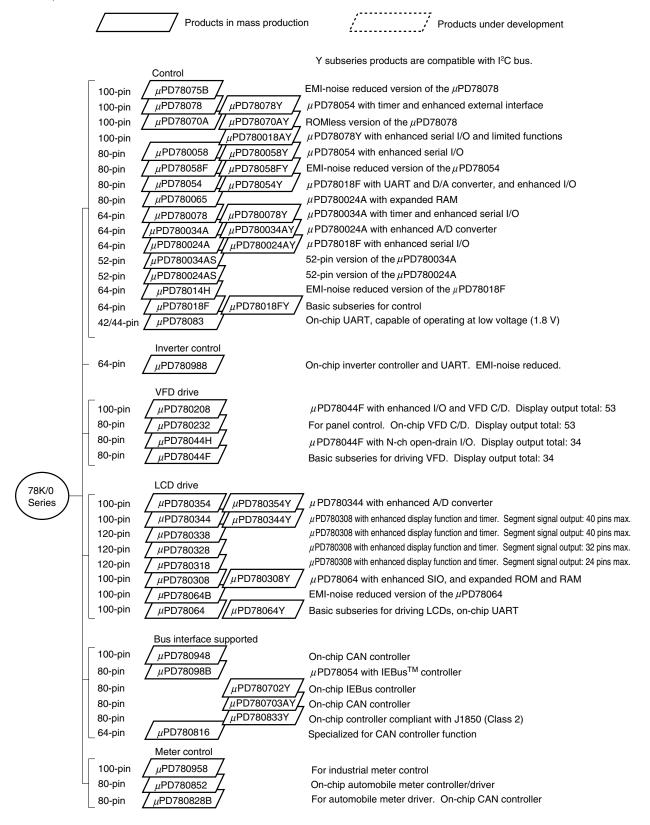
μPD780308, 780308Y Subseries User's Manual: U11377E 78K/0 Series Instructions User's Manual: U12326E

FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Program memory (one-time PROM): 60 KBNote
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes
- LCD display RAM: 40 x 4 bits
- Supply voltage: VDD = 2.0 to 5.5 V

Note The internal PROM capacity can be changed by setting the internal memory size switching register (IMS).

Remark Refer to **1. DIFFERENCES BETWEEN** μ**PD78P0308, 78P0308Y AND MASK ROM VERSIONS** for the difference between the one-time PROM and mask ROM versions.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78P0308GC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	One-time PROM
µPD78P0308YGC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	One-time PROM
μ PD78P0308GF-3BA	100-pin plastic QFP (14 $ imes$ 20)	One-time PROM
μ PD78P0308YGF-3BA	100-pin plastic QFP (14 $ imes$ 20)	One-time PROM

* 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries name.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

NEC

The major functional differences between the subseries are shown below.

• Subseries without the suffix Y

	Function	ROM		Tin	ner			10-Bit	8-Bit	Serial Interface	I/O	V _{DD} MIN.	External
Subseries	Name	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 KB to 40 KB	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Yes
	μPD78078	48 KB to 60 KB											
	μPD78070A	-									61	2.7 V	
	µPD780058	24 KB to 60 KB	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μ PD78058F	48 KB to 60 KB								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 KB to 60 KB										2.0 V	
	µPD780065	40 KB to 48 KB							-	4 ch (UART: 1 ch)	60	2.7 V	
	µPD780078	48 KB to 60 KB		2 ch			-	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 KB to 32 KB		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD780034AS						-	4 ch			39		-
	μPD780024AS						4 ch	-					
	μPD78014H						8 ch			2 ch	53		Yes
	μ PD78018F	8 KB to 60 KB											
	µPD78083	8 KB to 16 KB		-	-					1 ch (UART: 1 ch)	33		-
Inverter control	μPD780988	16 KB to 60 KB	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	Yes
VFD	μPD780208	32 KB to 60 KB	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	_
drive	µPD780232	16 KB to 24 KB	3 ch	-	-		4 ch				40	4.5 V	
	μPD78044H	32 KB to 48 KB	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 KB to 40 KB								2 ch			
LCD	µPD780354	24 KB to 32 KB	4 ch	1 ch	1 ch	1 ch	-	8 ch	_	3 ch (UART: 1 ch)	66	1.8 V	-
drive	µPD780344						8 ch	-					
	µPD780338	48 KB to 60 KB	3 ch	2 ch			_	10 ch	1 ch	2 ch (UART: 1 ch)	54		
	µPD780328										62		
	µPD780318										70		
	µPD780308	48 KB to 60 KB	2 ch	1 ch			8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 KB								2 ch (UART: 1 ch)			
	μPD78064	16 KB to 32 KB											
Bus	µPD780948	60 KB	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	Yes
interface	μPD78098B	40 KB to 60 KB		1 ch					2 ch		69	2.7 V	_
supported	µPD780816	32 KB to 60 KB		2 ch			12 ch		_	2 ch (UART: 1 ch)	46	4.0 V	
Meter control	µPD780958	48 KB to 60 KB	4 ch	2 ch	_	1 ch	_	_	-	2 ch (UART: 1 ch)	69	2.2 V	_
Dashboard	µPD780852	32 KB to 40 KB	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	3 ch (UART: 1 ch)	56	4.0 V	_
control	µPD780828B	32 KB to 60 KB									59]	

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

	Function	ROM		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	VDD	External
Subseries Name		Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			MIN. Value	Expansion
Control	μPD78078Y	48 KB to 60 KB	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch,	88	1.8 V	Yes
	μPD78070AY	-								l ² C: 1 ch)	61	2.7 V	
	μPD780018AY	48 KB to 60 KB							_	3 ch (l ² C: 1 ch)	88		
	μPD780058Y	24 KB to 60 KB	2 ch						2 ch	3 ch (time-division UART: 1 ch, l ² C: 1 ch)	68	1.8 V	
	μPD78058FY	48 KB to 60 KB								3 ch (UART: 1 ch,	69	2.7 V	
	μPD78054Y	16 KB to 60 KB								l ² C: 1 ch)		2.0 V	
	μPD780078Y	48 KB to 60 KB		2 ch			-	8 ch	_	4 ch (UART: 2 ch, I ² C: 1 ch)	52	1.8 V	
	μPD780034AY	8 KB to 32 KB		1 ch						3 ch (UART: 1 ch,	51]	
	μPD780024AY						8 ch	-		I ² C: 1 ch)			
	μPD78018FY	8 KB to 60 KB								2 ch (l ² C: 1 ch)	53		
LCD	μPD780354Y	24 KB to 32 KB	4 ch	1 ch	1 ch	1 ch	-	8 ch	-	4 ch (UART: 1 ch,	66	1.8 V	-
drive	μPD780344Y						8 ch	-		I ² C: 1 ch)			
	μPD780308Y	48 KB to 60 KB	2 ch							3 ch (time-division UART: 1 ch, l ² C: 1 ch)	57	2.0 V	
	μPD78064Y	16 KB to 32 KB								2 ch (UART: 1 ch, I ² C: 1 ch)			
Bus	μPD780702Y	60 KB	3 ch	2 ch	1 ch	1 ch	16 ch	-	-	4 ch (UART: 1 ch,	67	3.5 V	-
interface	μPD780703AY	59.5 KB								l ² C: 1 ch)			
supported	µPD780833Y	60 KB									65	4.5 V	1

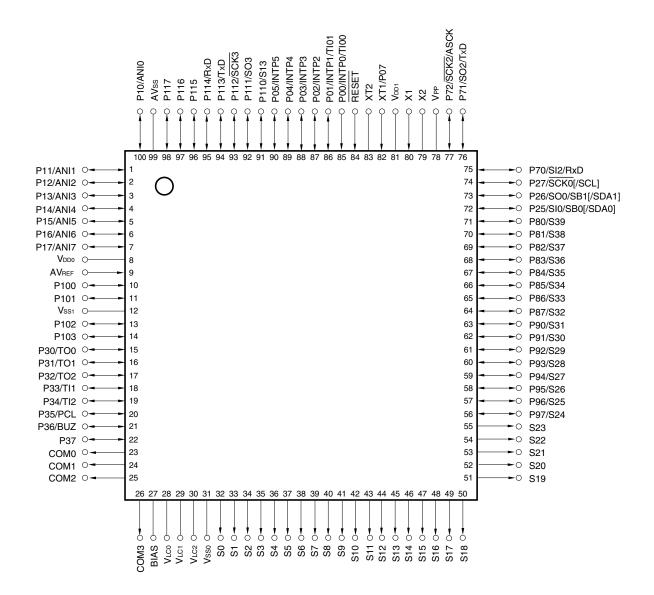
Subseries with the suffix Y

Remark The functions of the subseries without the suffix Y and the subseries with the suffix Y are the same, except for the serial interface (if a subseries without the suffix Y is available).

OVERVIEW OF FUNCTIONS

Item		μPD78P0308	μPD78P0308Y			
Internal memory	One-time PROM	60 KB ^{Note}				
	High-speed RAM	1024 bytes				
	Expansion RAM	1024 bytes				
	LCD display RAM	40 x 4 bits				
General-purpose	registers	8 bits x 32 registers (8 bits x 8 registers >	x 4 banks)			
Minimum instructi	on execution time	On-chip minimum instruction execution til	me variable function			
	When main system	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs	s (@ 5.0 MHz operation)			
	clock is selected					
	When subsystem	122 μs (@ 32.768 kHz operation)				
	clock is selected					
Instruction set		16-bit operation				
		• Multiply/divide (8 bits x 8 bits, 16 bits ÷	8 bits)			
		• Bit manipulation (set, reset, test, Boolea	an operation)			
		BCD adjustment, etc.				
I/O ports		Total: 57				
(Segment signal of	output pins included)	CMOS input: 2				
		• CMOS I/O: 55				
A/D converter		8-bit resolution x 8 channels				
LCD controller/dri	ver	Segment signal output: 40 pins maximum				
		Common signal output: 4 pins maximum				
		• Bias: 1/2,1/3 bias co	nvertible			
Serial interface		• 3-wire serial I/O/SBI/2-wire serial I/O	• 3-wire serial I/O/2-wire serial I/O/I ² C			
		mode selectable: 1 channel	bus mode selectable: 1 channel			
		• 3-wire serial I/O/UART mode selectable	e: 1 channel			
		3-wire serial I/O mode:	1 channel			
Timer		• 16-bit timer/event counter: 1 channel				
		• 8-bit timer/event counter: 2 channels				
		Watch timer: 1 channel				
		Watchdog timer: 1 channel				
Timer output		3 pins (14-bit PWM output enable: 1 pin)				
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,				
		and 5.0 MHz (@ 5.0 MHz operation with main system clock)				
		32.768 kHz (@ 32.768 kHz operation with subsystem clock)				
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz, and 9.8 kHz				
		(@ 5.0 MHz operation with main system clock)				

Note The internal PROM capacity can be changed by setting the internal memory size switching register (IMS).

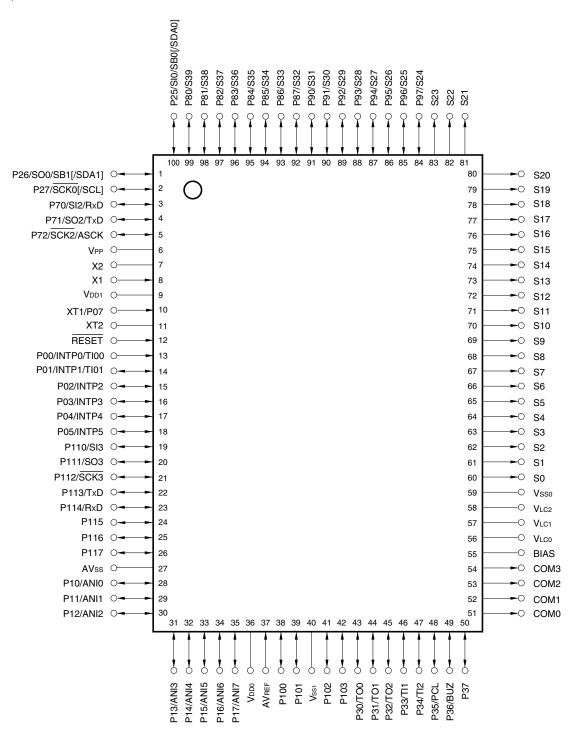

 \star

	tem	μPD78P0308 μPD78P0308Y					
Vectored	Maskable	Internal: 13, External: 6	Internal: 13, External: 6				
interrupt sources	Non-maskable	Internal: 1					
	Software	1					
Test input		Internal: 1, External: 1					
Supply voltage		V _{DD} = 2.0 to 5.5 V					
Package		• 100-pin plastic LQFP (fine pitch) (14 \times 14)					
		• 100-pin plastic QFP (14 $ imes$ 20)					

PIN CONFIGURATIONS (TOP VIEW)

(1) Normal operating mode

• 100-pin plastic LQFP (fine pitch) (14 \times 14) $\mu \text{PD78P0308GC-8EU}, 78\text{P0308YGC-8EU}$


Cautions 1. Connect the VPP pin directly to Vsso or Vss1.

