CHAPTER 18 INSTRUCTION SET
18.1 Operation List
18.1.1 Operand identifiers and description

In the operand field of each instruction, describe the operands
according to the description for the operand identifiers of the
instruction. (For details, see the assembler specifications.)
Select one of the entries under the description, if present. The
uppercase alphabetic characters and the +, -, #, $, !, and []
symbols are keywords which should be described exactly as shown.

For immediate data, describe a proper numeric value or label. To
describe the immediate data with a label, be sure to describe the
symbols #, $, !, [] as well.

18-1
B LY427525 0104597 927 W

Table 18-1 Operand Identifiers and Description

Eg%?;r Description
r RO, R1, R2, R3, R4, RS, R6, R7, R8, R9, R10, R1ll, R12, R13, R1l4, R1S
rl RO, R1, R2, R3, R4, R5, R6, R7
r2 C, B
rp . RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rpl RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rp2 DE, HL, VP, UP
sfr .| Special function register name (See Table 3-4)
sfrp Special function regis;er name of special function register that
can be handled in 16-bit units (See Table 3-4)
RPO, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7
post ﬁmore than one can be described, but RPS can be described,onl; with
USH_and POP instructions and PSW can be described only with PUSHU
and POPU instructions)
DE}, [HL], ([DE+), [HL+], (DE-], [HL-], (VP], [UP]:
eélster indirect mode
mem DE+A], gHL+A] (DE+B}, [HL+B], [VP+DE], [VP+HL]:
B ndex mode 1. [VPtbyte], [UPtbyte], (SP+byte]: Based mod
el, e], e e], e]: Based mode
éord[X],]wogd[B]? wgrd[DE],ywog&[éL]: ndgxeé modg
saddr. |FE20H-FF1FH immediate data or label
saddrp |FE20H-FF1EH immediate data (where bit0=0) or label (16-bit operation)
$addr16| 0000H-FDFFH immediate data or label: Relative addressing
1addrl6)0000H-FDFFH immediate data or label: Immediate addressin§
however, up to FFFFH can be
escribed with MOV instruction)
addrll |800H-FFFH immediate data or label
addr5 |40H-7EH immediate data or label (where bit 0=0)(NOte) or 1apel
word J 16-bit immediate data or label
byte 8-bit immediate data or label
bit 3-bit immediate data or label
n 3-bit immediate data or label (0-7)
Note: Do not make a word access to any odd address (bit 0=1).

Remarks 1: rp and rpl are the same in register names that can

be described, but differ in generated codes. (See
18.2.)

2: The addresses of all space can be addressed by using
immediate addressing. Relative addressing can be
used only to address the range of “top address of
the following instruction -128" to "top address
+127".

18-2
B b427?525 0104598 8L3 mm

The function names as well as the absolute names
(RO-15 and RPO-RP7) can be described in 8-bit regis-
ter identifiers r and rl and 16-bit register pair
identifiers rp, rpl, and post. Tables 9-2 and 9-3
list the correspondence between the absolute and
function names of the registers.

Table 18-2 Correspondence between Absolute and Function Names

of 8-bit Registers

Function name Function name
Absolute name Absolute name

RSS=0 RSS=1 RSS=0 RSS=1
RO X R8 VPy, VPy,
R1 A R9 VPy VPy
R2 c R10 UPy, UPy,
R3 B R11 UPy UPy
R4 X R12 E E
R5 A R13 D D
R6 C R14 L L
R7 B R15 H H

18-3

M bu27525 0104599 ?7T MM

Table 18-3 Correspondence between Absolute and Function Names
of 16-bit Register Pairs

Function name
Absolute name
RSS=0 RSS=1

RPO AX
RP1 BC
RP2 AX
RP3 BC
RP4 VP VP
RP5 UP up
RP6 DE DE
RP7 HL HL-

The RSS is a register set selection flag (PSW bit 5).

The correspondence between the absolute

and function

names is changed by setting or resettting the flag.

18-4

B Ly27525 0104600 241 HE

18.1.2

Legend

H o m o O w

RO-R15
AX

BC

DE

HL
RPO-RP7
PC

SP

Up
PSW
CY

AC

Z

P/V

TPF
RBS
RSS

IE
STBC
WDM
jdisp8
()

()

on operation explanation

(< I o T & B T« B

register or an 8-bit accumulator
register

register

register

register

register

register

register

Registers 0-15 (absolute names)

Register pair (AX) or a 16-bit accumulator
Register pair (BC)

Register pair (DE)

Register pair (HL)

Register pairs 0-7 (absolute names)

Program counter
Stack pointer

User stack pointer
Program status word
Carry flag
Auxiliary carry flag
Zero flag
Parity/overflow flag
Sign flag

Table position flag
Register bank select register

Register set select register

Interrupt enable flag

Standby control register

Watchdog timer mode register

Signed 8-bit data (displacement: -128 to +127)
Contents of memory addressed by the contents of
address enclosed in parentheses.
When (+) or (-)

) are

register or
is given, the contents in (
incremented or decremented by one after
the instruction is executed.

Contents of memory addressed by the contents of

18-5

B tu2?525 0104601 168 EM

memory addressed by address enclosed in double
parentheses.

XxH Hexadecimal number

xH, xL : High-order eight bits and low-order eight bits
of 16-bit register

18.1.3 Explanation of symbols under column of flags

Table 18-4 Symbols and Explanation under Column of Flags

Symbol Explanation

(Blank) No change
0 Reset to 0
1 Set to 1
X Set or reset according to result
P P/V flag operates as parity flag
\' P/V flag operates as overflow flag
R Previously saved value is restored

18-6
M Ly27525 0104k02 Oy WM

18.1.4 Operation list of basic instruction

(1) 8-bit data transfer instruction: MOV, XCH

Plags
Mnemonic Operands Bytes Operation -
S 2 AC P/V CY
rl, #byte 2 rl —— byte
saddr, #byte 3 (saddr) —— byte
sfr(Note), #byte 3 sfr -— byte
r, rl 2 r =-— rl
A, rl 1 A ~—rl
A, saddr 2 A ~— (saddr)
saddr, A 2 (saddr) =— A
saddr, saddr 3 (saddr) - (saddr)
A, sfr 2 A - sfr
sfr, A 2 sfr—=— A
A, mem 1-4 A —=— (mem)
MOV
mam, A 1-4 (mem) -~~— A
A, {saddrp] 2 A —— ((saddrp))
[saddrp], A 2 ((saddrp)) = A
A, laddrlé 4 A —— (addrlé)
laddrls, A 4 (addrlé) -~ A
PSWL, #byte 3 PSWL —~— byta X X X X x
PSWH, fbyte 3 PSW, ~— byte .
PSWL, A 2 PSWL~—A X X X X x
PSWH, A 2 PSWH - A
A, PSWL 2 A -— PSWL
A, PSWH 2 A - PSWH
A, rl 1 A~y]
r, rl 2 =1l
A, mem 2-4 A ~—» (mem)
XCH A, saddr 2 A <= (saddr)
A, sfr 3 A w—m—3gfr
A, [saddrp] 2 A - ((saddrp))
saddr, saddr 3 (saddr) ——=(saddr)

Note: If STBC or WDM is described in sfr, the instruction
becomes another dedicated instruction and the number of
bytes differ from those listed here.
18-7
B buy27525 0104603 TS50 WA

(2) 16-bit data transfer instruction: MOVW, XCHW
Flags
Mnemonic Operands Bytes Operation
§ Z AC P/V CY

rpl, #word 3 rpl —— word

saddrp, #word 4 (saddrp) -—— word

sfrp, #word 4 sfrp —— word

rp, rpl 2 Tp =— rpl

AX, saddrp 2 AX —— (saddrp)

saddrp, AX 2 (saddrp) =— AX
MOVW

saddrp, saddrp 3 (saddrp) =— (saddrp)

AX, sfrp 2 AX —«— sfrp

sfrp, AX 2 sfrp-;— AX

rpl, !addrlé 4 rpl =— (addrlé)

laddrlé, rpl 4 (addrlé) = rpl

AX, mem 2-4 AX ~— mem

mem, AX 2-4 mem --— AX

AX, saddrp 2 AX —— (saddrp)

AX, sfrp 3 AX —— sfrp
XCHWF saddrp, saddrp 3 (saddrp) = (saddrp)

rp, Tpl 2 rp =—=71pl

AX, wem 2-4 AX ~—=mem

18-8

W L427525 0104604 997 N

(3) 8-bit arithmetic and logicél instruction:
ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

Flags
Mnemonic Operands Bytes Operation
AC P/V CY
A, #byte 2 A, CY =— A+byte x Vv x
saddr, #byte 3 (saddr), CY -«— (saddr)+byte x V x
sfr, #byte 4 sfr, CY —— sfr +byte x V x
r, rl 2 ry, CY =— r+rl x Vv x
ADD A, saddr 2 A, CY =— A+(saddr) x VvV x
A, sfr 3 A, CY ~— A+sfr x Vv x
saddr, saddr 3 (saddr), CY =— (saddr)+(sgaddr) x V x
A, men 2-4 A, CY «— At+(mem) x Vv x
mem, A 2-4 (mem), CY ~— (mem)+A x v x
A, #byte 2 A, CY <=— A+byta+CY x V x
saddr, #fbyte 3 (saddr), CY —— (saddr)+byte+CY x Vv x
sfr, fbyte 4 sfr, CY —=— sfr+byte+CY x V x
r, rl 2 ry, CY <=— r+rl+CY x vV x
ADDC A, saddr 2 A, CY -~ A+(‘sndd:)+CY x vV x
A, sfr 3 A, CY —— A+sfr+CY x V x
saddr, saddr 3 (saddr), CY-— (saddr)+(saddr)+CY x V x
A, mem 2-4 A, CY =— A+ (mem)+CY x V x
mem, A 2-4 (mem), CY =— (mem)+A+CY x VvV x

18-9

M L4y2?525 0L04kL0OS 823 M

Flags
Mnemonic Operands Bytes Operation
AC P/V CY
A, fbyte 2 A, CY =— A-byte x Vv x
saddr, #byte 3 (saddr), CY -=— (saddr)-byte x V x
sfr, #byte 4 sfr, CY =— gsfr-byte x vV x
r, rl 2 r, CY <— r-rl x V x
A, saddr 2 A, CY =~— A- (saddr) x V x
sSuUB
A, sfr 3 A, CY =— A- sfr x vV x
gaddr, saddr 3 (saddr), CY - (saddr)-(saddr) x V x
A, mem 2-4 Ay, CY =— A- (mem) x Vv x
mem, A 2-4 (mem), CY =— (mem)-A x vV x
A, fbyte 2 A, CY —=— A-byte-CY x V x
saddr, #byte 3 (saddr), CY w— (saddr)-byte-CY x V x
sfr, #byte 4 sfr, CY =— sfr-byte-CY x V X
r, rl 2 ry, CY «— r-rl-CY x v x
SUBC
A, saddr 2 A, CY —-— A-(saddr)-CY x V x
A, sfr 3 A, CY —— A-sfr-CY x V x
saddr, saddr 3 (saddr), CY -— (saddr)-(saddr)-CY x v x
A, mem 2-4 A, CY < A- (mem)-CY x vV x
mem, A “2-4 (mem), CY —=— (mem)-A-CY x V x
A, #byte 2 A «— A A byte x P P
saddr, fbyte 3 (saddr) -—— (saddr)A byte x P P
afr, #byte 4 sfr —— sfr/\ byte x P P
r, rl 2 r=— 1 A\ rl x P P
AND
A, saddr 2 A ~— A A (saddr) x P P
A, sfr 3 A =— AAsfr x P P
saddr, saddr 3 (saddr) -— (saddr)A (saddr) x P P
A, mem 2-4 A-=— A A (mem) x P P
mem, A 2-4 (mem) «— (mem) A x P P

18-10

B Lu42?525 D104L0L 7?LT MW

Flags
Mnemonic Operands Bytes Operation
AC P/V CY
A, #byte 2 A —— A V byte P
saddr, #byte 3 (saddr) —«— (saddr) V byte x P
sfr, #byte 4 gafr «— afr V byte x P
r, rl 2 r =—rcVrl x P
OR A, saddr 2 A «— V (saddr) x P
A, sfr 3 A -— AV sfr x 4
saddr, saddr 3 (saddr) «=— (saddr) V (saddr) x P
A, mem 2-4 A =— AV (mem) x P
mem, A 2-4 (mem) —=— (mem) V A x P
A, #byte 2 A-<— A V byte P
saddr, #byte 3 (saddr) -=— (saddzr) ¥ byte P
sfr, #byte 4 sfr —— sfr V byte P
r, rl 2 r =—r V¥rl P
A, saddr 2 A -=— A ¥V (saddr) P
XOR
A, sfr 3 A - AV sfr P
saddr, saddr 3 (saddr) —=— (saddr) V (saddr) P
A, mem 2-4 A = AV (mem) P
mem, A 2-4 (mem) =— (mem) V A P
A, #byte 2 A-byte x vV x
saddr, #byte k] (saddr)-byte x v x
sfr, #byte 4 sfr-byte x v x
r, rl 2 r-rl x vV x
CMP
A, saddr 2 A-(saddr) x vV x
A, sfr 3 A-sfr x vV x
gaddr, saddr 3 (saddr)-(saddr) x vV x
A, mem 2-4 A-(mem) x vV x
mem, A 2-4 (mem) -A x vV x
18-11

M bu2?7525 0104607 LTt Wl

(4) 16-bit arithmetic and logical

ADDW, SUBW, CMPW

instruction:

Flags
Mnemonic Operands Bytes Operation
AC P/V CY
AX, #word 3 AX, CY —=— AX+tword x vV x
saddrp, fword 4 (saddrp), CY —=— (saddrp)+word x vV x
afrp, #word 5 sfrp, CY —— sfrp+word x vV x
ADDW rp, TPl 2 rp, CY = Irp+rp1 x vV x
AX, 'saddrp 2 AX, CY =~— AX+(saddrp) x vV =x
AX, sfrp 3 AX, CY =— AX+sfrp x vV x
saddrp, saddrp 3 {saddrp),CY —=— (saddrp)+(saddrp) x VvV x
AX, #word 3 AX, CY ~— AY-word x vV x
saddrp, #word 4 (saddrp), CY —— (saddrp)-word x vV x
sfrp, #word 5 sfrp, CY —— sfrp-word x vV x
SUBW -
P, rpl. 2 rp, CY =— rp-rpl x vV x
AX, saddrp 2 AX, CY —— AX-(saddrp) x vV x
AX, sfrp 3 AX, CY =— AX-sfrp x vV x
saddrp, saddrp 3 (saddrp), CY -— (saddrp)-(saddrp) x vV x
AX, #word 3 AX-word x .V x
saddrp, #fword 4 {saddrp)-word x vV x
sfrp, #word 5 sfrp-worci x VvV x
CMPW rp, rpl 2 rp-rpl x vV x
AX, saddrp 2 AX-(saddrp) x vV x
AX, sfrp 3 AX-sfrp x vV x
saddrp, saddrp 3 (saddrp)-(saddrp) x Vv x

18-12

B LY27525 0L04LO8 532 WA

(5) Multiplication and division instruction:
MULU, DIVUW, MULUW, DIVUX
Flags
Mnemonic Operands Bytes Operation
§ Z AC P/V CY

MULU rl 2 AX -— Axrl
DIVUW rl 2 AX (quotient), rl(remainder) -—

AX+rl
MULUW rpl 2 AX (high-order 16 bits),

rpl (low-order 16 bits)=— AXxrpl
DIVUX Tpl 2 AXDE (quotient), rpl (remainder)

-— AXDE+rpl

18-13

M Luy27525 0104609 479 WA

(6) Signed multiplication: MULW

Flags
Mnemonic Oparands ' Bytes Operation
S Z AC P/V
AX (high-order 16 bits),
HMULW pl 2 rpl (low-order 16 bits)-— AXxrpl
(7) Increment and decrement instruction:
INC, DEC, INCW, DECW
Flags
Mnemonic Operands Bytas Operation
§ 7 AC P/V
rl 1 rl —=— rl+} x x x V
INC
saddr 2 (saddr) -— (saddr)+l x x x V
rl 1 rl = rl-l x X x V
DEC
saddr 2 {saddr) =— (saddr) =1 x x x V
rp2 1 rp2 =— rp2tl
INCW
saddrp 3 (saddrp) ~— (saddrp) +1
rp2 1 tp2 ~=— rp2-l
DECW
saddrp 3 (saddrp) -— (saddrp) -1

18-14

M 5427525 0104b10 190 =N

(8) Shift and rotata instruction: ROR, ROL, RORC, ROLC,
SHR, SHL, SHRW, SHLW, ROR4, ROL4

Flags
Mnemonic Operands Bytes Operation
S Z AC P/V CY
ROR rl, n 2 (CY.r17 —-— rlO'rlm-l‘_ rlm) xn n=0-7 P x
ROL rl, n 2 (C‘J.',':.'].0 e rl7,rlm+1-— rlm) xn n=0-7 P x
RORC rl, n 2 (€Y == rlg, rl; = C, P x
rl ,=~—rl)xn n=0-7
n-1 ™
ROLC 1, o 2 (CY=—rl,, rly=—CY, P x
rlm”_«— rlm) xn n=0-7
SHR 1, n 2 (Y= rly, 7ly=— 0, x x 0 P «x
rl ,=—1r1l) xn n=0-7
m-1 L.
SHL 1, n 2 (CY == rly, rlp=— 0, x x 0 P «x
rlm+l—— rlm) xn n=0-7
SHRW rl, n 2 (C¥=— rply, rply5 — O, o P x
rplm_l —-— rplm) xn n=0-7 [* ¥
SHLW tpl, 0 2 (CY = rplys: TPy == 0, « x 0 P x
tpluﬂ»l —-— rplm) xn n=0-7
ROR4 lrpl) 2 Ay_g = (rPlly_ oo (xPl); ;== A3 g0
(rpl)y_o = (zPl)y_,
ROL4 [rpl] 2 Ay o= (rPL)7_ 4 (xPL) 3 o= Ay g
(rpl)y_, = (rpl)y 4

Remarks: n under the shift or rotate instruction indicates the
shift or rotate count.