2. Connect the AVss pin to Vsso.

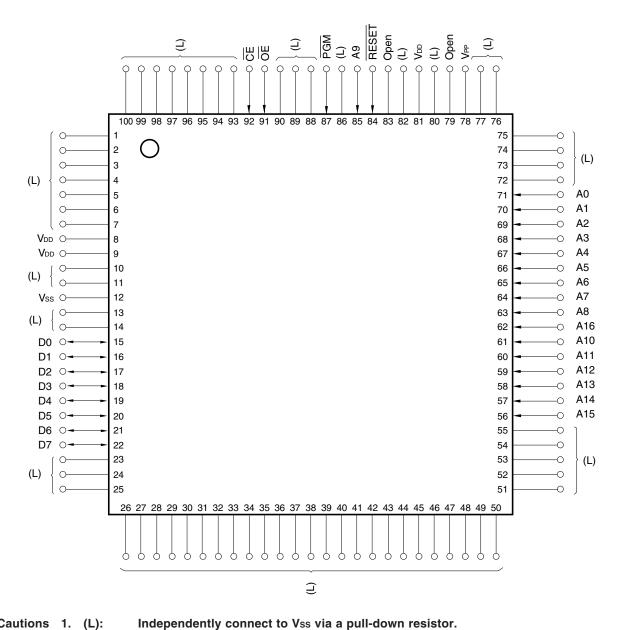
Remarks 1. []: µPD78P0308Y only

2. When the device is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

• **100-pin plastic QFP (14** × **20)** μPD78P0308GF-3BA, 78P0308YGF-3BA

Cautions 1. Connect the VPP pin directly to Vsso or Vss1.

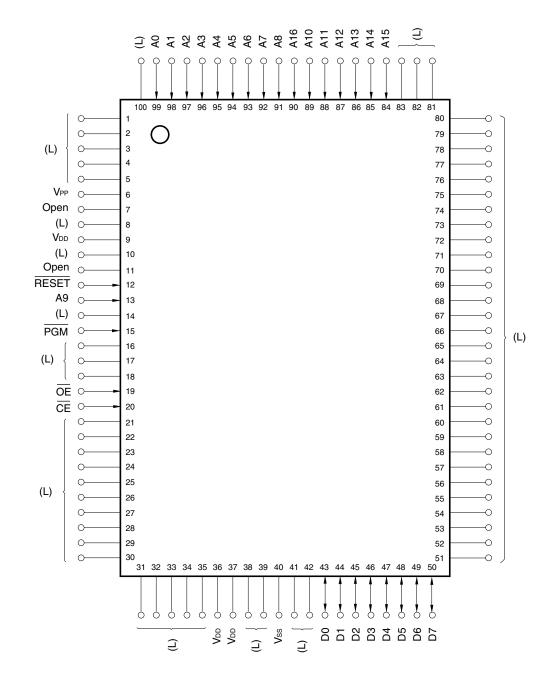
2. Connect the AVss pin to Vsso.


2. When the device is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

NEC

μ**PD78P0308, 78P0308Y**

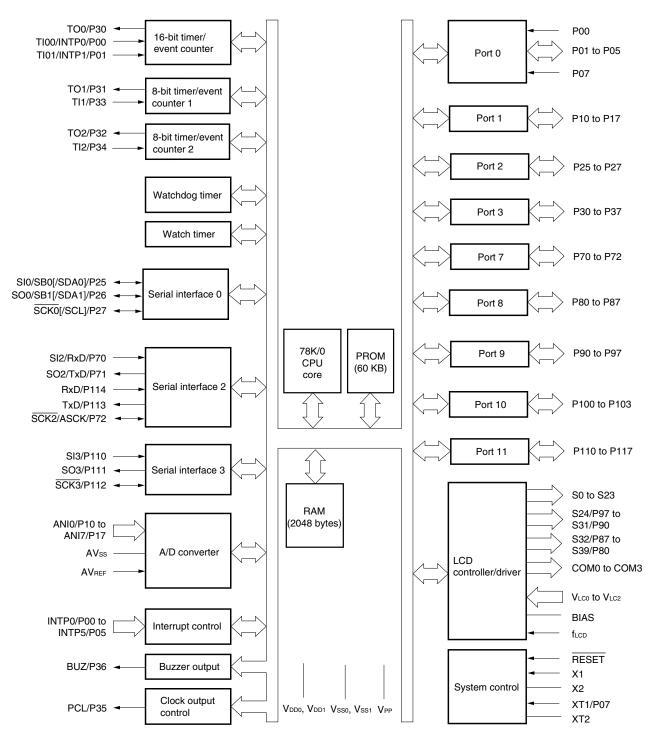
ANI0 to ANI7:	Analog input	RxD:	Receive data
ASCK:	Asynchronous serial clock	S0 to S39:	Segment output
AVREF:	Analog reference voltage	SB0, SB1:	Serial bus
AVss:	Analog ground	SCK0, SCK2, SCK3:	Serial clock
BIAS:	LCD power supply bias control	SCL:	Serial clock
BUZ:	Buzzer clock	SDA0, SDA1:	Serial data
COM0 to COM3:	Common output	SI0, SI2, SI3:	Serial input
INTP0 to INTP5:	External interrupt input	SO0, SO2, SO3:	Serial output
P00 to P05, P07:	Port 0	TI00, TI01:	Timer input
P10 to P17:	Port 1	TI1, TI2:	Timer input
P25 to P27:	Port 2	TO0 to TO2:	Timer output
P30 to P37:	Port 3	TxD:	Transmit data
P70 to P72:	Port 7	VDD0, VDD1:	Power supply
P80 to P87:	Port 8	VLC0 to VLC2:	LCD power supply
P90 to P97:	Port 9	VPP:	Programming power supply
P100 to P103:	Port 10	VSS0, VSS1:	Ground
P110 to P117:	Port 11	X1, X2:	Crystal (main system clock)
PCL:	Programmable clock	XT1, XT2:	Crystal (subsystem clock)
RESET:	Reset		


- (2) PROM programming mode
 - 100-pin plastic LQFP (fine pitch) (14 \times 14) µPD78P0308GC-8EU, 78P0308YGC-8EU

Cautions 1. (L):

- 2. Vss: Connect to GND.
- **RESET:** Set to low level. 3.
- 4. Open: Leave open.

• **100-pin plastic QFP (14** × **20)** μPD78P0308GF-3BA, 78P0308YGF-3BA



Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

- 2. Vss: Connect to GND.
- 3. RESET: Set to low level.
- 4. Open: Leave open.

A0 to A16:	Address bus	RESET:	Reset
CE:	Chip enable	VDD:	Power supply
D0 to D7:	Data bus	VPP:	Programming power supply
OE:	Output enable	Vss:	Ground
PGM:	Program		

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78P0308, 78P0308Y AND MASK ROM VERSIONS	15
2.	PIN FUNCTIONS 2.1 Pins in Normal Operating Mode 2.2 Pins in PROM Programming Mode 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	16 16 19 20
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	24
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	25
5.	PROM PROGRAMMING 5.1 Operating Modes 5.2 PROM Write Procedure 5.3 PROM Read Procedure	26 26 28 32
6.	ONE-TIME PROM VERSION SCREENING	32
7.	ELECTRICAL SPECIFICATIONS	33
8.	PACKAGE DRAWINGS	61
9.	RECOMMENDED SOLDERING CONDITIONS	63
AF	PPENDIX A. DEVELOPMENT TOOLS	64
AF	PPENDIX B. RELATED DOCUMENTS	70

 \star

1. DIFFERENCES BETWEEN μ PD78P0308, 78P0308Y AND MASK ROM VERSIONS

The μ PD78P0308 and 78P0308Y are single-chip microcontrollers with an on-chip one-time PROM to which a program can be written only once.

It is possible to make all the functions except for the PROM specifications and the mask option of LCD drive power supply dividing resistor the same as those of mask ROM versions by setting the internal memory size switching register (IMS).

Differences between the one-time PROM versions (μ PD78P0308, 78P0308Y) and mask ROM versions (μ PD780306, 780306Y, 780306Y, 780308Y) are shown in Table 1-1.

Item	μPD78P0308 μPD78P0308Y		Mask RO	VI Versions		
			µPD780308 Subseries	µPD780308Y Subseries		
Internal ROM configuration	One-time PROM		Mask ROM			
Internal ROM capacity	60 KB		μPD780306, 780306	Y: 48 KB		
			μPD780308, 780308	Y: 60 KB		
Internal ROM capacity change	Possible ^{Note}		Impossible			
by the internal memory size						
switching register (IMS)						
IC pin	No		Yes			
VPP pin	Yes		No			
Mask options of LCD drive	None		Available	Available		
power supply dividing resistor						
Serial interface (SBI)	Provided	Not provided	Provided	Not provided		
Serial interface (I ² C)	Not provided	Provided	Not provided Provided			
Electrical specifications,	Refer to the data she	et of the individual pro	oduct.	·		
recommended soldering conditions						

Table 1-1. Differences Between μ PD78P0308, 78P0308Y and Mask ROM Versions

Note The internal PROM capacity is set to 60 KB by RESET input.

Caution There are differences in noise immunity and noise radiation between the one-time PROM and mask ROM versions. When pre-producing an application set with a one-time PROM version and then mass-producing it with a mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	I/O	7-bit I/O port	Input/output can be specified	Input	INTP1/TI01
P02			in 1-bit units. When used as		INTP2
P03			the input port, on-chip pull-up		INTP3
P04			resistor connection can be		INTP4
P05			specified by software settings.		INTP5
P07 ^{Note 1}	Input	_	Input only	Input	XT1
P10 to P17	I/O	Port 1	•	Input	ANI0 to ANI7
		8-bit I/O port			
		Input/output can be spec	cified in 1-bit units.		
		When used as the input	port, on-chip pull-up resistor		
		connection can be speci	fied by software settings.Note 2		
P25	I/O	Port 2		Input	SI0/SB0[/SDA0]
		3-bit I/O port			
P26		Input/output can be spec	cified in 1-bit units.		SO0/SB1[/SDA1]
P27	_	When used as the input	port, on-chip pull-up resistor		
F27		connection can be speci	fied by software settings.		SCK0[/SCL]
P30	I/O	Port 3		Input	TO0
P31		8-bit I/O port			TO1
P32		Input/output can be spec	cified in 1-bit units.		TO2
P33		When used as the input	port, on-chip pull-up resistor		TI1
P34	1	connection can be speci	fied by software settings.		TI2
P35	1				PCL
P36	1				BUZ
P37	1				

Notes 1. When the P07/XT1 pin is used as an input port, set bit 6 (FRC) of the processor clock control register (PCC) to 1, and be sure not to use the feedback resistor of the subsystem clock oscillator.

2. When the P10/ANI0 to P17/ANI7 pins are used as the analog inputs for the A/D converter, shift port 1 to input mode. The on-chip pull-up resistors are automatically disabled.

Remark []: µPD78P0308Y only

(1) Port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	SI2/RxD
	_	3-bit I/O port		0007 D
P71		Input/output can be specified in 1-bit units.		SO2/TxD
P72	-	When used as the input port, on-chip pull-up resistor		SCK2/ASCK
		connection can be specified by software settings.		
P80 to P87	I/O	Port 8	Input	S39 to S32
		8-bit I/O port		
		Input/output can be specified in 1-bit units.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by software settings.		
		The I/O port/segment signal output function is		
		specifiable in 2-bit units by the LCD display control		
		register (LCDC).		
P90 to P97	I/O	Port 9	Input	S31 to S24
		8-bit I/O port		
		Input/output can be specified in 1-bit units.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by software settings.		
		The I/O port/segment signal output function is		
		specifiable in 2-bit units by the LCD display control		
		register (LCDC).		
P100 to P103	I/O	Port 10	Input	_
		4-bit I/O port		
		Input/output can be specified in 1-bit units.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by software settings.		
		It is possible to directly drive LEDs.		
P110	I/O	Port 11	Input	SI3
P111	1	8-bit I/O port		SO3
P112	1	Input/output can be specified in 1-bit units.		SCK3
P113	1	When used as the input port, on-chip pull-up resistor		TxD
P114]	connection can be specified by software settings.		RxD
P115 to P117		Falling edge detection is possible.		—

(2) Non-port pins (1/2)

Pin Name	I/O	Function		After Reset	Alternate Function
INTP0	Input	External interrupt request input for w	hich the valid edge	Input	P00/TI00
INTP1		(rising edge, falling edge, or both risi	ng and falling edges)		P01/TI01
INTP2		can be specified.			P02
INTP3					P03
INTP4					P04
INTP5					P05
SI0	Input	Serial interface serial data input.		Input	P25/SB0[/SDA0]
SI2					P70/RxD
SI3					P110
SO0	Output	Serial interface serial data output.		Input	P26/SB1[/SDA1]
SO2					P71/TxD
SO3					P111
SB0	I/O	Serial interface serial data input/outp	ut.	Input	P25/SI0[/SDA0]
SB1				-	P26/SO0[/SDA1]
SDA0			ιPD78P0308Y only		P25/SI0/SB0
SDA1			-		P26/SO0/SB1
SCK0	I/O	Serial interface serial clock input/out	out.	Input	P27[/SCL]
SCK2					P72/ASCK
SCK3					P112
SCL			PD78P0308Y only		P27/SCK0
RxD	Input	Asynchronous serial interface serial	data input.	Input	P70/SI2, P114
TxD	Output	Asynchronous serial interface serial of	data output.	Input	P71/SO2, P113
ASCK	Input	Asynchronous serial interface serial of	clock input.	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit til	mer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to capture	e register (CR00).	-	P01/INTP1
TI1		External count clock input to 8-bit tim	ner (TM1).		P33
TI2		External count clock input to 8-bit tim	ner (TM2).		P34
TO0	Output	16-bit timer (TM0) output (also used for	14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.			P31
TO2		8-bit timer (TM2) output.			P32
PCL	Output	Clock output (for main system clock,	subsystem clock	Input	P35
		trimming).			
BUZ	Output	Buzzer output.		Input	P36
S0 to S23	Output	LCD controller/driver segment signal	output.	Output	_
S24 to S31				Input	P97 to P90
S32 to S39					P87 to P80
COM0 to COM3	Output	LCD controller/driver common signal	output.	Output	
VLC0 to VLC2		LCD drive voltage.			_
BIAS	_	LCD drive power supply.			

Remark []: µPD78P0308Y only

(2) Non-port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input	—	—
		(also used for analog power supply).		
AVss	_	A/D converter ground potential. Set to the same potential as Vsso.	—	_
RESET	Input	System reset input.	—	—
X1	Input	Crystal resonator connection for main system clock	—	—
X2	_	oscillation.	_	—
XT1	Input	Crystal resonator connection for subsystem clock	Input	P07
XT2	_	oscillation.	_	_
VDD0	_	Positive power supply for ports.	—	—
V _{SS0}	_	Ground potential for ports.	—	—
V _{DD1}	_	Positive power supply (except for ports and analog).	—	—
V _{SS1}	_	Ground potential (except for ports and analog).	—	—
Vpp	_	High voltage application in program write/verify mode.	—	—
		Connect directly to V_{SS0} or V_{SS1} in normal operating mode.		

2.2 Pins in PROM Programming Mode

Pin Name	I/O	Function
RESET	Input	PROM programming mode setting.
		When +5 V or +12.5 V is applied to the V_{PP} pin and a low-level signal is applied to the $\overline{\text{RESET}}$
		pin, this chip is set in the PROM programming mode.
VPP	Input	PROM programming mode setting and high voltage application during program write/verification.
A0 to A16	Input	Address bus.
D0 to D7	I/O	Data bus.
CE	Input	PROM enable input/program pulse input.
ŌĒ	Input	Read strobe input to PROM.
PGM	Input	Program/program inhibit input in PROM programming mode.
Vdd	—	Positive power supply.
Vss	_	Ground potential.

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The types of pin I/O circuits and the recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of I/O circuit, see Figure 2-1.

Table 2-1.	Type (of I/O	Circuit of	f Fach	Pin (1/2	2
	iypev		Circuit U		F III (1/4	-)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vsso.
P01/INTP1/TI01	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P02/INTP2			Output: Leave open.
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connect to VDD0.
P10/ANI0 to P17/ANI7	11-B	I/O	Input: Independently connect to VDD0 or VSS0 via a resistor.
P25/SI0/SB0[/SDA0]	10-B		Output: Leave open.
P26/SO0/SB1[/SDA1]			
P27/SCK0[/SCL]	1		
P30/TO0	5-H	1	
P31/TO1			
P32/TO2			
P33/TI1	8-C		
P34/TI2			
P35/PCL	5-H		
P36/BUZ			
P37			
P70/SI2/RxD	8-C		
P71/SO2/TxD	5-H		
P72/SCK2/ASCK	8-C		
P80/S39 to P87/S32	17-C		
P90/S31 to P97/S24			
P100 to P103	5-H]	
P110/SI3	8-C]	Input: Independently connect to VDD0 via a resistor.
P111/SO3			Output: Leave open.
P112/SCK3			
P113/TxD			
P114/RxD			
P115 to P117			
S0 to S23	17-B	Output	Leave open.
COM0 to COM3	18-A		

Remark []: *µ*PD78P0308Y only

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
VLC0 to VLC2	—	—	Leave open.
BIAS			
RESET	2	Input	—
XT2	16	_	Leave open.
AVREF	_	_	Connect to Vsso.
AVss			
Vpp			Connect directly to Vsso or Vss1.

Table 2-1. Type of I/O Circuit of Each Pin (2/2)

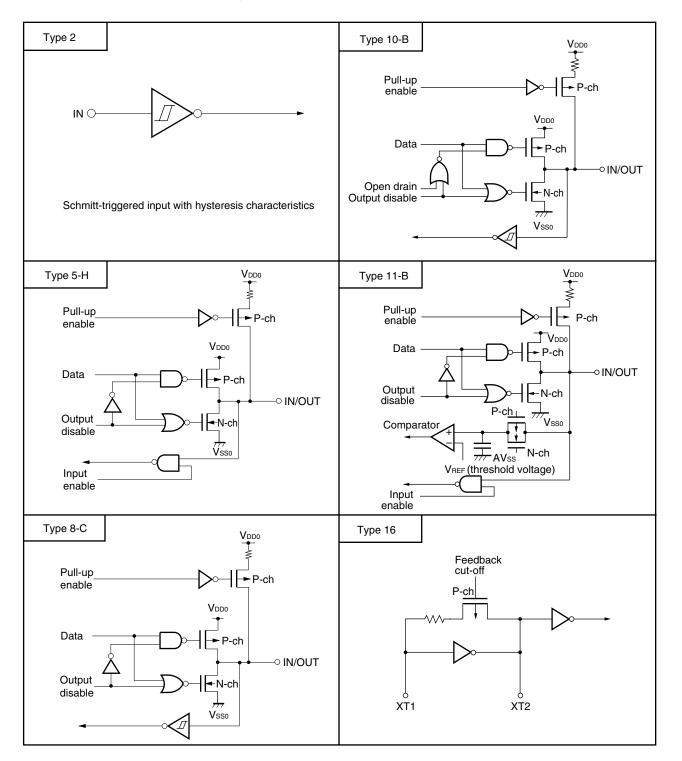


Figure 2-1. List of Pin I/O Circuits (1/2)

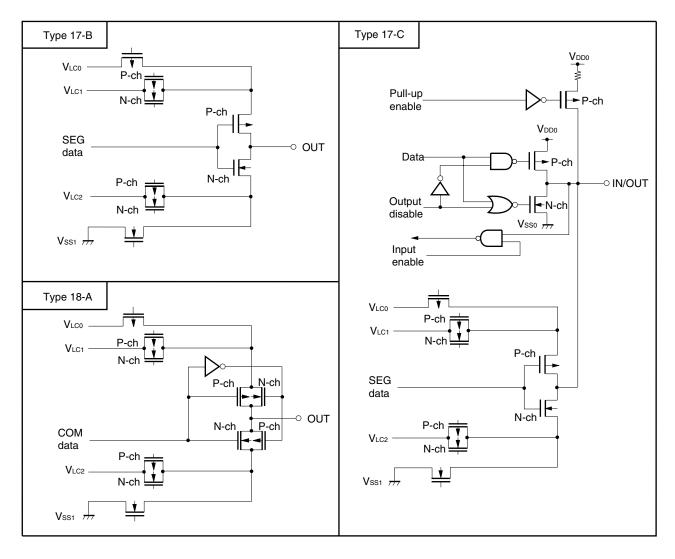


Figure 2-1. List of Pin I/O Circuits (2/2)

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register used to disable use of part of the internal memory by software. By setting the internal memory size switching register (IMS), it is possible to get the same memory map as that of the mask ROM versions with a different internal memory (ROM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

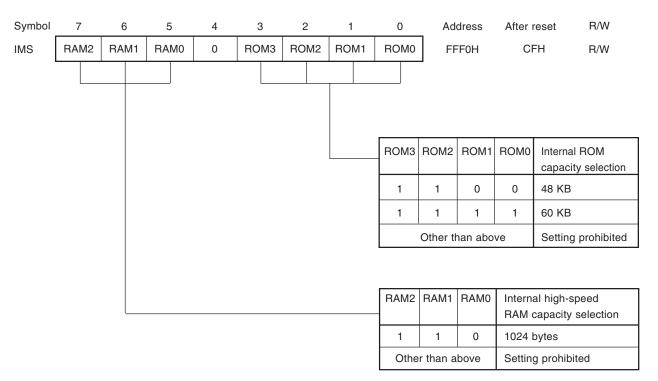


Table 3-1 shows the setting values of IMS that make the memory mapping the same as that of the mask ROM versions.

Table 3-1. Internal Memory Size Switching Register Setting Values

Target Mask ROM Versions	IMS Setting Value
μPD780306, 780306Υ	ССН
μPD780308, 780308Υ	CFH

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to set the internal expansion RAM capacity by software. By setting the internal expansion RAM size switching register (IXS), it is possible to get the same memory map as that of the mask ROM versions with a different internal expansion RAM capacity.

IXS is set with an 8-bit memory manipulation instruction.

RESET input sets IXS to 0AH.

Figure 4-1. Format of Internal Expansion RAM Size Switching Register

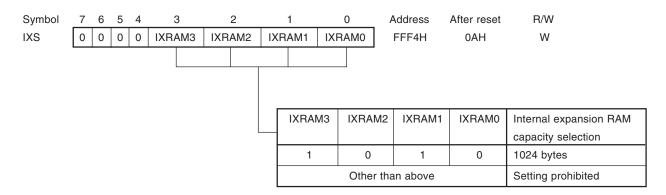


Table 4-1 shows the setting values of IXS that make the memory mapping the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Value
μPD780306, 780306Υ	0AH
μPD780308, 780308Υ	

5. PROM PROGRAMMING

The μ PD78P0308 and 78P0308Y have an on-chip 60 KB PROM as a program memory. For programming, set the PROM programming mode with the V_{PP} and RESET pins. For the connection of unused pins, refer to **PIN CONFIGURATIONS (2) PROM programming mode.**

Caution Programs must be written in addresses 0000H to EFFFH (the last address EFFFH must be specified). They cannot be written by a PROM programmer that cannot specify the write address.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the $\overrightarrow{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overrightarrow{\text{CE}}$, $\overrightarrow{\text{OE}}$, and $\overrightarrow{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

	Pin	RESET	Vpp	Vdd	CE	ŌĒ	PGM	D0 to D7
Operating Mode								
Page data latch		L	+12.5 V	+6.5 V	Н	L	н	Data input
Page write					Н	Н	L	High-impedance
Byte write					L	Н	L	Data input
Program verify					L	L	н	Data output
Program inhibit					×	Н	Н	High-impedance
					×	L	L	
Read			+5 V	+5 V	L	L	н	Data output
Output disable					L	Н	×	High-impedance
Standby					Н	×	×	High-impedance

Table 5-1. Operating Modes of PROM Programming

 \times : L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set. Therefore, data can be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P0308 and 78P0308Ys are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set. In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1-page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1 ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$, $\overline{OE} = L$ are set.