18-15
M Lu2?75e5 0104611 027 IE

(9) BCD adjustment instruction: ADJBA, ADJBS

Plags
Mnemonic Operands Bytes Operation
§ Z AC P/V CY
ADJBA
2 Decimal Adjust Accumulator x x x P x
ADJBS

(10) Data conversion instruction: CVTBW

Flags

Mnemonic Operands Bytes Operation
§ 2 AC P/V CY

When A7-0 X = A, A=~— OCH
When Ar-l X -~ A, A=— FFH

CVTBW 1

18-16
I Ly4y2?525 0104bl2 Thl EN

(11) Bit manipulation instruction: AND1, OR1,
XOR1l, SET1, CLR1l, NOT1 (1/2)
Flags
Mnemonic Opezands Bytes Operation
AC P/V CY
CY, aaddr. bit 3 CY ~— (saddr.bit) x
CY, sfr.bit 3 CY —=— sfr.bit x
CY, A. bit 2 CY —— A.bict x
CY, X. bit 2 €Y — X.bit x
CY, PSWH.bit 2 CY =~ PSWg.bit x
oV CY, PSWL.bit 2 CY - PSW .bit x
saddr.bir, CY 3 (saddr.bit) =-— CY
sfr.bic, CY 3 sfr.bit = CY
A.bit, CY 2 A.bit —-— CY
X.bit, CY 2 X.bit - CY
PSWH.bit, CY 2 PSW.bit =— CY
PSWL.bit, CY 2 PSWy .bit =— CY
CY, saddr.bit 3 CY —«— CY A (saddr.bit) x
CY,/saddr.bit 3 CY = CYA (saddr.bit) x
CY, sfr.bit 3 CY «— CYA sfr.bit x
CY,/sfr.bit 3 CY —— CYAsfr.bit x
CY, A.bit 2 CY —=—— CYA A.bit x
ANDL CY,/A.bit 2 CY - CYA A.bit x
CY, X.bit 2 CY - CY A X.bit x
CY,/X.bit 2 CY — CYA X.bit x
CY,PSWH.bit 2 Ct —— CY A PSWg.bit x
CY, /PSWH.bit 2 CY = CY A PSHg.bit x
CY, PSWL.bit 2 CY =~ CYA PSW .bit x
CY,/ PSWL.bit 2 CY = CYAPSW .bit x
CY, saddr.bit 3 CY «— CY V (saddr.bit) x
CY,/saddr.bit 3 Cf =— CY V (saddr.bit) x
CY, sfr.bic 3 CY =— CY V sfr.bic x
CY,/sfr.bit 3 CY —— CY V sfr.bit x
CY, A.bit 2 CY —-— CY V A.bit x
OR1 CY,/A.bit 2 €Y —— CY V A.blt x
CY, X.bit 2 CY = CY V X.bit x
CY,/X.bit 2 €Y =— CY V X.bit x
CY,PSWH.bit 2 CY — CY V PSWy.bit x
CY, /PSWH.bit 2 CY = CY V PSW_.bit x
CY, PSWL.bit 2 CY =— CY V PSW .bit x
CY, PSWL.bit 2 CY =—— CY V PSW, .bit x

18-17

B bu4y27?525 0L0ULL3 STT WA

(2/2)

Flags
Mnemonic Operands Bytes Operation
Z AC P/V Y
CY, sddr. bit 3 CY —— CY V (saddr. bit) x
CY, sfr.bit 3 CY «— CY V¥ sfr.bit x
CY, A. bit 2 CY =— CY ¥ A.bit x
XOR1
Ct, X. 'bic 2 CY ~— CY V X.hit x
CY, PSWH.bit 2 CY =— CY V PSWy.bit x
CY, PSWL.bit 2 CY =— CY V PSW .bic x
saddr.bit 2 (saddr.bit) -]
sfr.bic 3 sfr.bit —e— 1
A.bit 2 Abit —=— |
SET! X.bic 2 X.bit -— 1
PSWH.bit 2 PSWy bit =— 1
PSWL.bit 2 PSWL.bit -] x x X x
cY 1 CY =—— 1 1
saddr.bit 2 (saddr.bit) =— 0
sfr.bitc 3 sfr.bit~— 0
A.bit 2 A.bit ~— 0
CLR1 X.bit 2 X.bit = 0
PSWH.bit 2 PSWy.bit =— 0
PSWL.bit 2 PSW, .bit =— 0 x x x %
cY 1 CY — 0 0
saddr.bit 3 (saddr.bit) =— (3addr.bit)
sfr.bit 3 sfr.bit =— sfr.bit
A.bit 2 A.bit —=— A.bit
NOT1 X.bit 2 X.bit =— X.bit
PSWH.bit) PSHy.bit =— BSW . bit
PSWL.bit 2 PSH; .bit ~— PSW .bit x x x %
cY 1 Y — TY x
18-18

B L4y27525 0104LLY4 83 HH

(12) Call and return instruction: CALL, CALLF, CALLT,
BRK, RET, RETB, RETI

PFlags

Mnemonic Operands Bytes Operation
S Z AC P/V CY

(SP-1) = (PC+3)H. (SP~2) —— (PC+3)L,
faddrl6 3 PC —— addrl6, SP = SP-2

(S8P-1) =— (Pc+2)H, (5P-2) -—
CALL rpl 2 (PC+2);, PCy ~— rply, PC — tpl;,
SP =— SP-2

(SP-1) — (PC+2)y, (SP-2) =— (PC+2),
[rpl) 2 PCy; = (rpl+l),
PC; = (rpl), SP — SP-2

(S§P-1) = (PC+2)H. (SP-2) = (PC+2)L.
CALLF laddrll 2 PclS-ll ~-— 00001,
PCIO-O =— addrll, SP - SP-2

(§P-1) = (PC+1)H. (SP-2) —~=— (PC+1)L,
CALLT (2ddrS) i l’CH -— (TPF, 00000000,

addr5+1), PCL -— (TPF, 00000000,
addr5), SP -«— SP-2

(SP-1) —~— PSVH. (SP-2) = PSW,
(SP-3) ~— (PC+1)H|
BRK 1 (SP-4) = (PC#I)L.
PCL -— (003EH), PCH - (003FH),
SP —— SP-4, 1IE = 0

Ll

RET 1 PCL -— (SP), PCH -— (8P+1),
SP - SP+2

PCL -— (5P}, PCH —-— (SP+1),
RETB 1 PSWL -— (SP+2), PSWH -— (5P+3) R R R R R
SP —— SP+4

B¢, - (sP), PCH ~— (SP+1),
RET1 1 PSWL -— (8P+2), PSHB - (SP+3) R R R R R
SP —— SP+4

18-19
M 5427525 0104615 772 EM

(13) Stack handling instruction: PUSH, PUSHU, POP,
POPU, MOVW, INCW, DECW

Flags
Mnemonic Operands Bytes Operation
$§ 2 AC P/V CY
sfrp 3 (SP-1) ~— sfrH, (SP-2) —— ser,
SP —— S§P-2
PUSH {(SP-1) ~=— posty, (SP-2) ~—
post 2 post; ,SP =— SP-2}xn
(SP-1) —— PSW,, (8P-2) =—
PSW 1
PSW ,SP ~— §P-2
{(UP-1) = posty, (UP-2) ~—
PUSEU post 2 postL, UP —~— UP-2}xn
sfrp 3 ser - (58P), sfrﬂ*- (SP+1),
SP —~— SP+2
POP) {post; —=— (SP), postp—=— (SP+l),
post SP ~— SP+2}xn
PSW, -~ (SP), PSW, —— (SP+l)},
PSW 1 L B
SP ~— SP+2 R R R R R
(postL -— (up), posty =—
poPU post 2 (UP+1), UP ~— UP+2}xn
SP, #word 4 SP ~— word
MOVW SP, AX 2 SP —— AX
AX, SP 2 AX ~— SP
INCW sP 2 SP ~— SP+1
pwew SP 2 SP ~— §P-1

Remarks: n under the stack handling instruction indicates the

number of registers described as post.

18-20
M buy2?525 0104616 LO9 WA

(14) Special instruction: CHKL, CHKLA

Flags
Mnemonic Operands Bytes Operation
Z AC B/V CY
CHRL sfr 3 {pin level) V (signal level at
prestage of output buffer) x P
A -— (pin level) V (signal
CHKLA sfr 3 level at prestage of output x P
buffer)
(15) Unconditional branch instruction: BR
_ Flags
Mnemonic Operands Bytes Operation
Z AC P/V CY
taddrlé 3 PC —~— addrlé
rpl 2 PCH - rle, PCL -— r:plL
BR
[rpl] 2 PCH -— (rpl+l), PCL ~— (zpl)
$ addrlé 2 PC —— PC+2+jdisp8

18-21

M 42?525 01CHLL? 545 I

(16) Conditional branch instruction: BC, BL, BNC, BNL,
BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP, BGT,
BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET, DBNZ

(1/2)
Flags
Mnemonic Operands Bytes Operation
S Z AC P/V CY
BC
$ addrl6 2 PC —=— PC+2+jdisp8 if CY=1
BL
BNC
$ addrlé 2 PC =— PC+2+jdisp8 if CY=0
BNL
BZ
$ addrlé 2 PC —— PC+2+jdisp8 if Z=1
BE
BNZ
$ addrlé 2 PC —— PC+2+jdisp8 if Z=0
BNE
BV
$ addrlé 2 PC —~— PC+2+jdisp8 if P/V=l
BPE
BNV
$ addrlé 2 PC —— PC+2+jdisp8 if P/V=0
BPO
BN $addrlé 2 PC ~— PC+2+jdisp8 if S=1
BP $addrl6 2 PC ~— PC+2+jdisp8 if S=0
PC =— PC+3+jdisp8
BGT Saddr16 3 if (P/V ¥ S)V 20
BGE $addrlé 3 PC —~— PC+3+jdisp8 if P/V V¥ S=0
BLT Saddrlé 3 PC ~— PC+3+jdisp8 if P/V V S=1
PC —— PC+3+jdisp8
BLE Saddr16 3 if (P/V V §) V Ze1
BH Saddrlé 3 PC —— PC+3+jdisp8 if Z V CY=0
BNH Saddrlé 3 PC —— PC+3+jdisp8 if Z V Ci=l
T3 BC ~— PC+3+jdisp8
saddr.bit, $addrlé if (saddr.bit)=l
sfr.bit, $addrlé 4 PC -—— PC+4+jdisp8 if sfr.bic=l
A.bic, $addrlé 3 PC ~— PC+3+jdisp8 if A.bic~l
BT
X.bic, Saddrlé 3 PC «—— PC+3+jdisp8 if X.bit=l
PSWH.bit, $addrlé 3 PC —— PC+3+jdiep8 if PSWH.bi.t-l
PSWL.bit, $addrlé 3 PC <=— PC+3+jdisp8 if PSWL.bit-l
18-22

B Ly27525 0104618 481 W

(2/2)

Flags
Mnemonic Operands Bytes Operation
Z AC P/V CY
PC —— PC+4+jdisp8
. d
snddrebit, Saddslé | 4 | if (anddr.bic)=0
sfr.bit, Saddrlé 4 PC —— PC+4+jdisp8 if sfr.bit=0
A.bit, $addrlé 3 PC —~— PC+3+jdisp8 if A.bit=0
BF
X.bit, Saddrlé 3 PC —— PC+3+jdisp8 if X.bit=0
PC —— PC+3+jdisp8
g}
PSWH.bit, $addrlé 3 if PSVH.bit-O
PSWL.bit, $addrlé 3 PC —— PC+3+jdisp8 if PSWL.b:L'c-O
PC —— PC+4+jdisp8
saddr.bit, $addrlé 4 if (saddr.bit)=1
then reset (saddr. bit)
PC —— PC+4+jdisp8 if sfr.bit=]
sfr.bit, Saddrlé 4 then reset sfr.bit
PC —— PC+3+jdisp8 if A.bit=l
A.ble, Saddrlé 3 then resat A.bit
BTCLR
PC —— PC+3+jdisp8 if X.bit=l
X.bit, $addrlé 3 then reset X.bit
PC —— PC+3+jdisp8 if PSW_.bite=l
PSWH.bic, $addrlé 3 then reset PSWy.bit H
PC —— PC+3+jdisp8 if PSW, .bitel
PSWL.Dit, $addrlé 3 then reset PSWL.bit L x x x x
PC —— PC+4+jdisp8
saddr.bit, $addrlié 4 if (saddr.bic)=0
then set (saddr. bit)
PC —~— PC+4+jdisp8 if sfr.bit=0
sfr.bit, $addrlé 4 then set sfr.bit
PC —— PC+3+jdisp8 if A.bit=0
A.bit, $addrlé 3 then set A.bit
BFSET
PC «— PC+3+jdisp8 if X.bit=0
X.bit, $addrlé 3 then set X.bit
PC —— PC+3+jdisp8 if PSW..bit=0
PSWH.bit, Saddrlé 3 then set PSWH.bit H
PC —=— PC+3+3jdisp8 if PSW, .bic=0
PSWL.bic, $addrlé 3 then set PSW, .bit L x x x x
r2 =— r2-1
r2, $addrlé 2 then PC ~— PC+2+jdisp8 if r240
DBNZ
(saddr) ~-— (saddr)-1,
saddr, $addrlé 3 then PC —— PC+3+jdisp8
1f(saddr)#0
18-23

B L427525 0104619 318 M

(17) Context switching instruction: BRKCS, RETCS,
RETCSB

Flags

Mnemonic Operands Bytas Operation
S Z AC P/V CY

RBS2-0 —=— n, pc'H -— R4,
BRKCS RBa 2 R7 ~— PSWy, R6 =— PSW,
RSS —=— 0, IE =— 0

PCH ~— R3, PCL -— R4,
RETCS laddrlé 3 RS addrléﬂ, R4 = addr16L, R R R R R

RSW,, —— R7,PSW, -=— R6

g L

PCy —— RS, PC; —=— R4,
RS ~— addrléy, R4 — R R R R R
addnsL,PswE‘I -— R7,

I’SWL ~— R6

RETCSB taddrlé 4

18-24
B L427525 0104620 03T WM

(18) String manipulation instruction: MOVM, MOVBK,
XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC,
CMPBKC, CMPMNC, CMPBKNC

(1/2)
Plags
Mnemonic Operands Bytes Operation
S Z ACP/VCY
(DE+) ~=— A, C = C-1
(DE+], A 2 End if C=0
MOVM
(DE-) =— A, C =— C-1
(DE-], A 2 End if C=0
(DE+) =— (HL+), C =— C-1
[DE+], (HL+) 2 End if C=0
MOVBK
(DE-) =— (HL-), C =— C-1
{DE-], [HL-} 2 End if C~0
(DE+) =——A, C -— (C-1
[DE+], A 2 End if C=0
XCHM
(DE~) ~—=A, C = C-1
[DE-], A 2 End if C=0
(DE+) —~—= (HL+), C =— C-1
[DE+], [HL+) 2 End if C=0
XCHBK
(DE-) = (HL-), C =— C-1
[DE-), [HL-) 2 End if C=0
(DE+)=A, C = C-1 v
(DE+], A 2 End if C=0 or Z=0 x x x x
CMPME
(DE-)-A, C —=— C-1 v
[DE-1, A 2 End if C=0 or 2Z=0 * x x x
(DE+)-(HL#), C -— C-1 v
(DE+), (HL+} 2 End 1f C=0 or Z~0 xx x x
CMPBKE
(DE-)-(HL-), € =— C-1 v
(DE-], [HL-) 2 End if C=0 or Z=0 xx x x
(DE+)-A, C -— C-1 v
{DE+], A 2 End if C=0 or Z~-l xx x x
CMPMNE
' (DE')‘A, c —-_— C-l v
(DE-], A 2 End if C=0 or Z=1 xx x x
(DE+)-(HL+), C =— C-1 v
(DE+), [HL+) 2 End if C=0 or 2=l *xx x x
CMPBRNE
(DE-)-(HL-), C =— C-1 v
[DE-], (HL-] 2 End if C=0 or 2-1 * x x x
(DE+)-A, C -— C-1 v
(DE+], A 2 End if C0 or CY=0 *x x o x x
CMPMC
(DE-)-A, C =— C-1 v
(DE-], A ' 2 End if C=0 or CY=0 xx x x
(DE+)-(HL+), C = C-1
(DE+], (HL+] 2 | End if €0 or CY=0 xx x ¥V x
CMPBKC
{DE-)~(HL-), C =— C-1
(DE-1, (HL-] 2 | End if €0 or CY-0 x x x Vo x
18-25

B bL4y2?525 010462Y T7?6 N

(2/2)

. Flags
Mnemonic Operands Bytes Operation
Z AC P/V CY
DE+)-A, C = C-
(DE+], A 2 | Boa if 60 or CTo1 x x Vo=
CMPMNC
DE-)-A, C =— C-1
[DE-1, A 2 | oa 17 ¢=0 o C¥e0 x x V x
. DE+)-(HL+ C -~ C-
(DE+], [HL+) 2 | foa it 60 ee GEed *x x Vo x
CMPBRNC
DE-)-(HL-), C —~— C-
{DE-), (HL-] 2 | e G O x x V =x
18-26

B Lu27525 010uk22 902 [

Note:

(19) CPU control instruction: MOV, SWRS, SEL, NOP, EI,

DI
Flags
Mnemonic Operands Bytes Operation
§ Z ACP/VCY
(Note)
STBC, #byte 4 STBC —— byte
MOV
(Note)
WDM, #byte 4 WDM ~— byte
SWRS 1 | Rss ~— WST
RBn 2 RBS2-0 =— n, RSS =— O
SEL
RBn, ALT 2 RBS2-0 —=— n, RSS = |
NOP 1 No Operation
E1 1 IE =— 1 (Enable Interrupt)
D1 1 IE =— 0 (Disable Interrupt)

When the operation code of an STBC or WDM register han-
dling instruction is abnormal, an trap interrupt is
generated.

Operation when an exception trap interrupt occurs.

(SP-1) PSWy, (SP-2) —— PSWj,

(SP-3) =— (PC-4)y, (SP-4) — (PC-4)y

PC;, — (003CH), PCy —— (O003DH)

SP =— SP-4, IE -— 0

18-27
B by2?525 0104L23 449 W

18.2 Operation Codes of Instructions

18.2.1 Symbol explanation of operation codes

R3 Rz R1 Ro reg T T Co reg
0 0 0 0| RO 0 c
1 B
0 0 (i} 1| Rl
0 0 1 0| R2
0 ()} 1 1| R rl
0 1 0 0} R4
o |1 o 1] =ms
0 1 1 0| R6
0 1 1 1| w7 i r
1 0 0 0 | R8
1 0] 1| R9
1 0 1 0 | R10
1 0 1 1| RIl
1 1 0 0 | R1Z
1 1 0 1| RI3
1 1 1 0| Rl4
1 1 i 1| RS N
Tp ‘ rpl tp2
Pz l’1 Po reg-pair Q2 Q1 Q0 reg-pair s1 So reg-pair
0o o0 0 RPO 0 0 0 RPO 0o o VP
o 0o 1 RP1 o0 o0 1 RP4 0 1 UpP
o 1 0 RP2 0o 1 0 RP1 10 DE
o 1 1 RP3 0 1 1 RPS _ 11 HL
1 o0 o RP4 1 o o RP2
1 o0 1 RPS 1 o 1 RP6
1 1 0 RP6 110 RP3
1 1 1 RP7 1 1 1 RP7
Bn: Immediate data for bit
Nn: Immediate data for n

Data: 8-bit immediate data corresponding to byte
Low/High Byte : 16-bit immediate data corresponding to word

18-28
B LY27525 0L04L2Y 745 B

Saddr-offset

Low-order 8-bit off set data of 16-bit address

corresponding to saddr

Sfr-offset : Low-order 8-bit data of 16-bit address of
special function register (sfr)

Low/High offset: 8/16-bit offset data in memory addressing in
based mode/indexed mode

Low/High Addr. : 16-bit immediate data corresponding to addrlé

jdisp Signed 8-bit two’'s complement data of relative

address distance between top address of next

instruction and branch destination address

fa ¢ Low-order 1ll-bits of immediate data correspond-
ing to addrll

ta : Low-order five bits of immediate data corre-
sponding to addr5x 1/2

Post Byte ¢ 8-bit data specifying register pairs for stack

handling

Each bit is assigned a specific register pair.
When a bit is set to 1, its corresponding regis-
ter pair is specified for stack handling. (See
Fig. 18-1.)

18-29
M 6427525 0104b25 bll N

Fig. 18-1 8-bit Data Specifying Register Pairs
for Stack Handling

Post byte

bit7|bit6|bit5|bit4 |bit3|bit2|bitl|bit0 | Correspondign register pair

L RPO (when RSS=0, AX)
RP1 (when RSS=0, BC)
RP2 (when RSS=1, AX)
RP3 (when RSS=1, BC)
RP4 (VP)
RP5 (UP)or pswiNote)
RP6 (DE)
RP7 (HL)

o | Save/restore operation in/from
stack memory is not performed

1 | Save/restore operation in/from
stack memory is performed

Note: RP5 (UP) for PUSH/POP instruction or PSW for PUSHU/POPU

instruction.