If programming is not performed by a one-time program pulse, write and verification operations should be executed X times (X \leq 10) repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1 ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, write and verification operations should be executed X times (X \leq 10) repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if the write operation was performed correctly after the write.

(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin, and D0 to D7 pins of multiple μ PD78P0308 and 78P0308Ys are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device whose \overline{PGM} pin is driven high.

5.2 PROM Write Procedure

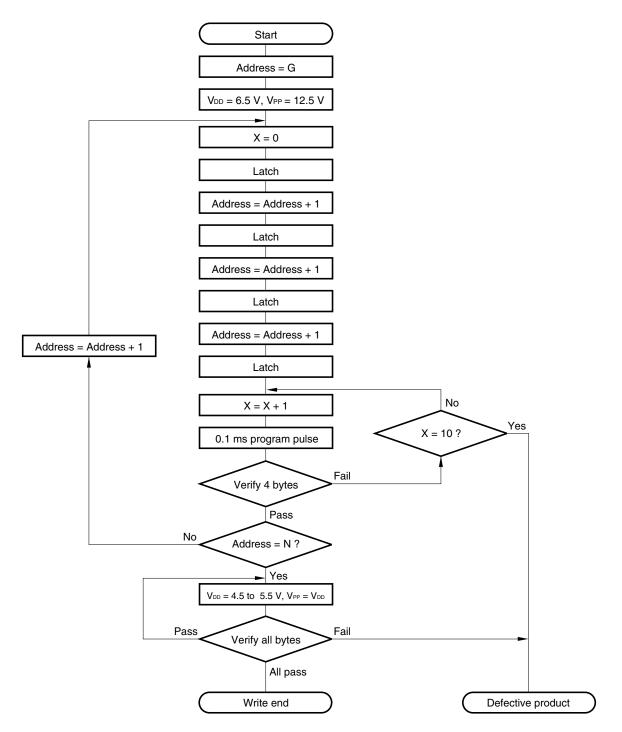


Figure 5-1. Page Program Mode Flow Chart

G = Start address

N = Program last address

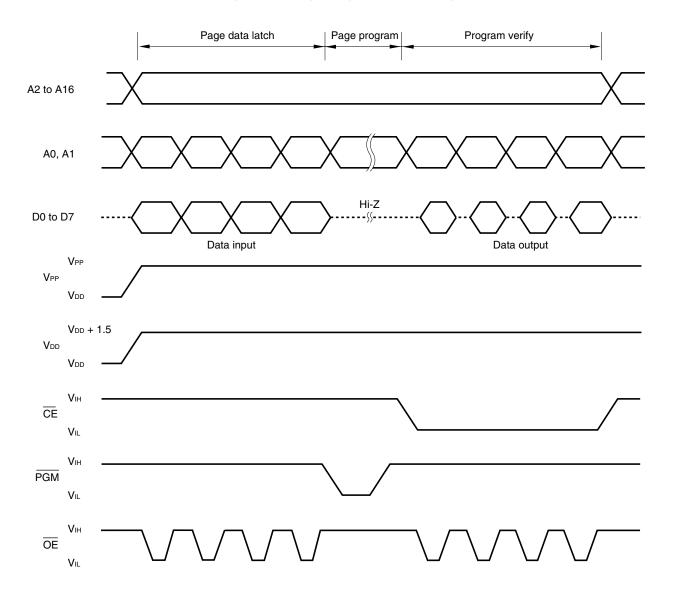


Figure 5-2. Page Program Mode Timing

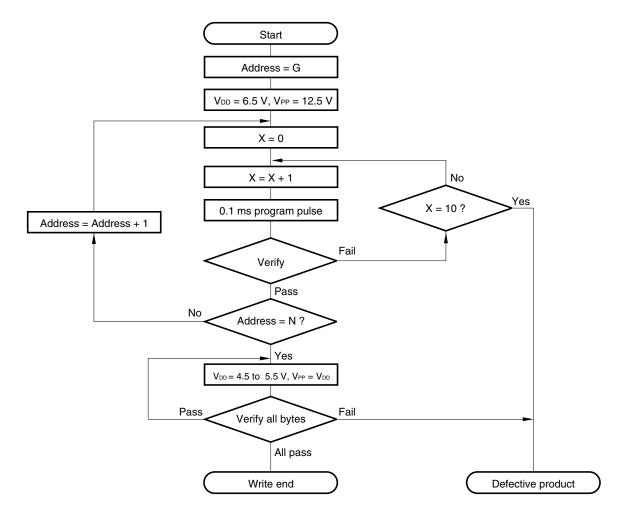
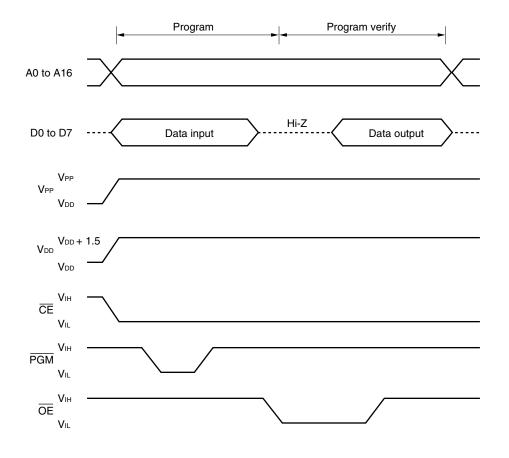
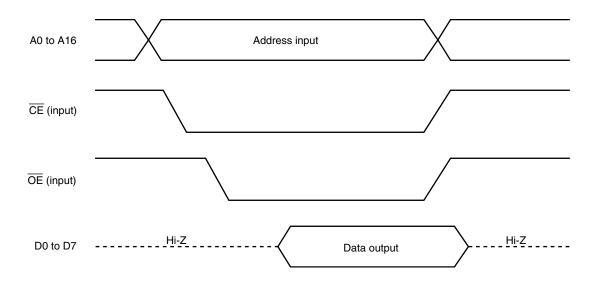



Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

Figure 5-4. Byte Program Mode Timing


- Cautions 1. VDD should be applied before VPP, and cut after VPP.
 - 2. VPP should not exceed +13.5 V, including overshoot.
 - 3. Disconnection during application of +12.5 V to VPP may have an adverse effect on reliability.

5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin to low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in **PIN CONFIGURATIONS (2) PROM programming mode.**
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0 to A16 pins.
- (4) Read mode
- (5) Output data to the D0 to D7 pins.

The timing of steps (2) to (5) above is shown in Figure 5-5.

Figure 5-5. PROM Read Timing

6. ONE-TIME PROM VERSION SCREENING

The one-time PROM versions (μ PD78P0308GC-8EU, 78P0308GF-3BA, 78P0308YGC-8EU, and 78P0308YGF-3BA) cannot be tested completely by NEC Electronics before they are shipped, because of their structure. It is recommended to perform screening to verify PROM after writing the necessary data and performing high-temperature storage under the conditions below.

Storage Temperature	Storage Time
125°C	24 hours

*

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions		Ratings	Unit	
Supply voltage	VDD				-0.3 to +7.0	V
	VPP				-0.3 to +13.5	V
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P05, P07, F	P10 to P17, P25	to P27,	-0.3 to V _{DD} + 0.3	V
		P30 to P37, P70 to	P72, P80 to P8	7, P90 to P97,		
		P100 to P103, P110	to P117, X1, X2	, XT2, RESET		
	V _{I2}	A9	PROM progra	amming mode	-0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input	pin	AVss - 0.3 to AVREF + 0.3	V
Output current, high	Іон	Per pin	•		-10	mA
		Total for P01 to P0	5, P10 to P17, I	P25 to P27,	-15	mA
		P70 to P72, P110 t	to P117			
		Total for P30 to P3	7, P80 to P87, I	P90 to P97,	-15	mA
		P100 to P103				
Output current, low	lol	Per pin		Peak value	30	mA
				r.m.s. value	15 ^{Note}	mA
		Total for P01 to P0	5, P10 to P17,	Peak value	60	mA
		P110 to P117		r.m.s. value	40 ^{Note}	mA
		Total for P30 to P3	57,	Peak value	140	mA
		P100 to P103		r.m.s. value	100 ^{Note}	mA
		Total for P25 to P2	7, P70 to P72,	Peak value	50	mA
		P80 to P87, P90 to	P97	r.m.s. value	20 ^{Note}	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The root mean square (r.m.s.) value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned			15	pF
I/O capacitance	Сю	to 0 V.			15	pF

Capacitance (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Resonator	Recommended	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Circuit						
Ceramic	VPP X2 X1	Oscillation	VDD = Oscillation	1.0		5.0	MHz
resonator		frequency (fx) ^{Note 1}	voltage range				
		Oscillation	After VDD reaches			4	ms
		stabilization time ^{Note 2}	oscillation voltage range MIN.				
Crystal	VPP X2 X1	Oscillation	VDD = Oscillation	1		5	MHz
resonator		frequency (fx) ^{Note 1}	voltage range				
		Oscillation	$4.5~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			10	ms
7	777	stabilization timeNote 2	$2.0~V \leq V_{\text{DD}} < 4.5~V^{\text{Note 3}}$			30	
External clock	X2 X1	X1 input		1.0		5.0	MHz
	X2 X1	frequency (fx) ^{Note 1}					
		X1 input high-/low-		85		500	ns
	\land	level width (txH, txL)					

Main System Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = $2.0^{Note 4}$ to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - **2.** Time required to stabilize oscillation after reset or STOP mode release.
 - 3. After VDD reaches oscillation voltage range MIN.
 - However, oscillation start voltage or higher and VDD = 2.0 V or higher (for external clock, VDD = 2.0 V or higher).
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Resonator	Recommended	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Circuit						
Crystal	VPP XT1 XT2	Oscillation	VDD = Oscillation	32	32.768	35	kHz
resonator		frequency (fxT) ^{Note 1}	voltage range				
		C3 C4 Stabilization time ^{Note 2}	$4.5~V \leq V_{\text{DD}} \leq 5.5~V^{\tilde{\text{Note 3}}}$		1.2	2	S
			$2.0~V \leq V_{\text{DD}} < 4.5~V^{\text{Note 3}}$			10	
External clock		XT1 input		32		100	kHz
		frequency (f _{XT}) ^{Note 1}					
		XT1 input high-/low- level width (txTH, txTL)		5		15	μs

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = $2.0^{Note 4}$ to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.
 - 3. After VDD reaches oscillation voltage range MIN.
 - However, oscillation start voltage or higher and VDD = 2.0 V or higher (for external clock, VDD = 2.0 V or higher).
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (TA = -40 to +85°C, VDD = 2.0 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage,	VIH1	P10 to P17, P30 to P32,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.7Vdd		Vdd	V
high		P35 to P37, P80 to P87,		0.01/			
		P90 to P97, P100 to P103	$2.0~V \leq V_{\text{DD}} < 2.7~V$	0.8Vdd		Vdd	V
	VIH2	P00 to P05, P25 to P27,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8Vdd		VDD	V
		P33, P34, P70 to P72,		0.071/			
		P110 to P117, RESET	$2.0~V \leq V_{\text{DD}} < 2.7~V$	0.85Vdd		Vdd	V
	Vінз	X1, X2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	Vdd - 0.5		Vdd	V
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	V _{DD} - 0.2		VDD	V
	VIH4	XT1/P07, XT2	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	0.8Vdd		VDD	V
			$2.7~V \leq V_{\text{DD}} < 4.5~V$	0.9Vdd		Vdd	V
			$2.0~V \leq V_{\text{DD}} < 2.7~V^{\text{Note}}$	0.9Vdd		Vdd	V
Input voltage,	VIL1	P10 to P17, P30 to P32,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.3Vdd	V
low		P35 to P37, P80 to P87, P90 to P97, P100 to P103	$2.0~V \leq V_{\text{DD}} < 2.7~V$	0		0.2VDD	V
	VIL2	P00 to P05, P25 to P27,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2VDD	V
		P33, P34, P70 to P72, P110 to P117, RESET	$2.0~V \leq V_{\text{DD}} < 2.7~V$	0		0.15VDD	V
	VIL3	X1, X2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.4	V
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	0		0.2	V
	VIL4	XT1/P07, XT2	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2VDD	V
			$2.7~V \leq V_{\text{DD}} < 4.5~V$	0		0.1VDD	V
			$2.0~V \leq V_{\text{DD}} < 2.7~V^{\text{Note}}$	0		0.1VDD	V
Output voltage,	Vон	V _{DD} = 4.5 to 5.5 V, I _{OH} = -1 mA		Vdd - 1.0		VDD	V
high		Іон = -100 µА		V _{DD} - 0.5		VDD	V
Output voltage,	Vol1	P100 to P103	V _{DD} = 4.5 to 5.5 V,		0.6	2.0	V
low			lo∟ = 15 mA				
		P01 to P05, P10 to P17,	$V_{DD} = 4.5$ to 5.5 V,			0.4	V
		P25 to P27, P30 to P37,	lo∟ = 1.6 mA				
		P70 to P72, P80 to P87,					
		P90 to P97, P110 to P117					
	Vol2	SB0, SB1, SCK0	V _{DD} = 4.5 to 5.5 V,			0.2VDD	V
			open-drain,				
			pulled up (R = 1 k Ω)				
	Vol3	IoL = 400 μA				0.5	V

Note When the XT1/P07 pin is used as P07, input the inverse phase of P07 to the XT2 pin.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to +85°C, V_{DD} = 2.0 to 5.5 V)

Parameter	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Input leakage	Іцні	VIN = VDD PO	00 to P05,	P10 to P17, P25 to P27,			3	μA
current, high		PS	30 to P37,	P70 to P72, P80 to P87,				
		PS	90 to P97,	P100 to P103,				
		P	110 to P1	17, RESET				
	Ілна	X	1, X2, XT1	/P07, XT2			20	μA
Input leakage	ILIL1	V _{IN} = 0 V P0	00 to P05,	P10 to P17, P25 to P27,			-3	μA
current, low		P30 to P37, P70 to P72 P90 to P97, P100 to P P110 to P117, RESET		P70 to P72, P80 to P87,				
				P100 to P103,				
				17, RESET				
	LIL2	X	1, X2, XT1	/P07, XT2			-20	μA
Output leakage	Ігон	Vout = Vdd					3	μA
current, high								
Output leakage	Ilol	Vout = 0 V					-3	μA
current, low								
Software	R	VIN = 0 V		P01 to P05, P10 to P17,	15	45	90	kΩ
pull-up resistor				P25 to P27, P30 to P37,				
				P70 to P72, P80 to P87,				
				P90 to P97, P100 to				
				P103, P110 to P117				
Supply	DD1	5.00 MHz crystal oscillation		V _{DD} = 5.0 V ±10% ^{Note 5}		5	15	mA
current ^{Note 1}		(fxx = 2.5 MHz) ^{Note 2}		VDD = 3.0 V ±10% ^{Note 6}		0.7	2.1	mA
		operating mode		V _{DD} = 2.2 V ±10% ^{Note 6}		0.4	1.2	mA
		5.00 MHz crystal oscillation	on	V _{DD} = 5.0 V ±10% ^{Note 5}		9	27	mA
		$(f_{XX} = 5.0 \text{ MHz})^{\text{Note 3}}$ operating mode		VDD = 3.0 V ±10% ^{Note 6}		1	3	mA
	IDD2	5.00 MHz crystal oscilla	ation	VDD = 5.0 V ±10%		1.4	4.2	mA
		(fxx = 2.5 MHz) ^{Note 2}		VDD = 3.0 V ±10%		500	1500	μA
		HALT mode		VDD = 2.2 V ±10%		280	840	μA
		5.00 MHz crystal oscillation	on	Vdd = 5.0 V ±10%		1.6	4.8	mA
		(fxx = 5.0 MHz) ^{Note 3} HAL	-	Vdd = 3.0 V ±10%		650	1950	μA
	IDD3	32.768 kHz crystal osci		Vdd = 5.0 V ±10%		135	270	, μA
		operating mode ^{Note 4}		VDD = 3.0 V ±10%		95	190	μA
				V _{DD} = 2.2 V ±10%		70	140	μA
	DD4	32.768 kHz crystal osci	illation	VDD = 5.0 V ±10%		25	55	μA
		HALT mode ^{Note 4}		Vdd = 3.0 V ±10%		5	15	μA
				V _{DD} = 2.2 V ±10%		2.5	12.5	μA
	DD5	XT1 = VDD		$V_{DD} = 5.0 \text{ V} \pm 10\%$		1	30	μΑ
		STOP mode		V _{DD} = 3.0 V ±10%		0.5	10	μA
		When feedback resistor is o	connected	$V_{DD} = 2.2 \text{ V} \pm 10\%$		0.3	10	μΑ
	DD6	$XT1 = V_{DD}$		$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μΑ
		STOP mode		$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.05	10	μΑ
		When feedback resistor is dis	sconnected	$V_{DD} = 2.2 \text{ V} \pm 10\%$		0.05	10	μΑ

Notes 1. Current flowing to the V_{DD} pin. Not including the current flowing to the A/D converter, on-chip pull-up resistors, or LCD dividing resistors.

- **2.** Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)
- **3.** Main system clock fxx = fx operation (when OSMS is set to 01H)
- 4. When the main system clock is stopped.
- 5. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- **6.** Low-speed mode operation (when PCC is set to 04H)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

LCD Controller/Driver Characteristics (at Normal Operation)

(1) Static display mode ($T_A = -10$ to $+85^{\circ}C$, $V_{DD} = 2.0$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.0		Vdd	V
LCD dividing resistor	RLCD			60	100	150	kΩ
LCD output voltage	Vodc	lo = ±5 μA	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$2.0~V \leq V_{\text{LCD}} \leq V_{\text{DD}}$				
LCD output voltage	Vods	$Io = \pm 1 \ \mu A$		0		±0.2	V
deviation ^{Note} (segment)							

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn}; n = 0, 1, 2).

(2) 1/3 bias method (T_A = -10 to $+85^{\circ}$ C, V_{DD} = 2.5 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.5		Vdd	V
LCD dividing resistor	RLCD			60	100	150	kΩ
LCD output voltage	Vodc	$Io = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$V_{LCD1} = V_{LCD} \times 2/3$				
LCD output voltage	Vods	$Io = \pm 1 \ \mu A$	$V_{LCD2} = V_{LCD} \times 1/3$	0		±0.2	V
deviation ^{Note} (segment)			$2.5~V \leq V_{\text{LCD}} \leq V_{\text{DD}}$				

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn}; n = 0, 1, 2).

(3) 1/2 bias method (T_A = -10 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.7		Vdd	V
LCD dividing resistor	RLCD			60	100	150	kΩ
LCD output voltage	Vodc	$I_0 = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$V_{LCD1} = V_{LCD} \times 1/2$				
LCD output voltage	Vods	$I_0 = \pm 1 \ \mu A$	VLCD2 = VLCD1	0		±0.2	V
deviation ^{Note} (segment)			$2.7~V \leq V_{\text{LCD}} \leq V_{\text{DD}}$				

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn}; n = 0, 1, 2).

LCD Controller/Driver Characteristics (at Low-Voltage Operation)

(1) Static display mode (T_A = -10 to +85°C, 2.0 V \leq V_DD < 3.4 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.0		Vdd	V
LCD dividing resistor	RLCD			60	100	150	kΩ
LCD output voltage	Vodc	$I_0 = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$2.0~V \leq V_{\text{LCD}} \leq V_{\text{DD}}$				
LCD output voltage	Vods	$I_0 = \pm 1 \ \mu A$		0		±0.2	V
deviation ^{Note} (segment)							

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (VLCDn; n = 0, 1, 2).

(2) 1/3 bias method (T_A = -10 to +85°C, 2.0 V \leq V_{DD} < 3.4 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.0		Vdd	V
LCD dividing resistor	RLCD			60	100	150	kΩ
LCD output voltage	Vodc	$I_0 = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$V_{LCD1} = V_{LCD} \times 2/3$				
LCD output voltage	Vods	$I_0 = \pm 1 \ \mu A$	$V_{LCD2} = V_{LCD} \times 1/3$	0		±0.2	V
deviation ^{Note} (segment)			$2.0~V \leq V_{\text{LCD}} \leq V_{\text{DD}}$				

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (VLCDn; n = 0, 1, 2).

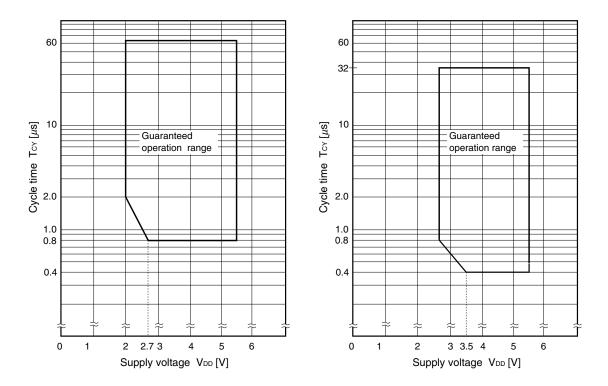
(3) 1/2 bias method (TA = -10 to +85°C, 2.0 V \leq VDD < 3.4 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.0		Vdd	V
LCD dividing resistor	RLCD			60	100	150	kΩ
LCD output voltage	Vodc	$Io = \pm 5 \ \mu A$	VLCD0 = VLCD	0		±0.2	V
deviation ^{Note} (common)			$V_{LCD1} = V_{LCD} \times 1/2$				
LCD output voltage	Vods	$I_0 = \pm 1 \ \mu A$	VLCD2 = VLCD1	0		±0.2	V
deviation ^{Note} (segment)			$2.0~V \leq V_{\text{LCD}} \leq V_{\text{DD}}$				

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn}; n = 0, 1, 2).

AC Characteristics

(1) Basic operation (TA = -40 to $+85^{\circ}$ C, VDD = 2.0


Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating on main system clock	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.8		64	μs
(Min. instruction		(fxx = 2.5 MHz) ^{Note 1}	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2.0		64	μs
execution time)		Operating on main system clock	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.4		32	μs
		(fxx = 5.0 MHz) ^{Note 2}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$	0.8		32	μs
		Operating on subsystem clock	•	40 ^{Note 3}	122	125	μs
TI00 input	f ⊤100	τιοο = ττιμοο + ττιμοο		0		1/t=100	MHz
frequency							
TI00 input high-/	tтiнoo,	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2/fsam + 0.1 ^{Note 4}			μs	
low-level width	t⊤iloo	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$		2/fsam + 0.2 ^{Note 4}			μs
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2/fsam + 0.5 ^{Note 4}			μs	
TI01 input	f TI01	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0		100	kHz
frequency		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		0		50	kHz
TI01 input high-/	t⊤iHo1,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		10			μs
low-level width	t⊤ilo1	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		20			μs
TI1, TI2 input	fтıı	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		0		4	MHz
frequency		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		0		275	kHz
TI1, TI2 input high-/	t⊤ıнı,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$		100			ns
low-level width	t⊤IL1	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		1.8			μs
Interrupt request	tinth,	INTP0	$3.5~V \le V_{\text{DD}} \le 5.5~V$	2/fsam + 0.1 ^{Note 4}			μs
input high-/low-	tintl		$2.7~V \leq V_{\text{DD}} < 3.5~V$	2/fsam + 0.2 ^{Note 4}			μs
level width			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2/fsam + 0.5 ^{Note 4}			μs
		INTP1 to INTP5, P110 to P117	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	10			μs
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	20			μs
RESET low-level	trsl	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		10			μs
width		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		20			μs

Notes 1. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)

- **2.** Main system clock fxx = fx operation (when OSMS is set to 01H)
- 3. This is the value when the external clock is used. The value is 114 μ s (min.) when the crystal resonator is used.
- 4. In combination with bits 0 (SCS0) and 1 (SCS1) of the sampling clock select register (SCS), selection of fsam is possible between fxx/2^N, fxx/32, fxx/64, and fxx/128 (when N = 0 to 4).