Caution 1: If both source and destination are both of registers
or both saddr and saddrp in the operand field of MOV
r, rl, ADD saddr, saddr, etc., the codes are as

follows:

¢ When both are registers or register pairs, the
destinatnion specification code precedes the

source specification code.

Example:
R Ry R; Ry 0 Ry R; Ry
| — J \

P ——

~

—— source register
destination register

18-30
B Lu2?525 010462k 558 M

* When both are saddr or saddrp, the preceding 1-

byte data becomes offset data

source and the

following 1l-byte

specifying the

data becomes

offset data specifying the destination.

Example:

-— Saddr-offset

~— Saddr-offset —

Caution 2: If a special function

FFOOH-FF1FH 1is described in operand s
short direct addressing rather than SFR addressing is
applied and the operation code of the

L———— destination
—— source saddr saddr
register (SFR) mapped in

fr or sfrp,

instruction

with operand saddr or saddrp is generated.

Example: AND A, P5

Operation code

AND A, PMS

"10011100

00000101

Operation code

00000001

10011100

00100101

In this example, since short direct addressing is
applied to the AND A, P5 instruction,

tion code becomes

addressing is applied.

18.2.2 Operation codes in memory addressing modes

Table 18-5 1lists the codes of the mod and mem parts

the opera-

shorter than that when SFR

in the

operation code field determined corresponding to the contents de-

scribed in mem in the operand field.

18-31
M Lu27525 0104627 494 HE

Table 18-5 Codes of mod and mem Parts in Operation Code Field

mod 1 0110 1 0111 0 0110 0 1010
mem Register Based Based mode Indexed mode
indirect indexed
mode mode
0 0 0] [pE+](Note) | [pE+aj [DE+byte] word[DE]
0 0 1| [HL+](Note) | [H1+aj [DE+byte] word[A]
0 1 0| [DE-j(Note) | (pg+a) [HL+byte] word [HL]
0 1 1| [HL-)j(Note) | (mu1+B) [UP+byte] word[B]
1 0 0| [pEj(Note) [VP+DE] [VP+byte] -
1 0 1| [HL](Note) [VP+HL] - -
1 1 0| [VP] - - -
1 1 1| [UP] - - -

Note: If the code is described in mem in the MOV instruction
operand field, the MOV instruction becomes a dedicated 1-
byte instruction.

Remarks: If the based or indexed mode is described in mem, the
8-bit or 16-bit offset data corresponding to byte or
word is added to the third byte and later.

18-32
B L427525 0104kL28 320 W

18.2.3

Operation code

list

(1) 8-bit data transfer instruction: MOV, XCH
(1/2)
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
rl, fhyte 1 01 1 1 RyR Ry| — Data —
saddr, #byte 00 1 1 1 01 0 ~— Saddr-offset —= | ~— Data —
sfr, #byte 0010 1 01 1 -— Sfr-offset —_— - Data —_
T, rl 0010 01 00 R3 R2 R1 RO 0 Rz Rl Ro
A, rl 1 1 0 1 0 R2 R1 Ro
A, saddr 0010 00O0O0 -— Saddr-offset —
saddr, A 001! 0 0 01 o0 —~— Saddr-offset —
saddr, saddr g o 1 1 1 0 0 0 -— Saddr-offset —= -—Saddr-offset—e
A, sfr 0 0 0 1 0 0 0 0 — Sfr-offsat —_—
sfr, A 0001 0010 -— Sfr-offsat —
(Note)]O 1 0 1 1 mem
A, mem 000 mod 0 mem 0 0 0 0 | = Low Offset —
~— High Offset —
MoV (Note)f0 1 0 1| O mem
mem, A 0 0 0 mod 1 mem 0 0 0 O -— Low Offset —
=~ High Offset —»
A, [saddrp] 0 0 0 1 1 0 0 0 -— Saddr-offset —
[saddrp], A 0 0 01 1 0 0 1 -— Saddr-offset —
0000 1 001 1 11 1 0 0 0 0| - LowAddr. —
A, laddrl$
—-— High Addr. —
0 0 0 O 1 0 0 1 11110001 ~— Low Addr., —
faddrlé, A
-— High Addr. —_
PSWL, #byte 0 01 0 1 0 11 1 1111110 — Data —
PSWH, #byte 0010 1 011 11 111111 —-— Data —_—
PSWL, A 00 01 0010 11111110
PSWH, A 00 01 001 0 11 111111
A, PSWL 00 01! O0O0O0TUO 11111110
A, PSWH 0 0 0 1 00 0 0 1111 1111
Note: If (DE]}, [HL], (DE+], [DE-], (HL+], or [HL-] is described

in mem, the l-byte code results.

18-33
B Lu2?525 0104629 267 IR

(2/2)

Operation code

Mnemonic Operands Bl B2 B3
B4 BS
A, rl 1 1 01 1 R2 Rl Ro
r, rl 0 01 0 01 01 R3 R2 Rl Ro 0 Rz R1 Ro
0 0 0 mod 0 mem 01 0 0 |- Low Offset —
A, mem
XCH —— High Offset —
A, saddr ¢ 01 0 0 0 01 —-— Saddr-offset —=
A, sfr 0 00 0 0O0OCI1]0 01 0 ©00O0ODO01 - Sfr-offset —=
A, (saddr) o 0 1 0O 0 0 1 1 - Saddr-offset —
saddr, saddr o 0 1 1 1 0 01 «— Saddr-offset <« |-=—Saddr-offset —
18-34

B Ly27525 0104630 T&9 W

(2) 16-bit data transfer instruction: MOVW, XCHW
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
rpl, #word 0110 0 Q2 Q1 Qo ~-— Low Byte ~—= | =—— High Byte —
0 000 1 1 0 0| = Saddr-offset —= |~— Low Byte —o
saddrp, fword
-— High Byte —
6 00 0 1 0 1 1| = Sfr-offset ~= |[=— Low Byte —
sfrp, #word
-— High Byte —_—
Tp, rpl 0 01 0 01 00 P3 P2 PO 01 Q2 Q1 Q0
AX, saddrp 00 016 1 1 0 0] =— Saddr-offset —
saddrp, AX 0 0 01 1 01 0 j«— Saddr-offset ==
saddrp, saddrp [0 0 1 1 1 1 0 0| =— Saddr-offset —= |=—Saddr-offset —e
MOVW AX, sfrp 00 01 00 0 1| - Sfr-offset —
sfrp, AX 0 001 0 O0 1 1| = Sfr-offset —
0000 1! 00 1)1 000 0Q2Q1 Q0 —«— Low Addr. ——
rpl, !addrlé
— High Addr. ——=
0000 1 00 1}1 000 OQZQIQO ~— Low Addr, —
faddrlé6, rpl
-~ High Addr. —
0 0 O mod 0 mem 0 0 0 | |=— Low-offset —
AX, mem
-— High-offset -—
0 0 00 mod i mem 0 0 0 1 |=— Low-offset —
wmen, AX
—~— High-offset ——
AX, saddrp 00011 011 «— Saddr-offset —
AX, sfrp 00 0 0 0 0 01 00 01 1 0 11 ~— Sfr-offset —
XCHW saddrp, saddrp |0 0 1 0 1 0 1 O ~- Saddr-offset — —— Saddr-offsat—e

rp, rpl

PP B0 1Q,Q Q

AX, mem

mod

0 mew 0 1 0 1

~— Low-offset ——

———

High-offset

18-35

by2?525 0104631 915 HN

(3) 8-bit arithmetic and logical instruction: ADD, ADDC,
SUB, SUBC, AND, OR, XOR, CMP
(1/4)
Operation code
Mnemonic Operands Bl B2 B3
B4 B5
A, #byte 1 01 0 1 0 0 0 -— Data —
saddr, #fbyte 0 11 0 1 0 0 0 ~— Saddr-offset == {[w— Data —
0 000 0O0O0OTI1}]01 10 1 0 0 O|=— Sfr-offsat —
sfr, #byte
—-— Data —
r, rl 1 00 0 1 0 0 O R3 Rz R1 Ro 0 RZ R1 Ro
A, saddr 1 0 0 1 1 0 0 0 =-— Saddr-offset —=
ADD
A, sfr 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 Ofj=~~ Sfr-offset -~
saddr, saddr 01 1 1 1 0 0 0O - Saddr-offser —e— |=— Saddr-offset —
0 0 0 mod 0 mem 1 0 0 O|=— Low Offset —
A, menm
-— High Offset -—=
0 0 O mod 1 mem 1 0 0 0|=— Low Offset ——
mem, A
-— High Offser -
A, #byte 1 01 0 1 0 01 -— Data —
saddr, #byte 0 1 1 0 1 0 0 1} =-— Saddr-offset — |- Data —
: 0 000 O0O0COCT11;01 1 0 1 0 0]|=— Sfr-offset —
sfr, #byte
—-— Data —
r, rl 1 000 1 0 01 R3 R2 Rl Ro 0 R2 R1 Ro
ADDC
A, saddr 1 0 0 1 1 0 0 1 ~— Saddr-offset —
A, sfr 0 0 00 0 O0 01 1 0 0 1 1 0 0 1 e Sfr-offset -—
saddr, saddr o016 1 1 I 0 0 1 —-— Saddr-offset -—= (= Saddr-offset —
0 0 0 mod 0 mem 1 0 0 1|=— Low Offset -
A, mem
-— High Offset -—
0 0 0 mod 1 mem 1 0 0]| Low Offget -—=
mem, A
-— High Offset -

18-36

6427525 0104L32 451 MM

(2/4)

Operation code
Mnemonid Operands B! B2 B3
B4 BS
A, #byte 1 01 0 1 010 -— Data —
saddr, fbyte 01 1 0 1 010 -«— Saddr-offset —e | Data —
0 000 0O TOC1 011 0 1 0 I 0|= Sfr-offset -—=
sfr, #byte
- Data —
r, rl 1 000 1 010 R3 Rz Rl RO 0 R2 Rl Ro
A, saddr 1 0 0 1 1 01 0 —-— Saddr-offset ==
SUB A, sfr 0 0 00 0 0 01 1 001 1 0 1 0= Sfr-offset -—
saddr, saddr 0 1 1 1 1 01 0 ~— Saddr-offset —= | =— Saddr-offset——
0 0 0 mod 0 men 1 0 1 0| = Low Offset —e
A, mem
—-— High Offset —=
0 0 O mod 1l mem 1 0 1 0 |=— Low Offset —
mem, A
- High Offset -——
A, #byte 101 0 1 011 —-— Data —_—
saddr, #byte 6110 1011 ~— Saddr-offset —= | = Data —_—
0 000 00 O01 01 10 1 0 1 1 |- Sfr-offset —e
sfr, #byte
-— Data —_
ry, rl 100 0 1 011 R3 R2 R1 Ro 0 Rz Rl RO
A, saddr 1 0 01 1 011 - Saddr-offset —=
SUBC A, sfr 0 00 0 0 0 01 1 001 1 0 1 1 |- Sfr-offset —
saddr, saddr 0 1 1 1 1 0 1 1 ~— Saddr-offset = | <— Saddr-offsat—e
0 0 0 mod 0 mem 1 0 1 1 |=— Low Offset —
A, mem
~— High Offset ——
0 0 0O mod 1 mem 1 0 1 1 |=— Low Offset —=
mem, A
~— High Offset —
A, #byte 101 0 1100 —-— Data —
saddr, #byte 01 10 1 1 0 0 -— Saddr-offset —= |- Data ——
00 00 0 0 011 01 1 0 1 1 0 0 |- Sfr-offset —
AND sfr, #byte
—~— Data —_—
r, rl 1 000 1100 R3 R2 R1 RO 0 Rz Rl Ro
A, saddr 1 001 1 1 0 0 | < Saddr-offset —
18-37

B Lu27525 0104633 795 WA

(3/4)

Operation code

Mnemonic Operands Bl B2 B3
B4 BS
A, sfr 0 0 00 0 O0 01 1 0 0 1 1 1 0 0 |= Sfr-offset -——
saddr, saddr 0 1 1 1 11 0 ~— Saddr-offset == |-=— Saddr-offset—
0 0 0O mod 0 mem 1 1 0 0 |- Low Offset -
AND A, mem
— High Offset —=
0 0 0 mod 1 mem 1 1 0 0 |~ Low Offset —=
mem, A
—-— High Offset —w
A, #byte 101 0 11 0 —-— Data —
saddr, #byte 01 1 0 11 0 -~— Saddr-offset —= |w=— Data —_—
00 0 0 0 O 1 01 1 0 I I 1 0 |=— Sfr-offser —=
sfr, #byte
—— Data
r, rl 1 0 00 11 0 R3 R2 Rl RO 0 R2 Rl Ro
A, saddr 1 0 0 1 1 1 0 ~- Saddr-offset —_—
OR A, sfr 0 000 0O 1 1 0 0 1 1 1 1 0 |=— Sfr-offset —
saddr, saddr 01 11 11 0 «— Saddr-offset -~ |« Saddr-offset—
0 0 0 mod 0 mem 1 1 1 0 |= Low Offset —
A, mem
- High Offset
0 0 0 mod 1 mem 1 1 1 0 }|=— Low Offset —
mem, A
~— High Offset
A, #byte 1 01 0 1 1 1 — Data —_
saddr, #byte 01 1 0 1 1 1 —-— Saddr-offser ——— (= Data e
00 00 00 1 0 1 1 0 1 1 0 1 |= Sfr-offsert —
sfr, #byte
e Data
r, rl 1 0 00 11 1 R3 R2 Rl Ro 0 R2 R1 Ro
A, saddr 1 0 0 1 1 1 1 ~— Saddr-offset -
XOR A, sfr ¢ 0 0 0 0 O 1 1 0 0 1 1 1 0 1 |=— Sfr-offset —
saddr, saddr 01 1 1 11 1 -— Saddr-offset —= |-=— Saddr-offset——
0 0 0 mod 0 mem 1 1 0 1 [=— Low Offset —
A, menm
-— High Offset
0 0 O mod 1 mem 1 1 0 1 |- Low Offset —
mem, A

-——

High Offset

18-38

B Lu2?525 010ub34 b2y HN

(4/4)

Operation code

Mnemonic Operands Bl B2 B3
B4 BS
A, #byte 1 01 0 11 11 -— Data —
saddr, #fbyte 01 10 1111 ~— Saddr-offset — -— Data —
0 0 00 0O0O0C1 0 ! 1 0 1 1 1 1 |= Sfr-offset -~
sfr, #byte
—-— Data —
r, rl 1P 000 11 11 Ry R, Ry Ry O RZ R1 Ry
A, saddr 1 00 1 1111 ~— Saddr-offset —e
CMP A, sfr 0O 0 00 0 0 01 1 0 0 1 1 1 1 1 |=— Sfr-offset —=
saddr, saddr o1 11 1 1 1 1 —=— Saddr-offser —— --— Saddr-offset——
0 0 O mod 0 mem 1 1 1 1 }j== Low Offset —=
A, mem
—— High Offset —
0 0 0 mod 1 mem 1 1 1 1 |=— Low Offset —=
wem, A

High Offset

18-39

B Lu27?525 0LO4G35 560 N

(4) 16-bit arithmatic and logical instruction:
SUBW, CMPW
Operation code
Mnemonid Operands ' Bl B2 B3
B4 BS
AX, #word ¢ 01 0 110 —-— Low Byte —_— -— High Byte —
0O 0 0 O 1 1 0 =— Saddr-offset -— —~— Low Byte —
saddrp, #word
—-— High Offset —=
0 000 0 0 0 0 0 0 O 1 1 0 1|~ Sfr-offser —
sfrp, #word
—-— Low Byta —= -— High Byte —
ADDW
rp, rpl 1 00 0 1 00 Pz Pl Py 0 1 Q2 Ql Q0
AX, saddrp 00 01 110 ~— Saddr-offser —
AX, sfrp 0 0 00 0 0 0 0 0 0 1 1 1 0 | |~ S8fr-offset —
saddrp, saddrp |0 0 1 1 1 1 0 ~— Saddr-offset -—= |-=— Saddr-offset—=
AX, #word o010 1 11 - Low Byte —= |-~ High Byte —=
0 0 0 0O 1 11 ~— Saddr-offset - =— Low Byte -
saddrp, #word
- High Byte —_
0 0 0 0 0 0 0 00 0 0 1 1 1 0= S8fr-offset —
SUBW sfrp, #word
- Low Byte — —-— High Byte —
rp, rpl 1 000 L 01 P, P P 0 1Q,Q Q
AX, saddrp c 0 0 1 1 11 ~—' Saddr-offset — ~— Saddr-offsec—
AX, sfrp 0 00 0 0 00 0 0 0! 1 1 1 0|= Sfr-offset —=
saddrp, saddrp [0 0 1 1 1 1 1 <-— QSaddr-offset —= |-— Saddr-offset—=
AX, #word o010 111 —~— Low Byte —= j-«— High Byte —=
0 0 0 0 1 11 —=— Saddr-offset —= |=— Low Byte —=
saddrp, #word
—-— High Byte —
00 00 0 0O 00 0 0 1 1 1 1= Sfr-offser —=
CMPW sfrp, #word
-— Low Byte —_— -— High Byte ——
rp, Tpl 1 000 1 1 1 P, P Py 0 1Q,Q Q
AX, saddrp 0 001 1 1 1 ~— Saddr-offset —=
AX, sfrp 0000 0O0O0 0 0 0 &I 1 1 1 1| = Sfr-offset —= !
saddrp, saddrp [0 0 1) 1 11 —~— Saddr-offset —= | -— Saddr-offset —
18-40

k427525 0L0463E 4T7? HN

(5) Multiplication and division instruction:
MULU, DIVUW, MULUW, DIVUX
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
MULU rl 0 00 0 01 01 0 0 0 0 1R2R1R0
DIVUW rl 0 0 0 1 IRZ R1 RO
MULUW | rpl 0010 10Q0QQ,
DIVUX rpl 1110 IQZ Ql Qo
(6) Signed multiplication: MULW
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
MULW rpl 0011 1000,
(7) Increment and decrement instruction: INC, DEC,
INCW, DECW
Operation code
Mnemonic Operands Bl B2 B3
B4 B3
rl 11 00 OR2 Rl Ro
INC
saddr 0010 0110 ~— Saddr-offset ——
rl 11 00 ORZ Rl RO
DEC
saddr o010 0111 =— Saddr-offset -—
rp2 0100 0188,
INCW
gaddr 00 0 0 o011 11 1 1 1 0 1 0 0 0 |=— Saddr-offset —
rp2 6 1 00 1 18, 8,
DECW
saddr 00 0 0 0 1 1 1 1 110 1 0 0 } |- Saddr-offset —-
18-41

B b42?525 0104637 333 M

(8)

Shift and rotate instruction:

SHR, SHL, SHRW, SHLW, ROR4, ROL4

ROR, ROL, RORC, ROLC,

Operation code
Mnemonic Operands Bl B2 B3
B4 BS
ROR rl, n 0 01 1 O 0 1 NZ N1 No Rz Rl RO
ROL rl, n 0 0 1 NZ Nl No Rz Rl Ro
RORC rl, n 0 0 0 N2 N1 NO RZ R1 Ro
ROLC rl, n 0 00 Nz Nl NO R2 Rl Ro
SHR rl, n 0 1 0 Nz Nl NO RZ Rl Ro
SHL rl, n 0 1 0N, N, Ny R, R; Ry
SHRW epl, n 0 1 1N, N NjQ,Q Q
SHLW rpl, n 0 11 NZ Nl No Q2 Ql Qo
ROR4 [tpl] 00 0 0 O 1 000 1 Q2 Ql QO
‘ROL[Q {rpl) 0 0 0 0 O 1 0 0 1 1 Q2 Q1 Q0
(9) BCD adjustment instruction: ADJBA, ADJBS
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
ADJBA 0 0 0 0 01 1 1 1 1 1 1 0
ADJBS 00 0 0 01 1 1 1 1 111
(10) Data conversion instruction: CVTBW
Operation code
Mnemonic Operands B1 B2 B3
B4 BS
CVTBW 0 00 0 01

18-42

M Ly427525 0104638 277 W

(11) Bit manipulation instruction: MOV1, ANDI, OR1,
XOR1, SET1, CLR1, NOT1
(1/3)
Operation code
Mnemonid Operands Bl B2 B3
B4 . BS
CY, saddr.bit 000 0 1 0 00 0 0 0 0 o B2 Bl Bo ~— Saddr-offset—
CY, sfr.bit 1 0 00 1 Bz B1 Bo -— Sfr-offset —
CY, A.bit 00 11 1 Bz Bl Bo
CY, X.bit 0 0 1 1 0 Bz Bl Bo
CY, PSWH.bit 0010 1 B, B, By
MOVl CY, PSWL.bit 0 0 1 0 0 Bz Bl Bo
saddr.bic, CY 1 0 00 0001 o0 Bz BI BO «— Saddr-offset—=
.sfr.bit, cY 1t 0 0 O i B2 Bl Bo ~— Sfr-offset —
A.bit, CY 0 0 1 1 1 Bz B1 Bo
X.bit, CY 00 11 0 Bz Bl Bo
PSWH.bit, CY 0 0 10 1 B2 Bl BO
PSWL.bit, CY 0 010 0 Bz B1 Bo

CY, saddr.bit

0000 1 00O 0010 OBZ Bl By ~— Saddr-offset—

CY,/saddr.bit o0 1 1 o 52 Bl Bo Saddr-offset—
CY, sfr.bit 0 0 1 0 1 Bz Bl Bo Sfr-offset —
CY,/sfr.bit 0011 1 52 B, B, Sfr-offset —=
CY, A.bit 0 01 001 0 1B,B) B
AND1
CY,/A.bit 0011 1BB By
CY, X.bit 001 0 0 52 B1 Bo
CY./X.bit 0 01 1 0B,B By
CY, PSWH.bit 0 0 1 0 01 0 18B,B B,
CY,/PSWH.bit 001 1 1B,B By
CY, PSWL.bit 0 01 0 O Bz Bl Bo
CY,/PSWL.bit 6 011 0B,B8 By
18-43

B Ly27525 0104639 106 IE

(2/3)

Operation code
Mnemonic Operands Bl B2 B3
B4 B5
CY, saddr.bit 00 0 0 0 0 01 0 0 O B2 - Saddr-offset —
CY,/saddr.bit 01 01 o0 BZ —~— Saddr-offset —
CY, sfr.bit 01 0 0 lB2 -— Sfr-offset —=
CY,/sfr,bit 01 0 1 IBZ -~ Sfr-offset —
CY, A.bit 0 01 01 00 18,
CY,/A.bit 01 0 1 18,
OR1
CY, X.bit 01 0 0 O B,
CY,/X.bit 01 01 o0 Bz
CY, PSWH.bic 0 0 1 01 0 0 1 B,
CY, /PSWH.bit 01 0t 1 Bz
CY, /PSWL.bit 01 0 0 o B,
CY, /PSWL.bit 01 01 0 B2
CY, saddr.bit 00 0 0 00 o1 1 0 o0 Bz «— Saddr-offset -
CY, sfr.bitc 00 lB2 - Sfr-offser ~——
CY, A.bit 0 0 1 1 Bz
XOR1
CY, X.bit 0 0 1 0 BZ
CY, PSWH.bit 0 0 1 1 BZ
CY, PSWL.bit 01 0 B2
saddr.bit 1 011 0 Bz B1 B =— Saddr-offset
sfr.bit 0 0 0 0 0 0 1 000 18, ~— Sfr-offset ——
A.bit 0 01 1 B2
SET1 X.bit 0 0 1 0 B2
PSWH.bit 0 01 1 B2
PSWL.bit 0 01 0 Bz
cY 0100 00O
saddr.bit 1 01 0 0 B2 Bl Bo -— Saddr-offset
sfr.bit 0 0 0 O 0 1 001 18, —— Sfr-offset —=
A.bic 0 01 1 l?'2
CLR1 X.bit 0 01 0 Bz
PSWH.bit 0 0 1 0 B2
PSWL.bit 0 01 0 BZ
CY 0100 000
18-44

B L42?525 D104LYO 928 N

(3/3)

Operation code
Mnemonic Operands Bl B2 B3
B4 B5
saddr.bic 0000 1 00O 0111 o B, B, <— Saddr-offset —
sfr.bit 1 0 0 0 le B1 ~— Sfr-offset ——
A.bit 0 0 1 1 1 BZ Bl
NOT1 X.bic 00 11 0 B, B,
PSWH.bit 001 0 1 Bz By
PSWL.bit 0 0 1 0 0 32 Bl
cY 0100 001 0
18-45

B tu27525 01L04L4HD ab4 HE

(12) Call and return instruction: CALL, CALLF, CALLT,
BRK, RET, RETB, RETI
Operation code
Mnemonic Operands Bl B2 B3
B4 B5
faddrlé 0 01 ¢ 1 0 0 O —-— Low Addr. —e | =~ High A&dr. ——
CALL rpl 0 0 0 0 01 0 1 01 0 1 IQZQIQO
(epl] 0000 0101)01 11 1Q¢QQ
CALLF laddrl 1 0 0 1 0 - fa —
CALLT [addr5) 1 1 1 - ta —=
BRK 01 0 1 1 110
RET 01 0 1 0110
RETB 01 01 11 1 1
RETI 01 0 1 0 1 1 1
18-46

M Lu27525 0l0ubue 77O |

POP,

(13) Stack handling instruction: PUSH, PUSHU,
POPU, MOVW, INCW, DECW
Operation code
Mnemonic Operands Bl B2 B3
B4 BS

sfrp 0 0 00 01 11 01 1 0 0 1|= Sfr-offser —
PUSH post ¢ 011 010 - Poat Byte -

PSW 0100 100
PUSHU post 0011 01 —-— Post Byte —_

sfrp 00 0 0 01 1 1 01 1 0 0 1|=— Sfr-offset —
POP post ¢ 011 010 —-— Post Byte —

PSW o100 1 00
PbPU | post 0011 01 —-— Post Byte —

000 0 1 0 1 111 1 1 0 0{= LowByte —
SP, #word
—-— High Byte

Movy A

SP, AX 00 01 00 1111 1 1 0 0

AX, SP 0 0 01 00O 1 11 1 1 0 0
INCW SP 0000 O l‘ 0 1 100 1 000
DECW SP 0000 01 0 1100 10 01

(14) Special instruction: CHKL, CHKLA
Operation code
Mnemonic Operands Bl B2 B3
B4 BS

CHEL sfr 000 0 01 1 00 1 0 0 O0f{- Sfr-offset —_
CHKLA sfr ¢ 0 0 0 01 1 00 ! 0 0 l{=— Sfr-offset —

18-47
M Luy2?525 0104643 E37 MR

(15) ©Unconditional branch instruction: BR
Operation codas
Mnemonic Operands Bl B2 B3
B4 BS
laddrlé 0 01 0 11 0 0= Low Addr. —|-— High Addr. —
rpl 0O 0 00 01 0-1{0 1! 00 1Q2Q1Q0
BR
[zpl] © 000 010 1/01 10 10Q0Q4Q,
$addrlé 00 01 01 0 Of= jdisp —
18-48

M 42?525 0L0ubuy 573 HE

(16) Conditional branch instruction: BC, BL, BNC, BNL,
BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP, BGT,
BGE, BLT, BLE, BH, BNH, BT, BF, BRCLR, BFSET, DBNZ

(1/2)
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
BC
$ addrlé 1 00 0 001 1| =-— jdisp —
BL
BNC
$ addrlé 1000 001 0| = jdisp —
BNL
BZ
$ addrlé 1 000 00 0 1| = jdisp —
BE
BNZ
$ addrlé 1 00 0 0 0 0 0| =— jdisp —
BNE
BV
$ addrlé 1 000 01 0 1] = jdisp —_
BPE
BNV
$ addrlé 1 00 0 01 00 —— jdisp —
BPO
BN $ addrlé 1 000 0111 —— jdisp —
BP $ addrlé 1 000 0 1 1 0 = jdisp —
BGT $ addrlé 0000 01 11 1111 1 0 1 1l|= jdisp —
BGE $ addrlé 00 00 01 11 1 1 1 1 1 0 0 1]=— jdisp —
BLT $ addrlé 0 06 0 O o1 11 1 1 11 1 0 0 O« jdisp —
BLE $ addrlé 0 000 01 11 11 1 1 1 01 0|=— jdisp —
BH $ addrlé 0 00 0 01 11 1 1 11 1 1 0 }}|=— jdisp —
BNH $ addrlé 0000 01 1 1 1 111 1 1 0 0= jdisp —_
saddr.bit, o1 11 0 BZ Bl Bo —-— Saddr-offset — | —-— jdisp —
$addrlé
sfr.bit, 0000 1000 1 01 1 132 B1 By |= Sfr-offset —
$addrlé
- jdisp —
BT
A.bit, $addrlé |O O O O O O 1 1 1 011 le Bl Bo —— jdisp -
X.bit, $addrl6 {0 0 0 0 O O 1 1 1 01 1 0 32 B1 Bo — jdisp —
PSWH.bic,$addrl6j0 0 0 0 0 O 1 O 1 011 1B, 8 By|=— jdisp —
PSWH.bit,$addrl6j0 0 0 0 O 0 1 O 1 011 0 B, B, By = jdisp —
saddr.bit, 0 0 0 0 1 0 0 0 1 0 1 0 032 B1 Bo «— Saddr-offset —
BF Saddrlé
-— jdisp -
18-49

B L427525 CLO4KLYS 4OT W

(2/2)

Operation code

Mnemonic Operands Bl B2 B3
B4 BS
sfr.bit, 0 00 1 0 0 01 0 1 0 1 BZ B1 Sfr-offset —
$addrlé
~—— jdisp —
BF
A.bit, $addrlé |0 00 001 1|1 01 0 1 Bz B1 jdisp —
X.bit, $addrlé 0 0 0 00 1 111 0 1 0 0 Bz Bl jdisp —
PSWH.bit,$addrlél 0 00 001 0f{1 0t 0 1 B2 Bl jdisp —
PSWL.bit,5addrl6] 0 00 001 0|1 01 0 o 82 B1 jdisp —
saddr.bit, 0 00 1 0001101 o Bz B1 Saddr-offser —=
Saddrlé
—-— jdisp —_
sfr.bic, 0 00 01 0 0[O0 1 1 o0 1 BZ Bl Sfr-offset ——
Saddrlé
—~— jdisp —
BTCLR
A.bit, $addrlé 0 00 00 1 11 1 0 1 1 BZ Bl jdisp —~
X.bit, Saddrlé |0 00 001 1f{1 101 o B, B, jdisp —
PSWH.bit,8addrlé| 0 00 001 0f{1 1 0 1 1 B2 B1 jdisp —_
PSWL.bit,$addrlé| 0 600 0 0 1 01 1 0 1 0 Bz Bl jdisp —
saddr.bic, 0 0 0 1 0 0 0/1 1 0 0 o B2 Bl Saddr-offgset -
$addrlé -
~-— jdisp —
sfr.bit, 0 00 1 0 0 0(1 I 0 0 1 B2 B1 Sfr-offset —_
$addrlé
—~-— jdisp -
BFSET
A.bit, $addrilé 0 0 0 00 1 1|1 1 0 O 1 B2 B1 jdisp —
X.bit, $addrlé 0 00 001 1/]1 1 0 0 o 32 Bl jdisp —
PSWH.bic,$addrlél 0 00 0 01 0J1 1 0 o 1 BZ Bl jdisp —
PSWL.bit,$addrl6| 0 00 0 01 0f1 1 0 0 o BZ Bl jdisp —
r2, $addrlé 0 1 1 0 01 Co |— jdisp
DBNZ
saddr, Saddrlé |0 I 1 1 0 1 1|« Saddr-offsaet jdisp —
18-50

H Lu42?525

0l04b46 34 N

(17) Context switching instruction: BRKCS, RETCS,
RETCSB
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
BRKCS RBn 0000 011011101 1 Nz “1 No
RETCS faddrlé 0 01 0 1 0 0 1 |= Low Addr. —= |=— High-Addr. —
0 000 100 1/1 1 10 0 0 0 O}~ Low-Addr. -
RETCSB taddrlé
-— High Add. —
(18) String manipulation instruction: MOVM, MOVBK,
XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC,
CMPBKC, CMPMNC, CMPBKNC
Operation code
Mnemonic Operands Bl B2 B3
B4 B5
[DE+], A o001 01010000 O0O0O0TO0O
MOVH
[DE-], A 6001 019010001 O0O0O0OTO
[DE+], [HL+] o001 0101001 0 0O OO0
MOVBK
(DE-}, [HL-] 0 001 016010011 o0O0OTUO
(DE+], A o001 01010000 O0O0O01
XCHM
(DE-1, A 0001 01010001 O0O0O0°1
[DE+], [HL+] 0001 0101|0010 0001
XCHBK
[DE-1, [HL-] 0001 01010011 0001
[DE+], A o001 01010000 01 00
CMPME
(DE-), A o001 01O 1f00 01 0100
(DE+], [HL+) 0001 010110 01 0 01 00
CMPBKE
{DE-}, [(HL-} o001 0190100111 0100
{DE+], A 0001 01010000 0101
CMPMNE
[DE-], A 0001 010 11f00O01 01 01
[DE+], [HL+} ¢ 001 01 01001 0 01 01
CMPBRNE
(DE-}, [HL-) o 0 0 1 01 0 1]0 0 1 1 01 01
{DE+], A 0001 0101(00O00O0O0 0111
CMPMC
{DE-], A 0001 01010001 0111
[DE+], [HL+] ¢ 001 0101001 0 0111
CMPBKC
{DE-}, [HL-]) o001 01010011 01 11
[DE+), [HL#] o001 01010000 0110
CMPMNC
[DE-]), (HL-) 6001 01 01/0001 0110
[DE+], (HL+) 0001 011010010 0110
CMPBRNC
(DE-], (HL-] 0001 01011001 1 0110
18-51
B by27525 010ubu?

cde 1l

EI,

(19) CPU control instruction: MOV, SWRS, SEL, NOP,
DI
Operation code
Mnemonic Operands Bl B2 B3
B4 BS
0 1 0 0 1 1 0 0 0 0 0 0 — Data —
STBC, #byte -
Data —
MOV
0 1 0 0 1 I 0 0 0 0 0 O —-— Data —
WDM, #byte
Data —
SWRS o 0 0 1 1
RBn 0 01 0 1 01 0 IN2 Nl No
SEL
RBn, ALT 0 o 0 0 ¢ 0 1 1 1 NZ Nl NO
NOP 0 0 0 0 O
El 0 1 0 1 1
D1 0 1 010
18-52

H by27525 0L04b648 119 M

18.3

18.3.1

Instruction Clocks

Explanation of column of clocks

(1)

(a)

(b)

(¢)

(d)

(a)

Conditions to calculate number of execution clocks

The conditions to calculate the number of instruc-
tion execution clocks under the column of Clocks are
as follows:

Sufficient operation codes are always entered in
an instruction queue, and when EXU requires an
operation code, the operation code can be immedi-
ately read. .
The stack pointer points to main RAM (FEOOH-
FEFFH).

Addresses indicated by using mem, taddrls,
[saddrp), [DE+), [DE-], [HL+}, [HL-], and [rpl]
point to main RAM (FEQOOH-FEFFH).

Only the number of microprogram execution clocks
at EXU is counted (the time required from clearing
the instruction queue to reading the operation
code at the branch destination when a branch is
taken during execution of an instruction such as
BR, CALL, RET, BRK, or RETI or interrupt service
is not contained).

The number of instruction execution <clocks is a
value calculated by assuming these conditions.
Thus, the actual number of clocks when a program is
executed may be greater than that listed under the
column of Clocks. The reason why it is greater is
described below:

When operation code is read from instruction
qgueue

When EXU reads an operation code, if the instruc-
18-53
B L427525 D0104bL49 D55 HE

(b)

tion queue does not contain any operation code,
EXU waits until an operation code is entered in
the instruction queue. Particularly, if branch
processing occurs, the instruction queue becomes
empty from once clearing the instruction queue to
reading the operation code at the branch destina-
tion, EXU always enters the wait state.

When data in memory other than main RAM is refer-

enced

C) When data is read
EXU waits from BCU starting a bus cycle to
completing data read.

C) When data is written

If EXU issues a data write request to BCU, it
can immediately execute the next instruction.
However, since BCU cannot acknowledge another
processing request occurring from EXU during
data write processing execution, EXU enters the
wait state (in which it cannot perform memory
reference other than main RAM, SFR reference,
or branch processing) until BCU terminates
write processing.
Particularly, when the instruction queue does
not contain any, operation code fetch takes
precedence over in write processing into exter-
nal memory or peripheral RAM, thus when a write
bus cycle is to be started cannot be specified.
Therefore, when EXU enters the wait state
cannot be specified due to timing contention
with write pfocessing.

C) Contention between memory reference other than
main RAM or branch processing and operation
code fetch
When EXU issues a request for memory reference
other than main RAM or for branch processing to
BCU, if BCU executes a bus cycle of operation

code fetch, the memory reference or branch

18-54
M b427525 QL0450 877 WE

processing request is not acknowledged until
BCU terminates the operation code fetch bus
cycle; EXU enters the wait state.

(2) Classification of column of clocks

The number of instruction clocks varies depending on
the memory area accessed or to which a branch is
taken by the instruction.

Internal ROM:
IRAM:

PRAM:

SFR:

EMEM:

At internal ROM fetch

When internal dual port RAM
(OFEOOH-OFEFFH) is accessed

When internal RAM area other than
IRAM is accessed

When special function register is
accessed

When external memory is accessed

(3) n under column of Clocks

Shift and rotate instructions: Number of shift

bits.

Stack handling instruction: Number of
saved/restored registers.

e String manipulation instruction: Number of times

(4) /0

a given instruction is executed until the condi-

tion is satisfied and an exit is made from loop.

under column of Clocks

"/": a/b means a or b

18-55

B bu427525 C0104L51 703 M

18.3.2

Clock list

(1) 8-bit data transfer instruction: MOV, XCH

. Clocks
Mnemonic Operands Bytes %Sﬁernal IRAM PRAM SFR EMEM
rl, #byte 2 2 —
saddr, #byte 3 3 o
sfriNote) “spyte 3 — 6 6
r, rl 2 3 .
A, rl 1 2 -
A, saddr 2 _ _ —
saddr, A 2 3 6
saddr, saddr 3 4 10
A, sfr 2
sfr, A 2 T 6 6
MoV A, mem 1-4 (See detail for table 18-6 1/8, 2/8)
mem, A -4
A, [saddrp] 2 6 9 9
[saddrp], A 2 o 4 o 7 7
A, taddrilse, 4 6 6 6 6 6
laddrl6, A 4 5 5 5 5
PSWL, #byte 3
PSWH, #byte 3
PSWL, A 2 —_— . _ 6 .
PSWH, A 2
A, PSWL 2
A, PSWH 2
A, rl 1
r, rl 2 o b T T o
A, mem 2-4 (See detail for table 18-6 3/8)
XCH A, saddr 2 5 11 —
A, sfr 3 — 13 13
A, [saddrp] 2 T 7 - 10
saddr, saddr 3 20 o
Note: If STBC or WDM is described in sfr, the instruction be-

comes another dedicated instruction and the number of
bytes and the number of clocks differ from those listed

here.