T_{CY} vs. V_{DD} (at main system clock $f_{XX} = f_X/2$ operation)

Tcy vs. VDD (at main system clock fxx = fx operation)

(2) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.0 to 5.5 V)

(a) Serial interface channel 0

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK0 high-/low-level width	tкнı,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 50			ns
	tĸ∟1	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	tксу1/2 − 100			ns
SI0 setup time (to SCK0↑)	tsik1	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
SI0 hold time (from $\overline{SCK0}$)	tksi1		400			ns
SO0 output delay time	tkso1	C = 100 pF ^{Note}			300	ns
from SCK0↓						

(i) 3-wire serial I/O mode (SCK0...internal clock output)

Note C is the load capacitance of $\overline{SCK0}$ and SO0 output lines.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK0 high-/low-level width	tкн2,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	400			ns
	tĸ∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
SI0 setup time (to SCK0↑)	tsik2		100			ns
SI0 hold time (from $\overline{\text{SCK0}}$)	tksi2		400			ns
SO0 output delay time	tkso2	C = 100 pF ^{Note}			300	ns
from $\overline{\text{SCK0}}\downarrow$						
SCK0 rise, fall time	t _{R2} ,				1000	ns
	tF2					

(ii) 3-wire serial I/O mode (SCK0...external clock input)

Note C is the load capacitance of SO0 output line.

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		3200			ns
SCK0 high-/low-level	tкнз,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ to		tксүз/2 – 50			ns
width	tкьз	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	V	tксүз/2 – 150			ns
SB0, SB1 setup time	tsıкз	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$		100			ns
(to SCK0↑)		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$		300			ns
SB0, SB1 hold time	tหรเช			tксүз/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso3	R = 1 kΩ,	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		250	ns
time from $\overline{\text{SCK0}}\downarrow$		C = 100 pF ^{Note}	$2.0~V \leq V_{\text{DD}} < 4.5~V$	0		1000	ns
SB0, SB1 \downarrow from SCK0 \uparrow	tкsв			tксүз			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксүз			ns
SB0, SB1 high-level	tsвн			tксүз			ns
width							
SB0, SB1 low-level	tsbl			tксүз			ns
width							

(iii) SBI mode	(SCK0internal	clock output)):	μ PD78P0308 only

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

(iv) SBI mode (SCK0	external clock input):	μ PD78P0308 only
---------------------	------------------------	-------------------------

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY4	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$				ns
SCK0 high-/low-level	t кн4,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$				ns
width	tĸL4	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	$2.0 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$				ns
SB0, SB1 setup time	tsiĸ4	$4.5~V \le V_{\text{DD}} \le 5.5$	V	100			ns
(to SCK0↑)		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	V	300			ns
SB0, SB1 hold time	tksi4			tксү4/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso4	R = 1 kΩ,	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		300	ns
time from $\overline{SCK0}\downarrow$		C = 100 pF ^{Note}	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксү4			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксү4			ns
SB0, SB1 high-level	tsвн			tксү4			ns
width							
SB0, SB1 low-level	t _{SBL}			tксү4			ns
width							
SCK0 rise, fall time	tR4,					1000	ns
	tF4						

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(v) 2-wire serial I/O mode (SCK0...internal clock output)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү5	R = 1 kΩ,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1600			ns
		$C = 100 \text{ pF}^{Note}$	$2.0~V \leq V_{\text{DD}} < 2.7~V$	3200			ns
SCK0 high-level width	tĸн5		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү5/2 – 160			ns
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	tксү5/2 – 190			ns
SCK0 low-level width	tĸ∟5		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	tксү5/2 — 50			ns
			$2.0~V \leq V_{\text{DD}} < 4.5~V$	tксү5/2 – 100			ns
SB0, SB1 setup time	tsik5		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	300			ns
(to SCK0↑)			$2.7~V \leq V_{\text{DD}} < 4.5~V$	350			ns
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	400			ns
SB0, SB1 hold time	tksi5			600			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso5					300	ns
time from $\overline{\text{SCK0}}\downarrow$							

Note R and C are the load resistance and load capacitance of the $\overline{SCK0}$, SB0, and SB1 output lines.

(vi) 2-wire serial I/O mode (SCK0...external clock input)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү6	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2$	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				ns
SCK0 high-level width	tкнө	$2.7~V \le V_{\text{DD}} \le 5.5~V$		650			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2$	$2.0 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$				ns
SCK0 low-level width	tĸl6	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5$	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$				ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2$	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				ns
SB0, SB1 setup time	tsik6			100			ns
(to SCK0↑)							
SB0, SB1 hold time	tksi6			tксү6/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso6	R = 1 kΩ,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	0		300	ns
time from SCK0↓		$C = 100 \text{ pF}^{Note}$	$2.0~V \leq V_{\text{DD}} < 4.5~V$	0		500	ns
SCK0 rise, fall time	t _{R6} ,					1000	ns
	t⊧6						

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксү7	R = 1 kΩ,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	10			μs
		C = 100 pF ^{Note}	$2.0~V \leq V_{\text{DD}} < 2.7~V$	20			μs
SCL high-level width	tкн7		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү7 – 160			ns
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	tксүл — 190			ns
SCL low-level width	tĸ∟7		$4.5~V \le V_{\text{DD}} \le 5.5~V$	tксү7 – 50			ns
			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	tксү7 – 100			ns
SDA0, SDA1 setup time	tsık7		$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	200			ns
(to SCL↑)			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
SDA0, SDA1 hold time	tksi7			0			ns
(from SCL↓)							
SDA0, SDA1 output	tkso7		$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		300	ns
delay time from SCL \downarrow			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		500	ns
SDA0, SDA1↓ from	tкsв			200			ns
SCL↑ or SDA0, SDA1↑							
from SCL↑							
SCL \downarrow from SDA0, SDA1 \downarrow	tsвк			400			ns
SDA0, SDA1 high-level	tsвн			500			ns
width							

(vii) I²C bus mode (SCL...internal clock output): µPD78P0308Y only

Note R and C are the load resistance and load capacitance of SCL, SDA0, and SDA1 output lines.

(viii) I²C bus mode (SCL...external clock input): μ PD78P0308Y only

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксув			1000			ns
SCL high-/low-level width	tkH8, tkL8			400			ns
SDA0, SDA1 setup time	tsik8			200			ns
(to SCL↑)							
SDA0, SDA1 hold time	tksi8			0			ns
(from SCL↓)							
SDA0, SDA1 output delay	tkso8	R = 1 kΩ,	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		300	ns
time from SCL \downarrow		C = 100 pF ^{Note}	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		500	ns
SDA0, SDA1↓ from SCL↑	tкsв			200			ns
or SDA0, SDA1↑ from							
SCL↑							
SCL \downarrow from SDA0, SDA1 \downarrow	tsвк			400			ns
SDA0, SDA1 high-level	tsвн			500			ns
width							
SCL rise, fall time	trs, trs					1000	ns

Note R and C are the load resistance and load capacitance of SDA0 and SDA1 output lines.

(b) Serial interface channel 2

(i)	3-wire serial I/O mode	(SCK2internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tксүэ	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK2 high-/low-level width	tкнэ,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	tксү9/2 – 50			ns
	tĸl9	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	tксү9/2 – 100			ns
SI2 setup time (to $\overline{\text{SCK2}}$)	tsik9	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
SI2 hold time (from $\overline{\text{SCK2}}$)	tksi9		400			ns
SO2 output delay time	tkso9	C = 100 pF ^{Note}			300	ns
from $\overline{\text{SCK2}}\downarrow$						

Note C is the load capacitance of $\overline{SCK2}$ and SO2 output lines.

(ii) 3-wire serial I/O mode (SCK2...external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	t KCY10	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK2 high-/low-level width	t кн10,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
	tĸ∟10	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
SI2 setup time (to SCK2↑)	tsik10		100			ns
SI2 hold time (from SCK2↑)	tksi10		400			ns
SO2 output delay time	tkso10	C = 100 pF ^{Note}			300	ns
from $\overline{\text{SCK2}}\downarrow$						
SCK2 rise, fall time	t R10,				1000	ns
	tF10					

Note C is the load capacitance of SO2 output line.

(iii) UART mode (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			78125	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			39063	bps
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			19531	bps

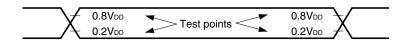
(iv) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tkCY11	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
ASCK high-/low-level	tкн11,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	400			ns
width	tĸL11	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
Transfer rate		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			19531	bps
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9766	bps
ASCK rise, fall time	t _{R11} ,				1000	ns
	t⊧11					

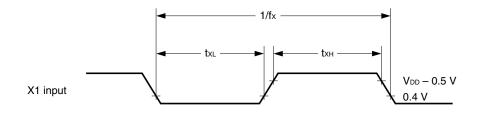
(c) Serial interface channel 3

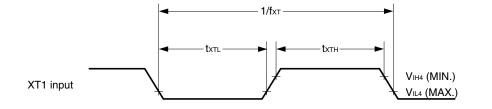
(.,		······································				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t KCY12	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK3 high-/low-level width	t кн12,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	tксү12/2 − 50			ns
	tKL12	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	tксү12/2 – 100			ns
SI3 setup time (to SCK3↑)	tsik12	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
SI3 hold time (from SCK3↑)	tksi12		400			ns
SO3 output delay time	tkso12	C = 100 pF ^{Note}			300	ns
from SCK3↓						

(i) 3-wire serial I/O mode (SCK3...internal clock output)

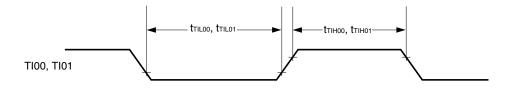

Note C is the load capacitance of SCK3 and SO3 output lines.

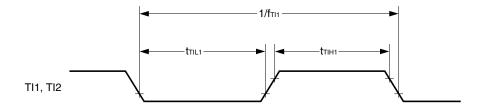
(ii) 3-wire serial I/O mode (SCK3...external clock input)

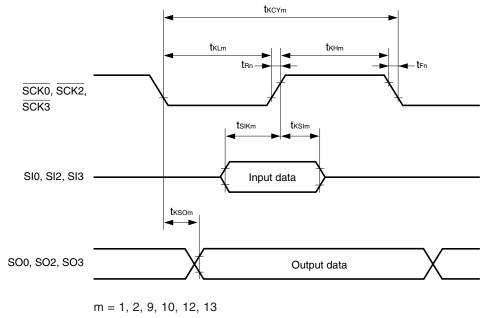

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t ксү13	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK3 high-/low-level width	t кн13,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
	t _{KL13}	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
SI3 setup time (to $\overline{\text{SCK3}}$)	tsik13		100			ns
SI3 hold time (from $\overline{\text{SCK3}}$)	tksi13		400			ns
SO3 output delay time from $\overline{\text{SCK3}}\downarrow$	tkso13	C = 100 pF ^{Note}			300	ns
SCK3 rise, fall time	t R13,				1000	ns
	tF13					

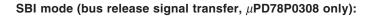

Note C is the load capacitance of SO3 output line.