18-56
B L427525 010ub52 bL4T IE

(2) 16-bit data transfer instruction: - MOVW, XCHW

Clocks
Mnemonic Operands Bytes
Internal | rpam | pRaM | SFR | EMEM
ROM
rpl, #word 3 3 —
saddrp, #word 4 4 7
sfrp, #word 4 —_ 4
rp, rpl 2 -—_
AX, saddrp 2 — 3 — —
6
saddrp, AX 2
MOVW saddrp, saddrp 2 4 10
AX, sfrp 2
—_ 6
sfrp, AX 2
rpl, t!addrle 4 7 7 7 7 7
laddrlé, rpl 4 — 5 5 5 S
AX, mem 2-4
(See detail for table 18-6 4/8, 5/8)
mem, AX 2-4
AX, saddrp 2 5 11
AX, sfrp 3 —_— 13
XCHW saddrp, saddrp 3 8 20
rp, rpl 2 4 —
AX, mem 2-4 (See detail for table 18-6 6/8)
18-57

B L4y2?525 CLO4L53 586 M

(3) 8-bit arithmetic and 1logical instruction: ADD,
ADDC, SUB, SUBC, AND, OR, XOR, CMP

(1/2)
. Clocks

Mnemonic Operands Bytes %Sﬁemal TRAM PRAM SFR EMEM
A, #byte 2 2 —
saddr, #byte 3 4 10 o
sfr, #byte 4 — 12 12
r, rl 2 — 3 -_— —

ADD A, saddr 2 4 7 —
A, sfr 3 —_ 9
saddr, saddr 3 S 14 —_—
A, mem 2-4

(See detail for table 18-6 7/8, 8/8)
mem, A 2-4
A, #byte 2 2 —
saddr, #byte 3 4 10 -
sfr, #byte 4 — 12 12
r, rl 2 —_— 3 — —_

ADDC A, saddr 2 4 7 —
A, sfr 3 —_ 9
saddr, saddr 3 5 14 —
A, mem 2-4

(See detail for table 18-6 7/8, 8/8)
mem, A 2~
A, #byte 2 2 —_
saddr, #byte 3 4 10 —
sfr, #byte 4 — 12 12
r, rl 2 — 3 —_ —

SUB A, saddr 2 4 R
A, sfr 3 —_ _ 9
saddr, saddr 3 5 14 —
A, mem 2-4

(See detail for table 18-6 7/8, 8/8)
mem, A 2-4
A, #byte 2 2 —
saddr, #byte 3 4 10 _
sfr, #byte 4 — 12 12
r, rl 2 — 3 —_ —_

SUBC A, saddr 2 4 o
A, sfr 3 — 9
saddr, saddr 3 S 14 —_—
4, mem 2-4 (See detail for table 18-6 7{8, 8/8)
mem, A 2-4

18-58

B b42?7525 0L04GESY 4l W

(2/2)

Clocks

Mnemonic Operands Bytes I]égﬁernal IRAM PRAM SFR EMEM
A, #byte 2 2 —
saddr, fbyte 3 4 10 |
sfr, #byte 4 — 12 12
r, rl 2 3 — —_

AND A, saddr 2 4 -
A, sfr 3 — 9 9
saddr, saddr 3 5 14 —
A, mem 2-4

(See detail for table 18-6 7/8, 8/8)
mem, A 2-4
A, #byte 2 _
saddr, #byte 3 4 10 o
sfr, #byte 4 — 12 12
r, rl 2 3 —_ —

OR A, saddr 2 4 -
A, sfr 3 —_ 9 9
saddr, saddr 3 5 14 —_—
A, mem 2-

(See detail for table 18-6 7/8, 8/8)
mem, A -
A, #byte 2 2 —
saddr, #byte 3 4 10 |
sfr, #byte 4 —_ 12 12
r, rl 2 3 — _—

XOR A, saddr 2 4 7 |
A, sfr 3 — 9 9
saddr, saddr 3 5 14 —_
A, mem -

(See detail for table 18-6 7/8, 8/8)
mem, A -
A, #byte 2 —_
saddr, #byte 3 4 7 -
sfr, #byte 4 — 9 9
r, rl 2 3 — —_

CMP A, saddr 2 4 7 |
A, sfr 3 -— 9 9
saddr, saddr 3 5 11 —-—
A, mem - (See detail for table 18-6 7/8, 8/8)
mem, A -

18-59

M L427?525 0L0O4LSS 359 WA

(4) 16-bit arithmetic and logical instruction: ADDW,
SUBW, CMPW
Clocks
Mnemonic Operands Bytes
égiemal IRAM | PRAM | SFR | EMEM
AX, #word 3 3 —_
saddrp, #word 4 5 11
sfrp, #word 5 —_ 13
ADDW rp, rpl 2 — , 3 — — _—
AX, saddrp 2 4 7
AX, sfrp 3 — 12
saddrp, saddrp 3 5 14
AX, #word 3 3 —
saddrp, #word 4 5 _ 11
sfrp, #word 5 —_ 13
SUBW rp, rpl 2 — 3 — — —
AX, saddrp 2 4 7
AX, sfrp 3 — 12
saddrp, saddrp 3 5 14
AX, #word 3 3 —
saddrp, #word 4 5 8
sfrp, #word 5 — 10
CMPW rp, rpl 2 — 3 — — | =
AX, saddrp 2 4 7
AX, sfrp 3 — 9
saddrp, saddrp 3 5 » 11
18-60

Il 427525 010465k 295 WA

(5) Multiplication and Division instruction: MULU,
DIVUW, MULUW, DIVUX
Clocks
Mnemonic Operands Bytes
Internal | y1pay | pRAM | SFR | EMEM
ROM
MULU rl 2 — 14 — — —_
DIVUW rl 2 — 23 — — —_—
MULUW rpl 2 — 22 — — —
DIVUX rpl 2 — 43 — — —
(6) Signed multiplication instruction: MULW
Clocks
Mnemonic Operands Bytes
Internal | ypay | praM | SFR | EMEM
ROM
MULW rpl 2 (See detail for table 18-6 8/8)

(7) Increment and decrement instruction: INC, DEC,
INCW, DECW
Clocks
Mnemonic Operands Bytes
Internal | 1pay | pRraM | SFR | EMEM
ROM
rl 1 2 —_
INC —_ _— _
saddr 2 3 9
rl 1 2 —
DEC — —_ —
saddr 2 3 9
rp2 1 2 —
INCW — —_ —_
saddrp 3 4 10
rp2 1 2 —_—
DECW — —_— —_
saddrp 3 4 10
18-61

B L427525 0104657 121 WA

B bu2?525 0L0O4bS5S ObLS HE

(8) Shift rotate instruction: ROR, ROL, RORC, ROLC,
SHR, SHL, SHRW, SHLW, ROR4, ROL4
. Clocks
Mnemonic Operands Bytes
Internal | ypay | pRAM | SFR | EMEM
ROM
ROR rl, n 2 — 6+n — — —_
ROL rl, n 2 — 6+n —_ —_ —_
RORC rl, n 2 — 6+n — _ —
ROLC rl, n 2 —_ 6+n — — —
SHR rl, n 2 —_ 6+n — —_ —_
SHL rpl, n 2 — 6+n — — —
SHRW rpl, n 2 —_ 6+n —_ — —_
ROR4 (rpl] 2 —_— 8 —_ — —
ROL4 [rpl] 2 —_ 8 — — | —
(9) BCD adjustment instruction: ADJBA, ADJBS
Clocks
Mnemonic Operands Bytes
Internal | 1paM | PRAM | SFR | EMEM
ROM
ADJBA 2 — 5 — — —
ADJBS 2 —_ 5 —_ — —
(10) Data conversion instruction: CVTBW
‘ Clocks
Mnemonic Operands Bytes
Internal | 1paM | pRAM | SFR | EMEM
ROM
CVTBW 1 —_ 3 —_— —_ e
18-62

(11) Bit manipulation instruction: MQV1, ANDl, OR1,
XOR1l, SET1, CLR1l, NOT1

(1/2)

Clocks

Mnemonic Operands Bytes nternal | 1pay P SFR

o
O
=

CY, saddr.bit
CY, sfr.bit
CY, A.bit
CY, X.bit

CY, PSWH.bit
CY, PSWL.bit
saddr.bit, CY
sfr.bit, CY
A.bit, CY
X.bit, CY
PXWH.bit, CY
PSWL.bit, CY

6 —

MOV1

CY, saddr.bit
CY, [saddr.bit
CY, sfr.bit
CY, /sfr.bit
CY, A.bit

CY, /A.bit
CY, /X.bit
CY, X.bit

CY, PSWH.bit
CY, /PSWH.bit
CY, PSWL.bit
CY, /[PSWL.bit

AND1

CY, saddr.bit
CY, /saddr.bit
CY, sfr.bit
CY, /sfr.bit
CY, A.bit

CY, /A.bit
CY, X.bit

CY, /X.bit
CY, PSWH.bit
CY,/PSWH.bit
CY, PSWL.bit
CY, /PSWL.bit

OR1

NN NN W Iw WIWINDININ]IND NN WIWTWITWIRINDININD| W WININD]ND N W] w

18-63
B Lu42?7525 0104659 TTH WA

(2/2)

Clocks
Mnemonic Operands Bytes
Internal | TpaM | PRAM | SFR | EMEM
ROM
CY, saddr.bit 3 6 —_
9
CY, sfr.bit 3 —_— 9
CY, A.bit 2
XOR1 — 6 _ —
CY, X.bit 2
CY, PSWH.bit 2
— 6
CY, PSWL.bit 2
saddr.bit, CY 2 4 10 _
sfr.bit, CY 3 _— 11 11
A.bit 2
6 —
SET1 X.bit 2 —_ _—
PXWH.bit 2 _
— 7
PSWL.bit 2
CY 1 2
saddr.bit 2 4 10 —
sfr.bit 3 —_— 11 11
A.bit 2
6 —
CLR1 X.bit 2 —_ —
PSWH.bit 2 —_
7
PSWL.bit 2 _
cY 1 2
saddr.bit 3 5 —
11
sfr.bit 3 —_ 11
A.bit 2
6 —_—
NOT1 X.bit 2 — —_
PSWH.bit 2 —_
7
PSWL.bit 2 —
CcY 1 2
18-64

Bm Lu27?525 0104660 736 HE

(12) Call and return instructions: CALL, CALLF, CALLT,
BRK, RET, RETB, RETI
Mnemonic Operands Bytes Clocks
laddrlé 3 6
CALL rpl 2 7
(rpl] 2 10
CALLF laddrll 2 6
CALLT (addr5) 1 15
BRK 1 17
RET 1 6
RETB 1 10
RETI 1 10
(13) Stack handling instructions: PUSH, PUSHU, POP,
POPU, MOVW, INCW, DECW
Mnemonic Operands Bytes Clocks
sfrp 3 10
PUSH post 2 3t4c,+6n
PSW 1 3
PUSHU post 2 4+4cq+6n
sfrp 3 9
POP post 2 3+4c,+7n
PSW 1l)
POPU post 2 S+4c,y+7n
SP, #word 4 5
MOVW SP, AX 2 4
) AX, SP 2 4
INCW SP 2 4
DECW AX, SP 2 4
Remarks: n, c¢l, and c2 in PUSH, PUSHU, POP, and POPU post in-
structions denote the following values:
n: Number of registers described as post
cy: Number of "0" bits to the left of "1" nearest to
LSB within post bit pattern
Cp: Number of "0" bits to the right of "1" nearest
to MSB within post bit pattern '
Example: post=00010100 (specify RP2 and RP4) C;=4, C,=3,
n=2
post=00110000 (specify RP4 and RP5) C;=2, Cy=4,

n=2

18-65
B L42?7525 01l04LLL bLS52 W

(14) Special instruction:

CHKL, CHKLA

Mnemonic Operands Bytes Clocks
CHKL sfr 3 12
CHKLA sfr 3 12
(15) Unconditional branch instruction: BR
Mnemonic Operands Bytes Clocks
laddrlé 3 4
rpl 2 4
BR
(rpl) 2 8
$addri6 2 4
18-66

B L42?525 0loubke

599 W

(16) Conditional branch instruction: BC, BL, BNC, BNL,
BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP, BGT,
BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET, DBNZ

(1/2)
Mnemonic Operands Bytes Clocks
BC

$addrle 2 4
BL
BNC

$addrlse 2 4
BNL '
BZ

S$addrle 2 _ 4
BE
BNZ

$addrile 2 4
BNE
BV

Saddrle 2 4
BPE
BNV

Saddrlé 2 4
BPO
BN Saddrie6 2 4
BP $addrilé 2 4
BGT Saddrie 3 5
BGE $addrile 3 5
BLT Saddrle 3 5
BLE Saddrils 3 5
BH Saddrls 3 5
BNH $addrlse 3 5

18-67

M bt4c2?525 01046L3 42s I

(2/2)

Clocks
Mnemonic Operands Bytes In-line Branch
TRAM SFR EMEM IRAM SFR EMEM
saddr.bit, S$addrlé 3 7 10 —_ 7 10 —_
sfr.bit, $addrie 4 — 8 8 — 8 8
A.bit, $addrlé 3
BT v . 8 — 8 —
X.bit, $addris 3
PSWH.bit, Saddrlé 3
—_— 8 _— 8
PSWL.bit, $addrlé 3
saddr.bit, Saddrlé 4 7 10 —_ 7 10 _
sfr.bit, Saddrieé. 4 — 8 8 —_— 8 8
A.bit, Saddrlse 3
BF 8 — 8 —_
X.bit, Saddrle 3
PSWH.bit, $addrlé 3
_— 8 — 8
PSWL.bit, $addrlé 3
saddr.bit, $addris 4 10 16 — 8 14 —
sfr.bit, $addrlé 4 — 10 10 — 8 8
A.bit, Saddrlé 3
BTCLR 10 — 8 —
X.bit, $Saddrile 3
PSWH.bit, $addrlé 3
—_— 10 -— 8
PSWL.bit, $addrlé 3
saddr.bit, $addrlé 4 10 16 —_— 8 14 —_
sfr.bit, $addrlé 4 — 10 10 — 8 8
A.bit, Saddrle 3
BFSET 10 — 8 —
X.bit, $addrie 3
PSWH.bit, $addrlé6 3
— 10 —_— 8
PSWL.bit, $addrlé 3
r2, Saddrlé 2 6 —_ 5 —
DBNZ — —_
saddr, S$addrlé 3 7 13 6 12
18-68
M bLy27525 0104664 3I6) W

(17) Context switching instruction: BRKCS, RETCS,
RETCSB
Mnemonic Operands Bytes Clocks
BRKCS RBn 2 7
RETCS taddrlé 3 5
RETCSB taddrl6 4 5
(18) String instruction: MOVBK, XCHM, XCHBEK,
CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPMC, CMPBKC,
CMPMNC, CMPBKNC
Mnemonic Operands Bytes Clocks
[DE+], A 2 3+6n
MOVM
(DE-], A 2 3+6n
[DE+], [HL+] 2 3+10n
MOVBK
[DE-], [HL-) 2 3+10n
[DE+], A 2 3+10n
XCHM
[DE-], A 2 3+10n
[DE+], [HL+) 2 3+16n
XCHBK
[DE-], [HL-] 2 3+16n
[DE+], A 2 3+10n
CMPME
[DE-}, A 2 3+10n
[DE+], [HL+] 2 3+13n
CMPBKE
[DE-], [HL-] 2 3+13n
[DE+], A 2 3+10n
CMPMNE
(DE-], A 2 3+10n
[DE+], [HL+) 2 3+13n
CMPBKNE
(DE-], [HL-] 2 3+13n
[DE+], A 2 3+10n
CMPMC
[DE-], A 2 3+10n
[DE+], [HL+) 2 3+13n
CMPBKC
(DE-], (HL-] 2 3+13n
[DE+], A 2 3+10n
CMPMNC -
(DE-], A 2 3+10n
{DE+], [HL+) 2 3+13n
CMPBKNC
[DE-], [HL-) 2 3+13n

B Lu27525 0L0ubb5 278 WA

18-69

(19) CPU control instruction: MOV, SWRS, SEL, NOP, EI,
DI

Mnemonic Operands Bytes Clocks

STBC, #byte 4 11
MOV

WDM, #byte 4 11
SWRS 1 2

RBn 2 3
SEL

RBn, ALT 2 3
NOP 1 2
EI 1 3
D1 1 3

18-70

B LY27525 01046bb 134 BN

Table 18-6

Instruction Execution Cycle List

(1/8)

Instruction

group

Mnemonic

Operands

Clocks

Bytes

Internal
ROM

IRAM

PRAM

SFR

8-bit
data
transfer

A,
A,
A,
A,
A,
A,

[DE)
{HL]
[DE+)
[HL+}
[DE-}
(HL-}

7+n 6

7+n

7+n

7+n

A,
A,

(VP]
(UP]

12+n 10

124n

12+n

MOV A,

{DE+A)
[HL+A)
[DE+B}
[HL+B}
{VP+DE)
{VP+HL)

10+n 8

10+n

10+n

10+4n

{DE+byte]
(HL+byte]
{VP+byte]
{UP+byte)
[SP+byte]

104n 8

10+n

10+n

104n

word{A]
word[B]
word [DE}
word [HL]

ll+n 9

ll+n

1l4n

li+n

Remarks:

n is

the number of wait

register.

B LY27525 0L04bL?

18-71

070 =

states specified in

the PWC

Table 18-6 Instruction Execution Cycle List (2/8)

Clocks

Instruction | W0 0 e Operands Bytes

group Internal | rpay PRAN SFR
ROM

[DE], A
{HL], A
[DE+], A, 1 - 4 4 4
[HL+], A
[DE-], A
(HL-1, A

[VP], A 2 - 8 8 8
[UP], A

[DE+A],
[HL+A],
8-bit [DE+B],
data MOV [HL+B],
transfer [VP+DE], A
[VP+HL), A

> > > >

[DE+byte],
[HL+byte],
[VP+byte],
[UP+byte],
[SP+byte],

Lo 2
w
[
o
o
o

word(A), A
word{B}, A 4
word{DE], A
word{HL1, A

18-72
B tu27525 0104GLES TO? IR

Table 18-6

Instruction Execution Cycle List (3/8)

Instruction

group

Mnemonic

Operands

Clocks

Bytes

ROM

Internal

IRAM

PRAM

SFR

8-bit
data

transfer

[DE]
{HL]
[DE+1}
[HL+)
[DE-]
[HL-]
[VP]
[UP]

11

13+n

13+n

134n

XCH

[DE+A]
(HL+A)
[DE+B]
[HL+B)
[VP+DE]
[VP+HL])

ll+n

ll+n

>

[DE+byte]
[HL+byte]
[VP+byte)
[UP+byte])
{SP+byte]

1i+n

1l4n

A,
A,
Ay
Ay

word([Al]
word[B]
word (DE]
word (AL]

10

124n

12+n

12+4n

Remarks:

n |is

the number of wait states specified

register.