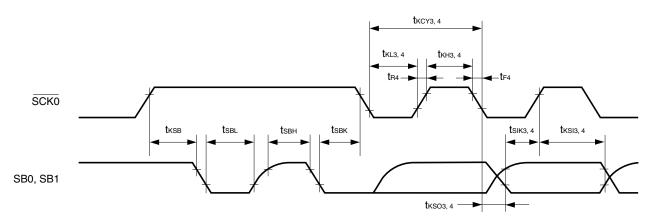
AC Timing Test Points (Excluding X1, XT1 Inputs)



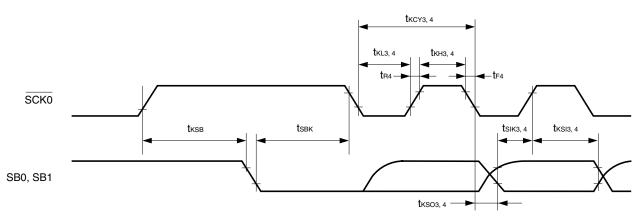

Clock Timing

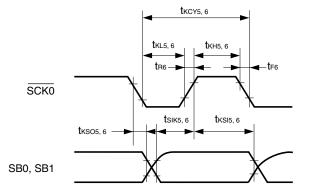

TI Timing

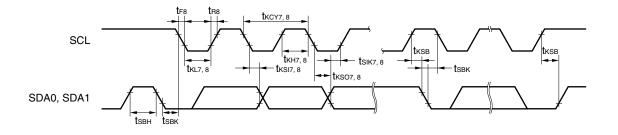


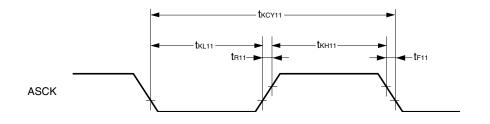

Serial Transfer Timing

3-wire serial I/O mode:






SBI mode (command signal transfer, μ PD78P0308 only):


2-wire serial I/O mode:

I²C bus mode (μPD78P0308Y only):

UART mode:

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note 1}		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.6	%FSR
		$2.2 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±1.4	%FSR
Conversion time	tсоми	$2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$	19.1		200	μs
		$2.2 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$	38.2		200	μs
Sampling time	t SAMP		24/fxx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.2		Vdd	V
AVREF-AVss resistance	RAIREF	When A/D conversion not operating	4	14		kΩ
AVREF current	AIREF	When A/D conversion operatingNote 2		2.5	5.0	mA
		When A/D conversion not operating ^{Note 3}		0.5	1.5	mA

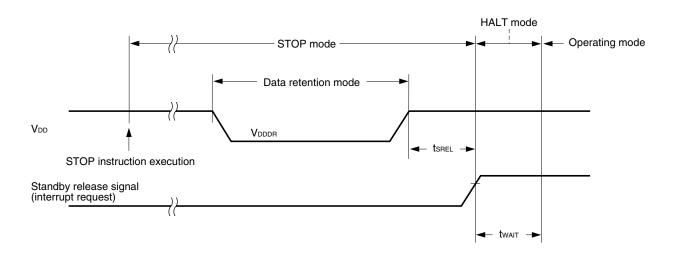
A/D Converter Characteristics (TA = -40 to +85°C, VDD = 2.2 to 5.5 V, AVss = Vss = 0 V)

Notes 1. Quantization error (±1/2 LSB) is not included. This is expressed as a percentage (%FSR) to the full-scale value.

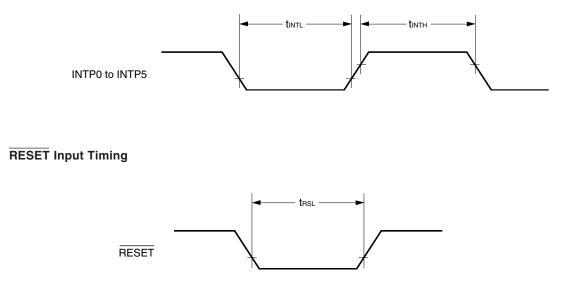
2. Indicates current flowing to AVREF pin when the CS bit of the A/D converter mode register (ADM) is 1.


3. Indicates current flowing to AV_{REF} pin when the CS bit of ADM is 0.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	Vdddr		1.6		5.5	V
voltage						
Data retention supply	DDDR	VDDDR = 1.6 V		0.1	10	μA
current		Subsystem clock stop and feedback				
		resistor disconnected.				
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		s
wait time		Release by interrupt request		Note		s


Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS), selection of 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx is possible.


Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Interrupt Request Input Timing

PROM Programming Characteristics

DC Characteristics

(1) PROM write mode (T_A = 25 \pm 5°C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vін		0.7V _{DD}		Vdd	V
Input voltage, low	VIL		0		0.3VDD	V
Output voltage, high	Vон	Iон = -1 mA	VDD - 1.0			V
Output voltage, low	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	$0 \le V_{\text{IN}} \le V_{\text{DD}}$	-10		+10	μA
VPP supply voltage	VPP		12.2	12.5	12.8	V
VDD supply voltage	Vdd		6.25	6.5	6.75	V
VPP supply current	Ірр	PGM = VIL			50	mA
VDD supply current	loo				50	mA

(2) PROM read mode (TA = 25 \pm 5°C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih		0.7Vdd		Vdd	V
Input voltage, low	VIL		0		0.3VDD	V
Output voltage, high	Vон1	Iон = -1 mA	Vdd - 1.0			V
	Vон2	Іон = -100 µА	Vdd - 0.5			V
Output voltage, low	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	Iц	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μA
Output leakage current	Ilo	$0 \le V_{\text{OUT}} \le V_{\text{DD}}, \ \overline{\text{OE}} = V_{\text{IH}}$	-10		+10	μA
VPP supply voltage	Vpp		Vdd - 0.6	Vdd	Vdd + 0.6	V
VDD supply voltage	Vdd		4.5	5.0	5.5	V
VPP supply current	IPP	VPP = VDD			100	μΑ
VDD supply current	ldd	$\overline{CE} = V_{IL}, V_{IN} = V_{IH}$			50	mA

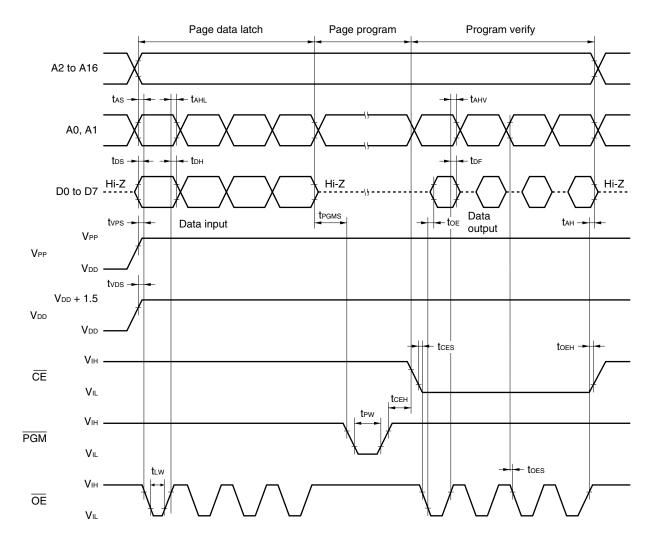
AC Characteristics

(1) PROM write mode

(a) Page program mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

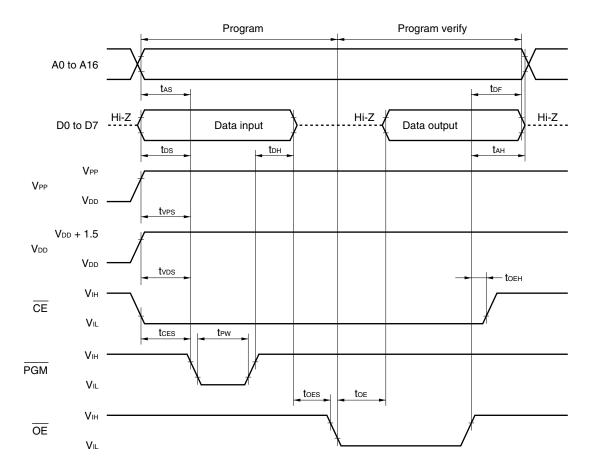
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{OE}\downarrow$)	tas		2			μs
OE setup time	toes		2			μs
\overline{CE} setup time (to $\overline{OE}\downarrow$)	tces		2			μs
Input data setup time (to $\overline{\text{OE}}\downarrow$)	tos		2			μs
Address hold time (from \overline{OE}^{\uparrow})	tан		2			μs
	tahl		2			μs
	tahv		0			μs
Input data hold time (from \overline{OE}^{\uparrow})	tон		2			μs
Data output float delay time from $\overline{\text{OE}}^{\uparrow}$	tdf		0		250	ns
V_{PP} setup time (to $\overline{OE}\downarrow$)	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE}\downarrow$)	tvds		1.0		250	ms
Program pulse width	tew		0.095		0.105	ms
Valid data delay time from $\overline{OE} \downarrow$	toe				1	μs
OE pulse width during data latching	t∟w		1			μs
PGM setup time	t PGMS		2			μs
CE hold time	tсен		2			μs
OE hold time	tоен		2			μs

(b) Byte program mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM}\downarrow$)	tas		2			μs
OE setup time	toes		2			μs
$\overline{\text{CE}}$ setup time (to $\overline{\text{PGM}}\downarrow$)	tces		2			μs
Input data setup time (to $\overline{\text{PGM}}{\downarrow})$	tos		2			μs
Address hold time (from \overline{OE}^{\uparrow})	tан		2			μs
Input data hold time (from PGM [↑])	tон		2			μs
Data output float delay time from $\overline{\text{OE}}^{\uparrow}$	tdf		0		250	ns
V_{PP} setup time (to $\overline{PGM}\downarrow$)	tvps		1.0			ms
V_{DD} setup time (to $\overline{PGM}\downarrow$)	tvds		1.0			ms
Program pulse width	tew		0.095		0.105	ms
Valid data delay time from $\overline{\text{OE}}\downarrow$	toe				1	μs
OE hold time	tоен		2			μs

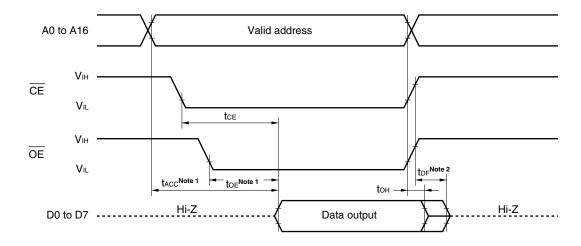
(2) PROM read mode (T_A = 25 \pm 5°C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time from address	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
Data output delay time from $\overline{CE} \downarrow$	tce	OE = VIL			800	ns
Data output delay time from $\overline{OE} \downarrow$	toe	CE = VIL			200	ns
Data output float delay time from \overline{OE}^\uparrow	tdf	CE = VIL	0		60	ns
Data hold time from address	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

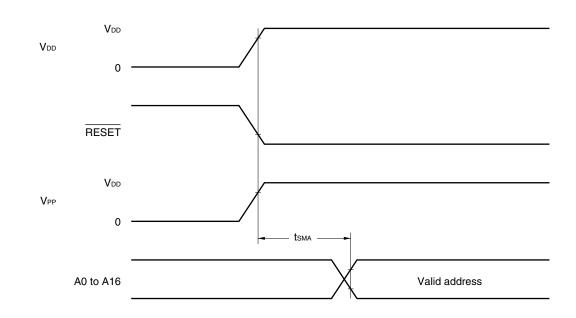

(3) PROM programming mode setting (T_A = 25° C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	tsma		10			μs

PROM Write Mode Timing (Page Program Mode)


PROM Write Mode Timing (Byte Program Mode)

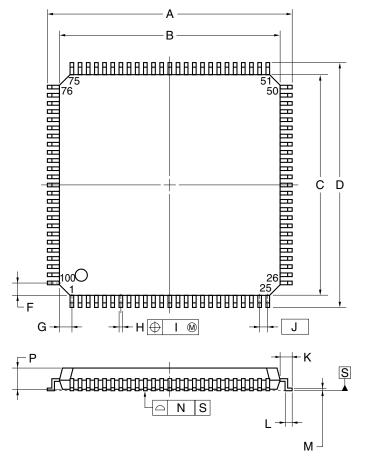
Cautions 1. VDD should be applied before VPP, and cut after VPP.


- 2. VPP should not exceed +13.5 V, including overshoot.
- 3. Disconnection during application of 12.5 V to VPP may have an adverse effect on reliability.

PROM Read Mode Timing

- **Notes** 1. If you want to read within the tacc range, make the \overline{OE} input delay time from the fall of \overline{CE} the maximum of tacc toE.
 - 2. tDF is the time from when either \overline{OE} or \overline{CE} first reaches VIH.

PROM Programming Mode Setting Timing

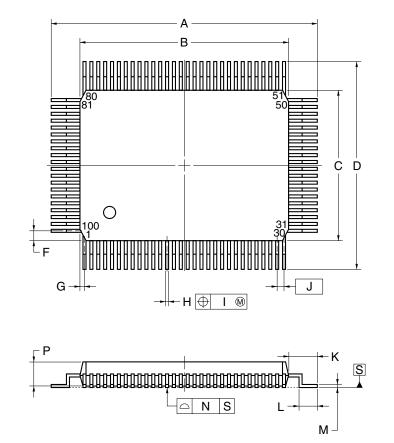

detail of lead end

S

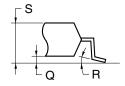
C

8. PACKAGE DRAWINGS

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)



NOTE


Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	16.00±0.20
В	14.00±0.20
С	14.00±0.20
D	16.00±0.20
F	1.00
G	1.00
н	$0.22\substack{+0.05\\-0.04}$
I	0.08
J	0.50 (T.P.)
К	1.00±0.20
L	0.50±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
Ν	0.08
Р	1.40±0.05
Q	0.10±0.05
R	$3^{\circ}^{+7^{\circ}}_{-3^{\circ}}$
S	1.60 MAX.
S100	GC-50-8EU, 8EA-2

100-PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	0.8
G	0.6
Н	0.30±0.10
I	0.15
J	0.65 (T.P.)
К	1.8±0.2
L	0.8±0.2
М	$0.15\substack{+0.10 \\ -0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
P	100GF-65-3BA1-4

*

9. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 9-1. Surface Mounting Type Soldering Conditions

(1) 100-pin plastic QFP (14 \times 20) μ PD78P0308GF-3BA, 78P0308YGF-3BA

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

(2) 100-pin plastic LQFP (fine pitch) (14 \times 14) μ PD78P0308GC-8EU, 78P0308YGC-8EU

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD78P0308 and 78P0308Y. Also refer to (6) Precautions When Using Development Tools.