18-73

B L427525 0104bkLY 943 W

in the PWC

Table 18-6

Instruction Execution Cycle List (4/8)

Instruction
group

Mnemonic

Operands

Clocks

Bbytes
Internal

ROM

IRAM

PRAM

SFR

16-bict
data

transfer

MOVW

AX, [DE]
AX, [HL]
AX, [DE+)
AX, [HL+])
AX, [DE-}
AX, [HL-}
AX, [VP)
AX, (UP]

2 1542n

10

15+2n

15+2n

1542n

AX, [DE+A]
AX, [(HL+A)
AX, (DE+B)
AX, [HL+B)
AX, [VP+DE]
AX, [VP+HL)

2 13+2n

13+42n

13+2n

13+42n

AX, [DE+bytel
AX, [HL+byte]
AX, [VP+byte]
AX, {UP+byte]
AX, [SP+byte])

3 13+42n

13+2n

13+2n

13+2n

AX, word[A)
AX, word[B)
AX, word({DE]}
AX, word([HL}

4 14+2n

14+42n

14+2n

14+2n

Remarks:

n

is

the number of wait states specified in

register.

18-74

B b42?525 0L04670 bb5 I

the PWC

Table 18-6 Instruction Execution Cycle List (5/8)

Clocks

Inscruction | W0 o ic Operands Bytes

group Internal TRAM PRAM SFR
ROM

{DE}, AX
[HL], AX
[DE+], AX
[HL+), AX
[{DE-], AX
[HL-], AX
[VP], AX
[UP], AX

[DE+A), AX
[HL+A), AX
16-bit {DE+B], AX
data MOvW [HL+B), AX
transfer [VP+DE], AX
{VP+HL], AX

[(DE+bycte}, AX
{HL+byte], AX
[VP+byre], AX 3 - 6 6 6
[UP+byte], AX
[SP+byte], AX

word[A], AX
word(B], AX
word[DE], AX
word[HL], AX

18-75
B 6427525 0104b6?1 571 HE

Table 18-6

Instruction Execution Cycle List (6/8)

Instruction
group

Mnemonic

Operands

Clocks

bytes

Internal
ROM

IRAM

PRAM

SER

16-bit
data

transfer

AX, (DE)
AX, [HL]
AX, [DE+)
AX, [HL+)
AX, [DE-}
AX, [HL-)
AX, [VP)
AX, [UP]

11

16+2n

16+2n

16+2n

XCHW

AX, [DE+A)
AX, [HL+A)
AX, [DE+B])
AX, [HL+B}
AX, [VP4DE]
AX, [VP+HL]

1442n

1442n

1442n

AX, [DE+byte]
AX, [HL+byte}
AX, (VP+byte]
AX, [UP+byte]
AX, [SP+byte]

14+2n

14+2n

14+42n

AX, word{A]
AX, word[B]
AX, word{DE)
AX, word({HL}

10

15+2n

15+2n

15+2n

Remarks: n is the number of wait states specified in the PWC

register.

18-76

B bu2?7525 0104L7?2 434 HH

Table 18-6

Instruction Execution Cycle List (7/8)

Instruction

group

Mnemonic

Operands

Clocks

Byteas

Internal
ROM

IRAM

PRAM

SFR EMEM

8-bit
arithmetic

and logical

A,
A,
A,
A,
A,
A,
A,
A,

[DE}
[HL]
[DE+]
{HL+]
[DE-}
{HL-)
{VP]
[UP)

10+n

10+n

10+n

10+n

ADD
ADDC
SUB
SUBC
AND
OR
XOR

{DE+A}
[HL+A])
[DE+B}
[BL+B)
[VP+DE]
[VP+HL]

10+4n

10+n

104n

104n

CMP

Ll o

A
A

[DE+byte]
[HL+byte]
[VP+byte])
{UP+byte]
[SP+byte)

104n

104n

104n

10+n

A
A
A
A

word[A]
word[B]
word[DE]
word [HL])

1l+n

ll4n

ll4n

1l4n

Remarks:

n 1is

the number of wait states specified

register.

18-77

BN L427525 0104573 374 W

in the

PWC

Table 18-6 Instruction Execution Cycle List (8/8)
Clocks
Inscruction Mnemonic Operands Bytes
group Internal TRAM PRAM SFR EMEM
ROM
(DE}, A
[HL], A
{DE+], A
(HL+1, A 2 1040 8 10+n 10+n 10+n
[DE-], A
[HL-1, A
[VP], A
{UP], A
ADD (DE+A], A
ADDC {HL+A], A
8-bit SUB (DE+B], A 2 104n 8 1040 10+n 1040
arithmetic SUBC {HL+B}, A
and logical | AND {VP+DE], A
OR (VP+HL], A
XOR
CMP [DE+byte], A
[HL+byte}, A
[VP+byte], A 3 10+n 8 104n 1040 10+n
[UP+byte], A
[SP+byte], A
I
word[A]l, A
word(B], A 4 1140 9 1140 ll+n 11+n
word[DE], A
word[HL], A
Signed multiplication instruction
Clocks
Mnemonic Operands Bytes
AX(+) AX(-) AX(+) AX(-)
rpl(+) rpl(-) rpl(-) rpl(+)
MULW rpl 2 24 27 28 28
Remarks: n 1is the number of wait states specified in the PWC
register.

18-78

B by27525 0104674 200 HN

18.4 Instruction Address Addressing

The instruction address is determined by the program counter (PC)
contents. Normally, each time one instruction is executed,
automatically it is incremented by one for one byte according to
the number of bytes of the fetched instruction. When an instruc-
tion involving a branch is executed, branch destination address
information is set in the PC for a branch according to the ad-
dressing modes described below.

18.4.1 Relative addressing

The value resulting from adding 8-bit immediate data (displace-
ment value: Jjdisp) of operation code to the top address of the
following instruction is transferred to the program counter (PC)
for a branch. The displacement value is handled as signed two’s
complement data (-128 to +127) and bit 7 becomes a sign bit. The
relative addressing is applied when a BR $addrlé instruction or
conditional branch instruction is executed.

Fig. 18-2 Relative Addressing

15 0]
PC+b -« b is the number of bytes
of the instruction
+
15 876 0
X S
jdisp
J
15 0]

PC

When S$=0, all bits of X are 0
When S=1, all bits of X are 1

18-79
B L427525 0L04b?5 14?7 W

18.4.2 Immediate addressing

Tmmediate data in instruction is transferred to the program coun-
ter (PC) for a branch. The immediate addressing is applied when
a CALL l!addrl6, BR taddrlé, or CALLF !addrll instruction is
executed. When the CALLF laddrll instruction is executed, a
branch is taken to a fixed area with the high-order 5-bit address

determined.

Fig. 18-3 Immediate Addressing

7 0
CALL or BR
Low Addr.
High Addr.
15 (ﬁ—_Egg 0
PC
7 320
CALLF fau
fa.
15 11 1048 7 0
PC| 00001

18.4.3 Table indirect addressing

The table contents of a specific location addressed by immediate
data of the low-order five bits of operation code (branch desti-
nation address) are transferred to the program counter (PC) for a
branch. The table indirect addressing is applied when a CALLT

(addr5] instruction is executed.

18-80
B b42?525 0104676 083 WA

Fig. 18-4 Table Indirect Addressing

7 5 4 0
Operation 111 ta
code
15 14 8 76 5§ 10
Effective = 0000000 |01 ta 0
address ;
TPF
Memory
Effective address Low Addr.

Effective address +1 High Addr.

15 8 7 0

18.4.4 Register addressing

The contents of the register pair (RP0O-RP7) specified in in-
struction are transferred to the program counter (PC) for a
branch. The register addressing is applied when a BR rpl or CALL

rpl instruction is executed.

Fig. 18-5 Register Addressing

7 0 7 0
rpl
15 8‘7 0
PC
18-81

M bL42?525 0104677 TiT WM

18.4.5 Register indirect addressing

The 2-byte data in the contiguous locations of memory addressed
by the contents of the register pair (RPO-RP7) specified in
instruction is transferred to the program counter (PC) for
branch. The register indirect addressing is applied when a BR
[rpl] or CALL [rpl] instruction is executed.

Fig. 18-6 Register Indirect Addressing

7 o 7 0
rpl
15 8 7 0
Effective address =
Memory
Effective address Low Addr.
Effective address +1 High Addr.
15 g8 7 0
PC

18.5 Operand Address Addressing

This section explains the addressing modes of registers, memory,
etc., used as operands in instruction execution.

18.5.1 Register addressing

The general purpose register, specified by the register set
selection flag (RSS) and the register specification code (Rn, Pn,
or Qn) in instruction, in the register bank specified by the

18-82
M bu2?7525 ClLO4L?8 956 N

register bank selection flag (RBSO-RBS2) is accessed as an oper-
and.

The register addressing is applied when an instruction having any
of the following operand formats is executed: (When an 8-bit
register is specified, one of the eight 8-bit register is speci-
fied by setting the three bits of operation code or one of the 16
8-bit registers is specified by setting the four bits of opera-
tion code. When a l16-bit register pair is specified, one of the
eight register pairs is specified by setting the three bits of
operation code.)

Identifier Description
r RO, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R1l1
R12, R13, R14, RI15
rl RO, R1, R2, R3, R4, R5, R6, R7
r2 C, B
rp RPO, RP1l, RP2, RP3, RP4, RP5, RP6, RP7
rpl RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rp2 DE, HL, VP, UP

The function names (X, A, C, B, E, D, L, H, AX, BC, DE, HL, VP,
and UP) as well as the absolute names (R0O-R15 and RP0-RP7) can be
described in r, rl, rp, and rpl. See Tables 9-2 and 9-3 for the
correspondence between the absolute and function names.

Example 1: MOV A, rl

Operation code |1 1 0 1 ORy; R; Ry

To select the R2 register as rl, describe the instruction as
follows: (The R2 register becomes C register when RSS=0.)

18-83
-Hl Bu27525 0104kL?° 892 WA

MOV A, R2
The operation code of the instruction is as follows:

T

Operation code 1 1 0 1 0 0 1 0O

Example 2 INCW rp2

Operation code 0 1 0 0 01 8y 5

To select the DE register pair as rp2, describe the instruc-

tion as follows:

INCW DE

The operation code of the instruction is as follows:

Operation code 0 1 0 O 0 1 1 0

18.5.2 Immediate addressing

8-bit data or 16-bit data as an operand is contained in operation
code. The immediate addressing is applied when an instruction

having either of the following operands is executed:

Identifier Description
byte Label or 8-bit numeric value
word Label or l6-bit numeric value
18-84

M Lye2?525 0104640 504 HE

Example: ADD A, #byte

Operation code 1 0 1 0 1 0 0 O

Data

To adopt 77H as byte, describe the instruction as follows:

ADD A, #77H

The operation code of this instruction is as follows:

Operation code 1 0 1 0 1 0 0 O

18.5.3 Direct addressing

The memory to be handled is addressed by immediate data in in-

struction as operand address. The direct addressing is applied

when an instruction having the following operand is executed:
Identifier Description

addrleé Label or 16-bit numeric value

Example: MOV A, !addrlé6

Operation code 0 0 0 O 1 0 0 1

Low Addr.
High Addr.
18-85

B Ly2?525 0LO4LAL 440 W

To adopt FEOOH as addrlé6, describe the instruction as fol-

lows:
MOV A, !OFEOOH

The operation code of this instruction is as follows:

Operation code 0 0 0 O 1 0 0 1

18.5.4 Short direct addressing

Fixed space memory to be handled is addressed directly by 8-bit
immediate addressing in instruction. The short direct addressing
is applied to the 256-byte space of addresses FE20H-FF1FH,
Internal RAM (short direct memory) is mapped in FE20H-FEFFH and
the special function registers (SFRs) are mapped in FFOOH-FF1FH.
When the 8-bit immediate data is 20H-FFH, bit 8 of the effective
address is set to 0; when 00H-1FH, bit 8 is set to 1.

Fig. 18-7 Short Direct Addressing

7 0
OP code
Saddr-ofiset j
“ Short direct memory
15 987654 0
Effective |1 111111
address
18-86

M L42?525 0104kLA2 387 W

The short direct addressing is applied when an instruction con-
taining saddr or saddrp in the operand field is executed. When
an instruction containing saddrp is executed, the 2-byte data at
the memory location addressed by the effective address and the
next memory location (data at even-odd addresses where the least
significant bit of the effective address is ignored) is accessed.

Identifier Description
saddr Label or numeric value in the range of
FE20H-FF1FH
saddrp Label or numeric value in the range of

FE20H-FF1lEH (even number)

Example: MOV saddr, saddr

Operation code 0 0 1 1 1 0 0 O

Saddr-offset

Saddr-offset

To adopt FE30H as saddr of the first operand and FES50H as
saddr of the second operand, describe the instruction as
follows:

MOV OFE20H, OFE50H

The operation code of this instruction is as follows:

Operation code 0 0 1 1 1 0 0 0

18-87
B E4c?525 0104683 213 W

18.5.5 Special function register (SFR) addressing

Special functions register (SFR) mapped in memory is addressed by
8-bit immediate data in instruction.

The SFR-mapped space to which the special function register
addressing is applied is the 256-byte space of addresses FF0QH-
FFFFH. However, the SFRs mapped in FFOOH-FF1FH are accessed by
using not only the SFR addressing but alsc the short direct

addressing .

Remarks: 1In the assembler package manufactured by NEC
(RA78K/III), short direct addressing is automatically
(forcibly) used for instructions for SFRs mapped in
FFOOH-FF1FH.

Fig. 18-8 Special Function Register Addressing

7 0
OP code
Saddr-offset
15 - 87 0 SFR
Effective 1111 l,__..{
address Pl l
Identifier Description
sfr Special function register symbol
sfrp Special function register symbol of special

function register that can be handled in 16~
bits units.

Example: MOV sfr, A

Operation code (0 0 0 1 0 0 1 0

Saddr-offset

To specify PMO as sfr, describe the instruction as follows:

18-88
M Lu27525 0104684 15T mm

Example: MOV PMO, A

The operation code of this instruction is as follows:

Operation code 0 0 0 1 0 0 1 0

0 0 1 O 0 0 0 O

18.5.6 Short direct memory indirect addressing

The memory to be handled is addressed by the 2-byte contents of
the continuous short direct memory locations addressed by 8-bit
immediate data in instruction.

The short direct memory indirect addressing is applied when an
instruction having [saddrp] in the operand field is executed.

Fig. 18-9 Short Direct Memory Indirect Addressing

OP code
Saddr-offset T

Short direct addressing

)
Short direct addressing
7 0
Low Addr.
High Addr.
15 8 7 0 Memory
Effective
address
Identifier Description
[saddrp] [label or numeric value in the range of

FE20H-FF1FH (even value)]

18-89
B L427525 0L046A5 09- MW

Example: XCH A, [saddrp]

Operation code 0 0 1 0 0 0 1 1

Saddr-offset

To adopt FEAOH as saddrp, describe the instruction as
follows:

XCH A, [OFAOH]

The operation code of this instruction is as follows:

Operation code {0 0 1 0 0 0 1 1

18-90
M by2?525 0L04LAL Te2 M

18.5.7 Register indirect addressing

The memory to be handled is addressed by the contents of the
register pair, specified by the register set selection flag (FSS)
and the register pair specification code in instruction, in the
register bank specified by the register bank selection flag
(RBS1-RBS2).

The register indirect addressing is applied when an instruction
having any of the following operand formats is executed:

Identifier Description

mem (DE], [HL]}, [DE+), (HL+], [DE-], [HL-], [VP], [UP]

(rpl] [RPO], [RP1], [RP2], [RP3], [RP4], [RPS], [RP6],
[RP7])

The register indirect addressing using register pair DE or HL
provides the function which increments or decrements the register
pair contents by one for the next addressing.

To use this function, enter [DE+], [HL+], [DE-], or [HL-] in mem
in the operand field.

Example 1: MOV A, menm
Operation code: =+ When register indirect mode [DE], ([HL],

(DE+], [HL+], [DE-], or [HL-] is de-
scribed in mem

0 1 0 1 1 memn

« When any other register indirect mode
than the above is described

18-91
B (427525 0104687 969 WE

To specify [DE] in mem, describe the instruction as follows:

MOV A, [DE]

The operation code of this instruction is as follows:

Operation code 0 1 0 1 1 1 0 O

Example 2: ROR4 [rpl]

Operation code 0 0 0 O 0 1 0 1

1 0 0 0 1 9,0 Q

‘To select RP0 as rpl, describe the instruction as follows:

'ROR4 [RPO]

The operation code of this instruction is as follows:

Operation code 0 0 0 O 0 1 0 1

Example 3: ADD A, mem

Operation code (when register indirect mode is de-
scribed)

Operation code 0 0 0 1 0 1 1 0

To specify [HL+] in mem, describe the instruction as fol-

lows:

ADD A, [HL+]

18-92
B LY427525 DL04b88 BTS BN

The operation code of this instruction is as follows:

Operation code 0 0 0 1 0 1 1 0O

18.5.8 Based addressing

The memory to be handled is addressed by the sum of the contents
of the 16-bit register or register pair (DE, SP, HL, U or VP),
specified by the register set selection flag (RSS) and the ad-
dressing code (mem) in instruction, in the register bank speci-
fied by the register bank selection flag (RBS0-RBS2) and the 8-
bit immediate data given in the operand.

The based addressing is applied when an instruction having the
following operand format is executed:

Identifier Description

mem - [DE+byte], [SP+byte], [HL+byte], [UP+bytel],
[VP+byte]

Example: AND A, mem

Operation code 0 0 0 O 0 1.1 0

0 mem 1 1 0 0O

offset

To select the based addressing with the sum of the register

pair VP contents and 10H as mem, describe the instruction as
follows:

AND A, [VP+10H]

18-93
B Lu4u2?7525 0104LEY 731 W

The operation code of this instruction is as follows:

Operation code 10 0 0 O 0 1 1 O

18.5.9 Indexed addressing

The memory to be handled is addressed by the sum of the contents
of the 8-bit register or 16-bit register pair (A, B, DE, or HL),
specified by register set selection flag (RSS) and the addressing
code (mem) in instruction, in the register bank specified by the
register bank selection flag (RBS0-RBS2) and the 16-bit immediate
data given in the operand.

The indexed addressing is applied when an instruction having the
following operand format is executed:

Identifier Description
mem word[DE], word[A], word{HL], word[B]

Example: ADDC A, mem

Operation code |0 0 0 O 1.0 1 0
0 mem 1 0 0 1
| Low " Offset

High ' Offset

To select the indexed addressing with the sum of the regis-
ter pair DE contents and 4010H as mem, describe the instruc-

tion as follows:

18-94
B L427?525 0304690 453 Mm

ADDC A, 4010H[DE]

The operation code of this instruction is as follows:

-Operation code 0 0 0 O 1 0 1 0

18.5.10 Based indexed addressing

The memory to be handled is addressed by the sum of the contents
of the 16-bit register (DE, HL, or VP) and 8-bit or 16-bit regis-
ter (A, B, DE or HL), specified by the register set selection
flag (RSS) and the addressing code (mem) in instruction, in the
register bank specified by the register bank selection f£flag
(RBSO-RBS2) .

The based indexed addressing is applied when an instruction
having the following operand format is executed:

Identifier Description

mem [DE+A], [HL+A}, [DE+B}, [HL+B], [VP+DE],
[VP+HL]

Example: OR A, mem

Operation code 0 0 0 1 0 1 1 1

0 mem 1 0 0 1

To select the based indexed addressing with the sum of the
register pair HL and register B contents as mem, describe
the instruction as follows:

18-95
M L427525 0104691 39T W

SUBC A, [HL+B]

The operation code of this instruction is as follows:

Operation tode 0 0 0 1 0 1 1 1

18-96
I buy2?525 0104b92 226 W

18.6 Explanation of Instructions

18.6.1 8-bit data transfer instructions

MOV rl, #byte

Function:

rl =— Dbyte byte=00H-FFH

Transfer the 8-bit immediate data specified in the
second operand to the 8-bit register specified in the
first operand.