★ (1) Software Package

SP78K0	CD-ROM in which development tools (software) common to 78K/0 Series products are
	integrated in one package

(2) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series products
CC78K0	C compiler package common to 78K/0 Series products
DF780308	Device file for μ PD780308 and 780308Y Subseries products (part number: μ S××××DF78064)
CC78K0-L	C compiler library source file common to 78K/0 Series products

(3) PROM Write Tools

PG-1500	PROM programmer
PA-78P0308GC	Programmer adapter connected to the PG-1500
PA-78P0308GF	
PG-1500 controller	Control program for the PG-1500

★ (4) Debugging Tools

• When using IE-78K0-NS or IE-78K0-NS-A as in-circuit emulator

0		
IE-78K0-NS	In-circuit emulator common to 78K/0 Series products	
IE-78K0-NS-PA	Performance board to enhance/expand functions of IE-78K0-NS	
IE-78K0-NS-A	Combination of IE-78K0-NS and IE-78K0-NS-PA	
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS	
IE-70000-98-IF-C	Adapter required when using a PC-9800 series (excluding notebook-type PCs) as the host	
	machine (C bus supported)	
IE-70000-CD-IF-A	PC card and interface cable required when using a notebook type PC as the host machine	
	(PCMCIA socket supported)	
IE-70000-PC-IF-C	Adapter required when using an IBM PC/AT [™] compatible as the host machine (ISA bus	
	supported)	
IE-70000-PCI-IF-A	Adapter required when using a PC with an on-chip PCI bus as the host machine	
IE-780308-NS-EM1	Emulation board to emulate μ PD780308 and 780308Y Subseries products	
NP-100GC	Emulation probe for a 100-pin plastic LQFP (GC-8EU type)	
NP-H100GC-TQ		
NP-100GF	Emulation probe for a 100-pin plastic QFP (GF-3BA type)	
NP-100GF-TQ		
NP-H100GF-TQ		
TGC-100SDW	Conversion adapter to connect the NP-100GC or NP-H100GC-TQ and a target system	
	board made to be mounted on a 100-pin plastic LQFP (GC-8EU type)	
EV-9200GF-100	Conversion socket to connect the NP-100GF and a target system board made to be	
	mounted on a 100-pin plastic QFP (GF-3BA type)	
TGF-100RBP	Conversion socket to connect the NP-100GF-TQ or NP-H100GF-TQ and a target system	
	board made to be mounted on a 100-pin plastic QFP (GF-3BA type)	
ID78K0-NS	Integrated debugger for the IE-78K0-NS and IE-78K0-NS-A	
SM78K0	System simulator common to 78K/0 Series products	
DF780308	Device file for µPD780308 and 780308Y Subseries products (part number: µS××××DF78064)	

• When using IE-78001-R-A as in-circuit emulator

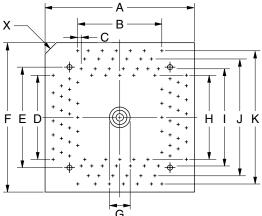
IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 Series products	
IE-70000-98-IF-C	Adapter required when using a PC-9800 series (excluding notebook-type PCs) as the host	
	machine (C bus supported)	
IE-70000-PC-IF-C	Adapter required when using an IBM PC/AT compatible as the host machine (ISA bus	
	supported)	
IE-70000-PCI-IF-A	Adapter required when using a PC with an on-chip PCI bus as the host machine	
IE-780308-R-EM ^{Note}	Emulation board to emulate μ PD780308 and 780308Y Subseries products	
EP-78064GC-R	Emulation probe for a 100-pin plastic LQFP (GC-8EU type)	
EP-78064GF-R	Emulation probe for a 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Conversion adapter to connect the EP-78064GC-R and a target system board made to be	
	mounted on a 100-pin plastic LQFP (GC-8EU type)	
EV-9200GF-100	Conversion socket to connect the EP-78064GF-R and a target system board made to be	
	mounted on a 100-pin plastic QFP (GF-3BA type)	
ID78K0	Integrated debugger for the IE-78001-R-A	
SM78K0	System simulator common to 78K/0 Series products	
DF780308	Device file for μ PD780308 and 780308Y Subseries products (part number: μ S××××DF78064)	

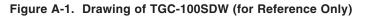
Note Maintenance product

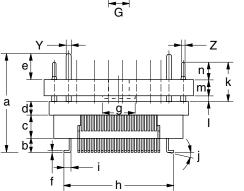
(5) Real-Time OS

 \star

RX78K0	Real-t	ne OS for 78K/0 Series products
--------	--------	---------------------------------


★ (6) Precautions When Using Development Tools


- The package name of the DF780308 is DF78064.
- Use the ID78K0-NS, ID78K0, and SM78K0 in combination with the DF780308.
- Use the CC78K0 and RX78K0 in combination with the RA78K0 and DF780308.
- The NP-100GC, NP-H100GC-TQ, NP-100GF, NP-100GF-TQ, and NP-H100GF-TQ are products of Naito Densei Machida Mfg. Co., Ltd. (tel: +81-45-475-4191).
- The TGC-100SDW and TGF-100RBP are products of TOKYO ELETECH CORPORATION. Contact: Daimaru Kogyo, Ltd. Tokyo Electronics Department (tel: +81-3-3820-7112) Osaka Electronics Department (tel: +81-6-6244-6672)
- Please refer to **Single-Chip Microcontroller Development Tools Selection Guide (U11069E)** for information on the third party development tools.
- The following table shows the software supported by each host machine and OS.


Host machine	PC	EWS	
[OS]	PC-9800 series [Japanese Windows [™]]	HP9000 series 700 [™] [HP-UX [™]]	
Software	IBM PC/AT compatibles [Japanese/English Windows]	SPARCstation [™] [SunOS [™] , Solaris [™]]	
RA78K0	\sqrt{Note}	\checkmark	
CC78K0	\sqrt{Note}	1	
PG-1500 controller	\sqrt{Note}		
ID78K0-NS	\checkmark		
ID78K0	\checkmark		
SM78K0	1	_	
RX78K0	\sqrt{Note}	\checkmark	

Note DOS-based software

Drawing of Conversion Adapter (TGC-100SDW)

	X

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	6 INCHES
Α	21.55	0.848	а	14.45	0.569
В	0.5x24=12	0.020x0.945=0.472	b	1.85±0.25	0.073±0.010
С	0.5	0.020	с	3.5	0.138
D	0.5x24=12	0.020x0.945=0.472	d	2.0	0.079
E	15.0	0.591	е	3.9	0.154
F	21.55	0.848	f	0.25	0.010
G	<i>φ</i> 3.55	<i>ф</i> 0.140	g	<i>ϕ</i> 4.5	<i>φ</i> 0.177
н	10.9	0.429	h	16.0	0.630
I	13.3	0.524	i	1.125±0.3	0.044±0.012
J	15.7	0.618	j	0~5°	0.000~0.197°
K	18.1	0.713	k	5.9	0.232
L	13.75	0.541	1	0.8	0.031
М	0.5x24=12.0	0.020x0.945=0.472	m	2.4	0.094
N	1.125±0.3	0.044±0.012	n	2.7	0.106
0	1.125±0.2	0.044±0.008			TGC-100SDW-G1E
Р	7.5	0.295			
Q	10.0	0.394			
R	11.3	0.445			
S	18.1	0.713			
т	<i>ф</i> 5.0	<i>φ</i> 0.197			
U	5.0	0.197			
V	4- <i>ф</i> 1.3	4- <i>ф</i> 0.051			
w	1.8	0.071			
Х	C 2.0	C 0.079			
Y	φ0.9	<i>ф</i> 0.035			

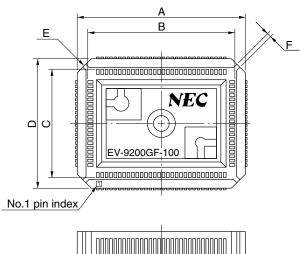
note: Product of TOKYO ELETECH CORPORATION.

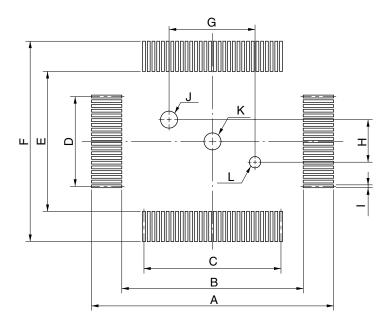
Ζ

*\\$*0.3

*\\$*0.012

Drawings of Conversion Socket (EV-9200GF-100) and Recommended Footprints




Figure A-2. Drawing of EV-9200GF-100 (for Reference Only)

₄ ►

- M - N	<u> </u>	

EV-9200GF-100-G0E		
ITEM	MILLIMETERS	INCHES
А	24.6	0.969
В	21	0.827
С	15	0.591
D	18.6	0.732
Е	4-C 2	4-C 0.079
F	0.8	0.031
G	12.0	0.472
Н	22.6	0.89
I	25.3	0.996
J	6.0	0.236
К	16.6	0.654
L	19.3	0.76
М	8.2	0.323
Ν	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	ø2.3	¢0.091
S	¢1.5	¢0.059

EV-9200GF-100-G0E

Figure A-3. Recommended Footprints of EV-9200GF-100 (for Reference Only)

EV-9200GF-100-P1E

ITEM	MILLIMETERS	INCHES
А	26.3	1.035
В	21.6	0.85
С	$0.65 \pm 0.02 \times 29 = 18.85 \pm 0.05$	$0.026\substack{+0.001\\-0.002}\times1.142{=}0.742\substack{+0.002\\-0.002}$
D	$0.65 \pm 0.02 \times 19 = 12.35 \pm 0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$
Е	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	0.236 ^{+0.003} -0.002
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	φ2.36±0.03	ϕ 0.093 ^{+0.001} _{-0.002}
К	ø2.3	¢0.091
L	¢1.57±0.03	ϕ 0.062 ^{+0.001} _{-0.002}

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNT MANUAL" website (http://www.necel.com/pkg/en/mount/index.html).

***** APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name		Document No.
μPD780308, 780308Y Subseries User's Manual		U11377E
μPD780306, 780308 Data Sheet		U11105E
μPD780306Y, 780308Y Data Sheet		U12251E
μPD78P0308, 78P0308Y Data Sheet		This document
78K/0 Series Instructions User's Manual		U12326E
78K/0 Series Application Note Bas	sic (III)	U10182E

Documents Related to Development Tools (Software) (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K Series System Simulator Ver.2.30 or Later	Operation (Windows Based)	U15373E
	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver.2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-Time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver.3.12 or Later (Windows Based)		U14610E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-78K0-NS-PA Performance Board	To be prepared
IE-780308-NS-EM1 Emulation Board	U13304E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-780308-R-EM Emulation Board	U11362E

Documents Related to PROM Programming (User's Manuals)

Document Name		Document No.
PG-1500 PROM Programmer		U11940E
PG-1500 Controller	PC-9800 series (MS-DOS TM) Based	EEU-1291
	IBM PC series (PC DOS TM) Based	U10540E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE – Products and Packages –	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Electronics Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. .) Duesseldorf. Germany Tel: 0211-65 03 01

- Sucursal en España Madrid, Spain Tel: 091-504 27 87
- Succursale Française Vélizy-Villacoublay, France Tel: 01-30-675800
- Filiale Italiana Milano, Italy Tel: 02-66 75 41
- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45
- Tyskland Filial Taeby, Sweden Tel: 08-63 80 820
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul. Korea Tel: 02-558-3737

NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of June, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).