Flag operation: No change

Description example: MOV R1, #4DH;Set 4DH in register R1.

MOV saddr, #byte

Function:

(saddr) =— byte saddr=FE20H-FF1FH

byte=00H~FFH
Transfer the 8-bit immediate data specified in the
second operand to the short direct memory addressed
in the first operand.
Describe the short direct memory address or label in
the first operand saddr as it is.

Flag operation: No change

Description example: MOV OFE40H, #40H;Store 40H in address

FE40H.

MOV sfr, #byte

Function:

sfr —=— Dbyte byte=00H-FFH
Transfer the 8-bit immediate data specified in the
second operand to the special function register sfr
specified in the first operand.

18-97
B L427525 0104L93 1b2 NN

Caution: If STBC or WDM is described as sfr, dedicated opera-
tion code different from that of the MOV sfr, #byte
instruction is generated. (See 18.6.19)

Flag operation: No change

Description example: MOV PM0O, #0H;Specify port 0 as output
port.

MOV r, rl

Function: r =-— rl
Transfer the contents of the 8-bit register specified
in the second operand to the 8-bit register specified
in the first operand.

Flag operation: No change

Description example: SEL RBO ; Select bank 0.
MOV R15, R1l; Transfer the Rl (A) register
contents to R15 (H) register.

MOV A, rl

Function: A -— rl
Transfer the contents of the 8-bit register specified
in the second operand to the A register.

Flag operation: No change

18-98
M b427525 0104694 OTS WA

MOV A, saddr

Function: A -=— (saddr) saddr=FE20H-FF1FH
Transfer the contents of the short direct memory
addressed in the second operand to the A register.
Describe the short direct memory address or label in

the second operand saddr as it is.
Flag operation: No change

Description example: MOV A, OFE40H; Transfer the contents of
address FE40H to the A
register of the specified
bank.

MOV saddr, A

Function: (saddr) —-—— A saddr=FE20H-FF1FH
Transfer the A register contents to the short direct
memory addressed in the first operand.
Describe the short direct memory address or label in
the first operand saddr as it is.

Flag operation: No change

Description example: SEL RB2 ; Select bank 2.
MOV R1l, RO; Transfer X register contents
to memory address FE30H.
MOV OFE30H, A

MOV saddr, saddr

Function: (saddr) —=— (saddr) saddr=FE20H-FF1FH
Transfer the contents of the short direct memory
addressed in the second operand (source) to the short
direct memory addressed in the first operand (desti-
nation).

18-99
B L42?525 0104695 T35 WM

Describe the short direct memory address. or label in
each of the first and second operands saddr as it is.

Plag operation: No change

Description example: MOV QFE1S8H, OFECQH; Transfer contents of
address FEC2H to
address FE18H.

MOV A, sfr

Function: A -— sfr
Transfer the contents of the special function regis-
ter specified in the second operand to the A regis-
ter.

Flag operation: No change

Description example: MOV A, ADCR; Transfer A/D conversion
result to the A register of
the current register bank
selected.

MOV sfr, A

Function: sfr -— A
Transfer the A register contents to the special
function register specified in the first operand.

Flag operation: No change

Description example: MOV PM1l, #00H; Specify output port mode
for port 1.
MOV P1l, A ; Output A register contents
from port 1.

18-100
B bt4e2?525 0104696 971 WA

MOV A, mem

Function:

A —-— (mem)

Transfer the contents of the memory addressed by the
memory addressing described in the second operand to
the A register.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL

contents by one after transferring the data.

Flag operation: No change

Description example: MOVW RP6, #3000H; DE (RP6) =— 3000H

MOV mem, A
Function:

MOV A, [DE+] ; Transfer contents of
memory address 3000H to
A register (increment DE
contents by one after
transfer).

(mem) —-— A

Transfer the A register contents to the memory ad-
dressed by the memory addressing described in the
first operand.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE~] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after transferring the data.

Flag operation: No change

18-101
B Lu427525 0104697 808 W

Description example:

LOOP:

LY

MOV R2, #0FFH
MOVW RP6, #3000H
MOV R1l, #0H
MOV [DE+], A

Set FFH in C (R2) register.

Set 3000H in DE register pair.

Set OH in A (Rl) register.

Set A register contents in address
3000H (increment DE contents by
one after transfer).

Initialize contents of memory
addresses 3000H-30F to OH.

-e -e

~-e

DBNZ C, SLOOP

-

MOV A, [saddrp]

Function:

A ~— ((saddrp)) saddrp=FE20H-FF1lEH
Transfer the contents of the memory addressed by the
contents of the short direct memory addressed in the
second operand to the A register.

Describe the short direct memory address or label in
the second operand saddrp as it is (even address

only).

Flag operation: No change

MOV [saddrp], A

Function:

((saddxrp)) -— A saddrp=FE20H-FF1EH

Transfer the A register contents to the memory ad-
dressed by the contents of the short direct memory
addressed in the first operand.

Describe the short direct memory address or label in
the first operand saddrp as it 1is (even address

only).

Flag operation: No change

18-102
B b6427525 010ub698 7uy HA -

MOV A, !addrle

Function: A —-— (addrlé6) addrl6=0000H-FFFFH
Transfer the contents of the memory addressed by the
16-bit immediate data specified in the second operand
to the A register.

Flag operation: No change

Description example: MOV A, EXAM; Transfer contents of memory
addressed by label EXAM to A
register.

MOV !addrlé, A
Function: (addrlé) —-— A addr16=0000H-FFFFH
Transfer the A register contents to the memory ad-
dressed by the 16-bit immediate data specified in the
first operand.

Flag operation: No change
MOV PSWL, #byte
Function: PSW; —=— byte byte=00H-FFH

Transfer the 8-bit immediate data specified in the
second operand to the low order eight bits of PSW.

Flag operation:
g op "z 'ac 'p/vicy

X X X X

18-103
B Ltu2?525 0104699 La0 WMl

MOV PSWH, #byte

Function: PSWy —=— byte byte=00H-FFH

Transfer the 8-bit immediate data specified in the

second operand to the high-order eight bits of the

PSW.
Flag operation: No change
MOV PSWL, A

Function: PSWL - A

Transfer the A register contents to the low-order

eight bits of the PSW.

Flag operation:
g op s 'z 'ac 'p/vicY

X X X X X

MOV PSWH, A
Function: PSWy —-— A
Transfer the A register contents to the
eight bits of the PSW.
Flag operation: No change

MOV A, PSWL

Function: A -=— PSW

high-order

Transfer the low-order 8-bit contents of the PSW to

the A register.

Flag operation: No change

18-104
B bLuy27525 0104700 l22 WA

MOV A, PSWH

Function: A —=——0 PSWH

Transfer the high-order 8-bit contents of the PSW to
the A register.

Flag operation: No change
XCH A, ri

Function: A == rl

Exchange the contents of the A register and the 8-bit
register specified in the second operand.

Flag operation: No change

XCH r, rl

Function: r =-— ril

Exchange the content of the 8-bit registers specified
in the first and second operands.

Flag operation: No change
XCH A, mem

Function: A —=— (mem)

Exchange the contents of the A register and the

memory addressed by the memory addressing described
in the second operand.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after exchanging the data.

Flag operation: No change

18-105
B Ly27525 0104701 069 WA

Description example:
MOV R2, #O0FH
MOVW RP7, #FE10H
MOV R1, #0H
LOOP: XCH [HL-],A

C(R2) -— 10H

HL (RP7) -— FE1OH

A (R1) -—— OOH

Exchange the contents of A

~e ~e ~e

e

register and address FE10H
decrement the HL contents by
one after transfer).

Shift the FEOl1H-FE10H contents
forward one address (address
FE10H=00H) .

DBNZ C, S$LOOP

~e

XCH A, saddr

Function: A -— (saddr) saddr=FE20H-FF1FH
Exchange the contents of the A register and the short
direct memory addressed in the second operand.
Describe the short direct memory address or label in

the second operand saddr as it is.
Flag operation: No change
XCH A, sfr
Function: A -— sfr
Exchange the contents of the A register and the

special function register specified in the second

operand.
Flag operation: No change
Description example: XCH A, RXB; Exchange the contents of A

register and serial receive
buffer.

18-106
M Luy2?525 0104702 TTS IM

XCH A, [saddrp]

Function:

A -— ((saddrp)) saddrp=FE20H-FF1EH
Exchange the contents of the A register and the
memory addressed by the contents of the short direct
memory addressed in the second operand.

Describe the short direct memory address or label in
the second operand saddrp as it is (even address
only).

Flag operation: No change

XCH saddr,

Function:

saddr

(saddr) -— (saddr) saddr=FE20H-FF1FH
Exchange the contents of the short direct memory
addressed in the first operand and the short direct
memory addressed in the second operand.

Describe the short direct memory address or label in
each of the first and second operands saddr as it is.

Flag operation: No change

18-107
B Lu27525 0104703 931 M

18.6.2 16-bit data transfer instructions

MOVW rpl, #word

Function:

rpl -— word word=0000H-FFFFH
Transfer the 16-~bit immediate data specified in the
second operand to the 16-bit register pair specified

in the first operand.

Flag operation: No change

Description example: MOVW RPO, #0AA55H; Transfer AAS55H to AX

register pair.

MOVW saddrp, #word

Function:

(saddrp) =— word saddrp=FE20H~FF1EH
word=0000H~-FFFFH

Transfer the 16-bit immediate data specified in the

second operand to the 2-byte area of the short direct

memory addressed in the first operand.

' Describe the short direct memory address or label in

the first operand saddrp as it is (even address

only).

Flag operation: No change

MOVW sfrp, #word

Function:

sfrp =— word word=0000H-FFFFH
Transfer the 16-bit immediate data specified in the
second operand to the 16-bit special function regis-

ter specified in the first operand.

Flag operation: No change

18-108
B k427?525 0104704 48786 WH

Description example: MOVW PWMO, #0FFOOH; Set FFOOH in PWMO

MOVW rp, rpl

Function:

register.

rp =— rpl

Transfer the contents of the 16-bit register pair
specified in the second operand to the 16-bit regis-
ter pair specified in the first operand.

Flag operation: No change

MOVW AX, saddrp

Function:

AX -— (saddrp) saddrp=FE20H-FF1EH
Transfer the contents of the 2-byte area of the short
direct memory addressed in the second operand to the
register pair AX.

Describe the short direct memory address or label in
the second operand saddrp as it is (even address
only).

Flag operation: No change

Description example: MOVW AX, OFE30H; Transfer contents of

address FE31H and FE30H
to AX register pair.

MOVW saddrp, AX

Function:

(saddrp) =-— AX saddrp=FE20H-FF1EH
Transfer the register pair AX contents to the 2-byte
area of the short direct memory addressed in the
first operand.

Describe the short direct memory address or label in
the first operand saddrp as it is (even address
only).

-18-109
B L427525 0104705 704 WM

Flag operation: No change
MOVW saddrp, saddrp

Function: (saddrp) -=— (saddrp) saddrp=FE20H-FF1EH
Transfer the contents of the 2-byte area of the short
direct memory addressed in the second operand to the
2-byte area of the short direct memory addressed in
the first operand.

Describe the short direct memory address or label in
each of the first and second operands saddrp as it is
(even address only).

Flag operation: No change
MOVW AX, sfrp
Function: AX -— sfrp
Transfer the contents of the 16-bit special function

register specified in the second operand to the
register pair AX.

Flag operation: No change
Description example: MOVW AX, CPT0; Transfer CPTO register
contents to AX register
pair.
MOVW sfrp, AX
Function: sfrp -— AX
Transfer the register pair AX contents to the 16-bit

special function register specified in the first

operand.

Flag operation: No change

18-110
M Ly2?7525 0104706 L4O B

MOVW AX, mem

Function: AX -— (mem) mem=0000H-FDFFH (any desired address)
mem=FEOOH-FFFFH (limited to even
address)

Transfer the contents of the memory addressed by the
memory addressing described in the second operand to
the register pair AX.
If auto increment ([DE+] or [HL+]) or auto decrement
[DE~] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by two after transferring the data.

Flag operation: No change

MOVW mem, AX

Function: (mem) —=-— AX mem=0000H-FDFFH (any desired address)
mem=FFOOH-FFFFH (limited to even
address)

Transfer the register pair AX contents to the memory
addressed by the memory addressing described in the
first operand.
If auto increment ([DE+] or [HL+] or auto decrement
([DE~-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL

contents by two after transferring the data.
Flag operation: No change

MOVW rpl, laddrlé

Function: rpl —=— (addrlé6) addrl16=0000H-FDFFH (any desired
address)
addxr16=FEOOH-FFFFH (limited to
even
addresswes)

18-111
B Lu27525 0104707 587 WA

Transfer the contents of the 2-byte area of the
memory addressed by the 16-bit immediate data
specified in the second operand to the 16-bit regis-
ter pair specified in the first operand.

Flag operation: No change
MOVW !addri6, rpl

Function: (addrl6) -=— rpl addr16=0000H-FDFFH

(any desired addrésses)

addrl16=FEOOH-FFFFH

(limited to even addresses)
Transfer the contents of the 16-bit register pair
specified in the second operand to the 2-byte area of
memory addressed by the 16-bit immediate data speci-
fied in the first operand.

Flag operation: No change
XCHW AX, saddrp

Function: AX -— (saddrp) saddrp=FE20H~FF1EH
Exchange the contents of the register pair AX and the
2-byte area of the short direct memory addressed in
the second operand.

Describe the short direct memory address or label in
the second operand saddrp as it 1is (even address
only).

Flag operation: No change
XCHW AX, sfrp
Function: AX -— sfrp

Exchange the contents of the register pair AX and the
16-bit special function register specified in the

18-112
BN 6427525 0104708 413 WB

second operand.

Flag operation: No change

Description example: Exchange the contents of the register XCHW
AX, PWMOL; PWMO and the register pair AX.

XCHW saddrp, saddrp

Function: (saddrp) =— (saddrp) saddrp=FE20H-FF1EH
Exchange the contents of the 2-byte area of the short
direct memory addressed in the first operand and the
2-byte area of the short direct memory addressed in
the second operand.

Describe the short direct memory address or label in
each of the first and second operands saddrp as it is
(even address only).

Flag operation: No change
XCHW rp, rpl
Function: rp -— rpl
Exchange the contents of the 16-bit register pair

specified in the first and second operands.

Flag operation: No change

18-113
B Ly2?525 0104?09 35T A

XCHW AX, mem

Function: AX —=— (mem) mem=0000H-FDFFH
(any desired addresses)
mem=FEQOQOH-FFFFH
(limited to even addresses)
Exchange the contents of the register pair AX and the
2-byte area of the memory addressed by the memory
addressing described in the second operand.
If auto increment ([DE+] or [HL+]) or auto decrement
((DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by two after transferring the data.

Flag operation: No change

18-114
B Luy27525 0104710 071 WM

18.6.3 8-bit arithmetic and logical instructions

ADD A, i#byte

Function: A, CY =«—— A+byte byte=00H-FFH
Add the 8-bit immediate data specified in the second
operand to the A register contents in binary. Set

the carry flag if a carry is generated as a result of
the additions. Reset the carry flag if no carry is
generated.
Flag operation:
g op s 'z 'aC 'p/v'CY

X X X \Y X

Description example: ADD A, #40H; Add 40H to A register con-

tents in binary.

ADD saddr, #byte

Function: (saddrp), CY =— (saddr)+byte saddr=FE20H-FF1FH
byte=00H-FFH

Add the 8-bit immediate data specified in the second
operand to the contents of the short direct memory
addressed in the first operand in binary. Set the
carry flag if a carry is generated as a result of the
addition. Reset the carry flag if no carry is gener-
ated.

Describe the short direct memory address or label in
the first operand saddr as it is.

Flag operation: g T

7z 'AC 'P/V'CY

X X v X

18-115
B L427?5e5 0104711 TOS MM

ADD sfr, #byte

Function:

Flag operation: T

sfr, CY -— sfr+byte byte=00H-FFH

Add the 8-bit immediate data specified in the second
operand to the contents of the special function
register specified in the first operand in binary.
Set the carry flag if a carry is generated as a
result of the addition. Reset the carry flag if no
carry is generated.

s 'z 'ac "p/vicy
X x X v x

Description example: ADD CROOL #1H; Add 1H to the contents of

ADD r, rl

Function:

Flag operation: T

low-order eight bits of
CRO0 register in binary and
set the result in CROO

register.

r, CY =-— r+ril

Add the contents of the register specified in the
second operand to the contents of the register speci-
fied in the first operand in binary. Set the carry
flag if a carry is generated as a result of the
addition. Reset the carry flag if no carry is gener-
ated.

s 'z 'ac 'p/V CY

X X X v X

18-116
B Lu427525 0104?72 Suy -

ADD A, saddr

Function:

Flag operation: T

ADD A, sfr

Function:

Flag operation: T

ADD saddr,

Function:

A, CY =— A+(saddr) saddr=FE20H-FF1FH
Add the contents of the short directly memory ad-
dressed in the second operand to the A register
contents in binary. Set the carry flag is a carry is
generated as a result of the addition.

Reset the carry flag if no carry is generated.
Describe the short direct memory address or label in
the second operand saddr as it is.

s ' 2z 'ac 'p/v'cy

X b 4 b4 v b 4

A, CY =— A+sfr

Add the contents of the special function register
specified in the second operand to the A register
contents in binary. Set the carry flag if a carry
is generated as a result of the addition. Reset the
carry flag if no carry is generated.

2 'AC 'P/V'CY
X X Vv p.4

saddr

(saddr), CY =— (saddr)+(saddr) saddr=FE20H-FF1FH
Add the contents of the short direct memory addressed
in the second operand to the contents of the short
direct memory addressed in the first operand in
binary. Set the carry flag if a carry is generated
as a result of the addition. Reset the carry flag if
no carry is generated.

18-117
M Luy2?525 0104713 480 WM

Flag operation: r

ADD A, mem

Punction:

Flag operation: T

ADD mem, A

Function:

Describe the short direct memory address or label in
each of the first and second operands saddr as it is.

s "z 'ac 'p/v'cy

b 4 b4 X v X

A, CY = At+(mem)

Add the contents of the memory addressed by the
memory addressing described in the second operand to
the A register contents in binary. Set the carry
flag if a carry is generated as a result of the
addition. Reset the carry flag if no carry is gener-
ated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the addition.

s ' 2z 'AC 'p/V'CY
x X b'4 Vv X

(mem), CY —=— (mem)+A

Add the A register contents to the contents of the
memory addressed by the memory addressing decribed in
the first operand in binary. Set the carry flag if a
carry is generated as a result of the addition.
Reset the carry flag if no carry is generated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
conents by one after the addition.

18~-118
B Ly27525 010471y 717 IN

Flag operation: I

s 'z 'ac 'p/vicy

X X v X

Description example:

LOOP:

MOV R2, #0FH ; C =— OFH

MOV RP7, #FE20H; HL-— FE20H

MOV A, #10H

ADD [(HL+80H), A; Add 10H to the FEAQOH-FEAFH con-
tents

DBNZ C,$LOOP

ADDC A, #byte

Function:

Flag operation: ,

A, CY -— A+byte+CY byte=00H-FFH

Add the 8-bit immediate data specified in the second
operand with the carry flag to the A register con-
tents in binary. Set the carry flag if a carry is
generated as a result of the addition. Reset the
carry flag if no carry is generated.

s 'z 'ac 'p/v'ey

X b 4 X .V x

ADDC saddr, #byte

Function:

(saddr), CY =-— (saddr)+byte+CY saddr=FE20H~FF1FH
byte=00H-FFH

Add the 8-bit immediate data specified in the second
operand with the carry flag to the contents of the
short direct memory addressed in the first operand in
binary. Set the carry flag if a carry is generated
as a result of the addition. Reset the carry flag if
no carry is generated.

Describe the short direct memory address or label in
the first operand saddr as it is.

18-119
B b427525 0L04?15 k53 WM

Flag operation: T

Caution:

ADDC sfr,

Function:

Flag operation: I

s 'z 'ac 'p/V'CY
b 4 X X v X

If any of the following special function registers is
specified in the first operand as short direct memory,
the operation result becomes undefined. Do not de-
scribe it in the first operand.

Special function register: P4, P5
#byte

sfr, CY —=-— sfr+byte+CY byte=00H-FFH

Add the 8-bit immediate data specified in the second
operand with the carry flag to the contetns of the
special function register specified in the first
operand in binary. Set the carry flag if a carry is
.generated as result of the addition. Reset the carry
flag if no carry is generated.

s 'z 'ac 'p/vicY
X x b4 v b4

Caution: If any of the following special function registers is
specified in the first operand, the operation result
becomes undefined. Do not describe it in the first
operand.

Special function register: P4, P5, PM5, MM, external
SFR
ADDC r, rl
Function: r, CY =— r+rl+CY

Add the contents of the 8-bit register specified in
the second operand with the carry flag to the con-~
tents of the 8-bit register specified in the first
operand in binary. Set the carry flag if a carry is

18-120
M bL42?525 0L04?Lb 597 M

Flag operation: T

generated as a results of the addition. Set the
carry flag if no carry is generated.

ADDC A, saddr

Function:

Flag operation: I

ADDC A, sfr

Function:

Flag operation: I

s 'z 'ac "p/v'cy
X X v b 4
A, CY =— At+(saddr)+CY saddr=FE20H-FF1FH

Add the contents of the short direct memory addressed
in the second operand with the carry flag to the A
register contents in binary. Set the carry flag if a
carry is generated as a result of the addition.
Reset the carry flag if no carry is generated.
Describe the short direct memory address or label in
the second operand saddr as it is.

z 'AC 'P/V'CY

X X v b 4

S

A, CY =— A+sfr+CY

Add the contents of the special function register
specified in the second operand with the carry flag
to the A register contents in binary. Set the carry
flag if a carry is generated as a result of the
addition. Reset the carry flag if no carry is gener-
ated.

7 'AC 'P/V'CY

X b 4 v X

S

18-121
B Lu427525 0104717 ucb HE

ADDC saddr,

Function:

Flag opera

Caution:

ADDC A, mem

Function:

Flag opera

saddr

(saddr), CY =— (saddr)+(saddr)+CY saddr=FE20H-FF1FH
Add the contents of the short direct memory addressed
in the second operand with the carry flag to the
contents of the short direct memory addressed in the
first operand in binary. Set the carry flag if a
carry is generated as a result of the addition.
Reset the carry flag if no carry is generated.

S Z AC P/V CY

X b 4 b4 v X

If any of the following special function registers is
specified in the first operand as short direct memory,
the operation result becomes undefined. Do not de-

scribe it in the first operand.

Special function registef: P4, PS

A, CY =— A+(mem)+CY

Add the contents of the memory addressed by the
memory addressing described in the second operand
with the carry flag to the A registr contents in
binary. Set the carry flag if a carry is generated
as a result of the addition. Reset the carry flag if
no carry is generéted.

If auto increment ([DE+] or [HL+]) or auto decrement
({DE~] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the addition.
tion: T

s 'z 'ac 'p/v'CY

b4 X X v X

18-122
B b4e?525 0104718 3b2 WM

L

ADDC mem, A

Function:

Flag operation: T

(mem), CY —=— (mem)+A+CY

Add the A register contents with the carry flag to
the contents of the memory addressed by the memory
addressing described in the first operand in binary.
Set the carry flag if a carry is generated as a
result of the addition. Reset the carry flag if no
carry is generated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the addition.

s 'z 'ac 'p/vicy
X b 4 X v X

SUB A, #byte

Function:

Flag operation: I

A, CY =— A-byte byte=00H-FFH
Subtract the 8-bit immediate data specified in the
second operand from the A register contents. Set the
carry flag if a borrow is generated as a result of
the subtraction. Reset the carry if no borrow is
generated.

z 'AC 'p/v'icY
X X v X

18-123
B 42?525 0104719 279 M

SUB saddr, #byte

Function:

Flag operation: I

(saddr), CY =-— (saddr)-byte saddr=FE20H-FF1FH
byte=00H-FFH
Subtract the 8-bit immediate data specified in the
second operand from the contents of the short direct
memory addressed in the first operand. Set the carry
flag if a borrow is generated as a result of the
subtraction. Reset the carry flag if no borrow is
generated.
Describe the short direct memory address or label in
the first operand saddr as it is.

z 'AC 'p/v'cCY
X X v X

SUB sfr, #byte

Function: sfr, CY =—— sfr-byte byte=00H-FFH
Subtract the 8-bit immediate data specified in the
second operand from the contents of the special
function register specified in the first operand.
Set the carry flag if a borrow is generated as a
result of the subtraction. Reset the carry flag if
no borrow is generated.

Flag operation: T

s 'z 'ac 'p/V'CY
X X X v X

18-124
B Lu27525 0304720 Ti0 Wm

SUB r, ril

Function:

Flag operation: T

r, CY =-— r-ri

Subtract the contents of the 8-bit register specified
in the second operand from the contents of the 8-bit
register specified in the first operand. Set the
carry flag if a borrow is generated as a result of
the subtraction. Reset the carry flag if no borrow
is generated.

SUB A, saddr

Function:

Flag operation: r

SUB A, sfr

Function:

s 'z 'ac 'p/V'cY
X b 4 v X
A, CY -—— A-(saddr) saddr=FE20H-FF1FH

Subtract the contents of the short direct memory
addressed in the second operand from the A register
contents. Set the carry flag if a borrow is generat-
ed as a result of the subtraction. Reset the carry
flag if no borrow is generated.

Describe the short direct memory address or label in
the second operand saddr as it is.

Z 'AC 'P/V'CY

X X X v X

A, CY =-— A-sfr

Subtract the contents of the special function regis-
ter specified in the second operand from the A regis-
ter contents. Set the carry flag if a borrow is
generated as a result of the subtraction. Reset the
carry flag if no borrow is generated.

18-125
B L427525 0104721 957 EM

Flag operation: T

SUB saddr,

Function:

Flag operation: T

SUB A, mem

Function:

s 'z 'ac 'p/V'CY
X X x. V b4

saddr

(saddr), CY -— (saddr)-(saddr) saddr=FE20H-FE1FH
Subtract the contents of the short direct memory
addressed in the second operand from the contents of
the short direct memory addressed in the first oper-
and. Set the carry flag a borrow is generated as a
result of the subtraction. Reset the carry flag if
no borrow is generated.

Describe the short direct memory address or label in
each of the first and second operands saddr as it is.

Z 'AC 'P/V' CY

X b 4 v X

A, CY -— A-(mem)

Subtract the contents of the memory addressed by the
memory addressing described in the second operand
from the A register contents. Set the carry flag if
a borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the subtraction.

Flag operation: T

s 'z 'ac 'p/v'cY

X X X v b 4

18-126
B bLy2?525 0104722 493 I

SUB mem, A

Function:

Flag operation: ,

(mem), CY =— (mem)-A

Subtract the A register contents from the contents of
the memory addressed by the memory addressing de-
scribed in the first operand. Set the carry flag if
a borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the subtraction.

s 'z 'ac "'p/vicy

X X X v X

SUBC A, #byte

Function:

Flag operation: T

A, CY =— A-byte-CY byte=00H-FFH

Subtract the 8-bit immediate data specified in the
second operand and the carry flag from the A register
contents. Set the carry flag if a borrow is generat-
ed as a result of the subtraction. Reset the carry
flag if no borrow is generated.

s 'z 'ac 'p/vicY
b4 X X v b4

18-127
B bu27525 0104723 72T 1N

SUBC saddr, #byte

Function:

Flag operation: ~—

Caution:

(saddr), CY -— (saddr)-byte-CY saddr=FE20H-FF1FH
byte=00H-FFH

Subtract the 8-bit immediate data specified in the
second operand and the carry flag from the contents
of the short direct memory addressed in the first
operand. Set the carry flag if a borrow is generated
as a result of the subtraction. Reset the carry flag
if no borrow is generated.

Describe the short direct memory address or label in
the first operand saddr as it is.

s 'z 'ac "p/vicy
X X X Vv X

If any of the following special function registers is
specified in the first operand as short direct memory,
the operation result becomes undefined. Do not de-
scribe it in the first operand.

Special function register: P4, P5

SUBC sfr, #byte

Function:

Flag operation: T

sfr, CY -— sfr-byte-CY byte=00H-FFH
Subtract the 8-bit immediate data specified in the
second operand and the carry flag from the contents
of the special function register specified in the
first operand. Set the carry flag if a borrow is
generated as a result of the subtraction. Reset the
carry flag if no borrow is generated.

s 'z 'ac 'p/v'cyY
b 4 X b 4 v X

18-128
B by27525 0104724 bbb HE

Caution:

SUBC r, rl

Function:

Flag operation: T

If any of the following special function registers is
specified in the first operand, the operation result
becomes undefined. Do not describe it in the first
operand.

Special function register: P4, PS5, PM5, MM, external
SFR

r, CY — r-rl-CY

Subtract the contents of the 8-bit register specified
in the second operand and the carry flag from the
contents of the 8-bit register specified in the first
operand. Set the carry flag if a borrow is generated
as a result of the subtraction. Reset the carry flag
if no borrow is generated.

s 'z 'ac 'p/v'cyY
b 4 X b 4 v b 4

SUBC A, saddr

Function:

Flag operation: T

A, CY -— A-(saddr)-CY saddr=FE20H-FF1FH
Subtract the contents of the short direct memory
addressed in the second operand and the carry flag
from the A register contents. Set the carry flag if
a borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.
Describe the short direct memory address or label in
the second operand saddr as it is.

2 'AC 'P/V'CY

X X v X

18-129
M Lu27525 0104725 5T IR

SUBC A, sfr

Function:

A, CY =— A-sfr-CYy

Subtract the contents of the special function regis-
ter specified in the second operand and the carry
flag from the A register contents. Set the carry
flag if a borrow is generated as a result of the
subtraction. Reset the carry flag if no borrow is
generated.

Flag operation: T

SUBC saddr,

Function:

s 'z 'ac "p/vicy
X X X v b 4

saddr

(saddr), CY =— (saddr)-(saddr)-CY

saddr=FE20H-FF1FH
Subtract the contents of the short direct memory
addressed in the second operand and the carry flag
from the contents of the short direct memory ad-
dressed in the first operand. Set the carry flag if
a borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.
Describe the short direct memory address or label in
each of the first and second operand saddr as it is.

Flag operation: T

Caution:

s "z 'ac 'p/vicy

X X X v b4

If any of the following special function registers is
specified in the first operand as short direct memory,
the operation result becomes undefined. Do not de-
scribe it in the first operand.

Special function register: P4, P5

18-130
B L427525 0lL0472bL 439 W8

SUBC A, mem

Function:

Flag operation: I

SUBC mem, A

Function:

Flag operation: T

A, CY -— A-(mem)-CY

Subtract the contents of the memory addressed by the
memory addressing described in the second operand and
the carry flag from the A register contents. Set the
carry flag if a borrow is generated as a result of
the subtraction. Reset the carry flag if no borrow
is generated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the subtraction.

s ' 2 'ac 'p/v'cy
X X X v X

(mem), CY —=-— (mem)-A-CY

Subtract the A register contents and the carry flag
from the memory addressed by the memory addressing
described in the first operand. Set the carry flag
if a borrow is generated as a result of the subtrac-
tion. Reset the carry flag if no borrow is generat-
ed.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE~] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the subtraction.

s 'z 'ac 'p/vicy

b4 X b4 A\ X

18-131
B L427525 0104727 375 W

AND A, #byte

Function:

A -— A Abyte byte=00H-FFH

AND the A register contents with the 8-bit immediate
data specified in the second operand and set the
result in the A register.

Flag operation: T

s 'z 'ac 'p/vicy

X X P

AND saddr, #byte

Function:

(saddr) =-— (saddr) A byte saddr=FE20H-FF1FH
byte=00H~-FFH

AND the contents of the short direct memory addressed
in the first operand with the 8-~-bit immediate data
specified in the second operand and set the result in
the short direct memory addressed in the first oper-
and.

Describe the short direct memory address or label in
the first operand saddr as it is.

Flag operation: T

s 'z 'ac "p/vicy
X P

AND sfr, #byte

Function:

sfr -—— sfr Abyte byte=00H=FFH

AND the contents of the special function register
specified in the first operand with the 8-bit immedi-
ate data specified in the second operand and set the
result in the special function register specified in
the first operand.

Flag operation: T

s 'z 'ac 'p/vicy

X X P

18-132
- b427525 0104728 201 WA

Description example: AND MM, #0FH; Only the high-order four bits
of MM register are reset (The low-order
four bits do not change)

AND r, rl

Function: r -— 1rArl
AND the contents of the 8-bit register specified in
the first operand with the contents of the 8-bit
register specified in the second operand and set the

result in the 8-bit register specified in the first
operand.

Flag operation: ,

z 'ac 'p/vicy

X X P

AND A, saddr

Function: A -— A A (saddr) saddr=FE20H-FF1FH
AND the A register contents with the contents of the
short direct memory addressed in the second operand
and set the result in the A register.

Describe the short direct memory address or label in
the second operand saddr as it is.

Flag operation:
g °P s 'z 'ac 'p/v'CY

X X P

AND A, sfr

Function: A -— A Asfr
AND the A register contents with the contents of the

special function register specified in the second
operand and set the result in the A register.

18-133
B Lu27525 0104?29 14d I

Flag operation: T

z 'aCc 'p/vVicY
X P

S

AND saddr, saddr

Function:

(saddr) -— (saddr) A (saddr) saddr=FE20H-FF1FH
AND the contents of the short direct memory specified
in the first operand with the contents of the short
direct memory specified in the second operand and set
the result in the short direct memory addressed in
the first operand.

Describe the short direct memory address or label in
each of the first and second operands saddr as it is.

Flag operation: T

AND A, mem

Function:

s 'z 'ac 'p/vicy
X X P

A —-—— A A (mem)

AND the A register contents with the contents of the
memory addressed by the memory addressing described
in the second operand and set the result in the A
register.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.

Flag operation: T

s 'z 'ac 'p/v'icy
X X P

18-134
M Lu27?525 0104730 96T WA

AND mem, A

Function:

Flag operation: I

OR A, #byte

Function:

Flag operation: I

(mem) —=— (mem)A A

AND the contents of the memory addressed by the
memory addressing described in the first operand with
the A register contents and set the results in the
memory addressed in the first operand.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL

contents by one after the operation.

z 'ac 'p/v'CY
X P

A -— AV byte byte=00H-FFH
OR the A register contents with the 8-bit immediate
data specified in the second operand and set the

result in the A register.

z 'AC 'P/V'CY
X P

OR saddr, #byte

Function:

(saddr) —=— (saddr) V byte saddr=FE20H-FF1FH
byte=00H-FFH

OR the contents of the short direct memory addressed

in the first operand with the 8-bit immediate data

specified in the second operand and set the result in

the short direct memory addressed in the first oper-

and.

18-135
B Luy2?525 0104731 4TL IR

Caution: Describe the short direct memory address or
label in the first operand saddr.

Flag operation: T

s 'z 'ac "p/vicy
X X P
OR sfr, #byte
Functiont sfr -— sfr V byte byte=00H-FFH

OR the contents of the special function register
specified in the first operand with the 8-bit immedi-
ate data specified in the second operand and set the
result in the special function register specified in
the first operand.

Flag operation:
g op s Tz 'ac 'p/vicy

x b4 P

Description example: MOV PM1, 00H; Output 1 from the high-order
four bits of port 1. (The
low-order four bits do not
change).

OR P1l, #FOH

OR r, rl

Function: r =-— r VvV rl
OR the contents of the 8-bit register specified in
the first operand with the contents of the 8-bit
register specified in the second operand and set the
result in the 8-bit register specified in the first

operand.

Flag operation:
g op s 'z 'ac 'p/vicy

b 4 b 4 P

18-136
B Lu27525 0104732 732 1M

OR A, saddr

Function: A -— A V (saddr) saddr=FE20H-FF1FH
OR the A register contents with the contents of the

short direct memory addressed in the second operand
and set the result in the A register.

Describe the short direct memory address or label in
the second operand saddr as it is.

Flag operation:
g op s "z 'ac Tp/vicy

X X D

OR A, sfr

Function: A -— A V sfr

OR the A register contents with the contents of the
special function register specified in the second

operand and set the result in the A register.

Flag operation:

s 'z 'ac "p/vicy
b4 P

OR saddr, saddr

Function: (saddr) -— (saddr) V (saddr) saddr=FE20H~-FF1FH

OR the contents of the short direct memory addressed
in the first operand with the contents of the short
direct memory addressed in the second operand and set
the result in the short direct memory addressed in
the first operand.

Describe the short direct memory address or label in
each of the first and second operands saddr as it is.

Flag operation: T

s 'z 'ac "p/vicy

b4 P

OR A, mem

18-137
M Luc2?525 0104733 679 W

OR A, mem

Function:

Flag operation: -

OR mem, A

Function:

Flag operation:

A =--— AV (mem)

OR the A register contents with the contents of the
memory addressed by the memory addressing described
in the second operand and set the result in the A
register.

1f auto increment ([DE+) or [HL+]) or auto decrement
((DE~] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.

s 'z 'aCc 'p/VCY
x X P

(mem) —=-— (mem) V A

OR the contents of the memory addressed by the memory
addressing described in the first operand with the A
register contents and set the result in the memory
addressed in the first operand.

1f auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.

s 'z 'ac 'p/vicy
»X _x P

Function:

A =—— A ¥ byte byte=00H-FFH
Exclusive-OR the A register contents with the 8-bit
immediate data specified in the second operand and
set the result in the A register.

18-138
B L427525 0104?34 505 W

Flag operation: ST

z 'ac 'p/vicy
X P

Description example: XOR A, #0FFH; The contents of A register
are inverted.

XOR saddr, #byte

Function: (saddr) —-— (saddr) ¥ byte saddr=FE20H-FF1FH
byte=00H-FFH

Exclusive-OR the contents of the short direct memory
addressed in the first operand with the 8-bit immedi-
ate data specified in the second operand and set the
result in the short direct memory addressed in the
first operand. ‘

Describe the short direct memory address or label in
the first operand saddr as it is.

Flag operation:
g °p s 'z 'ac "p/vicy

X P

XOR sfr, #byte

Function: sfr =— sfr ¥ byte byte=00H-FFH
Exclusive-OR the contents of the special function
register specified in the first operand with the 8-
bit immediate data specified in the second operand
and set the result in the special function register
specified in the first operand.

Flag operation:
9P s 'z 'ac "p/vicy

X X P

18-139
B Lu2?525 2104735 4yl HH

XOR r, rl

Function: r =— r ¥ rl
Exclusive-OR the contents of the 8-bit register
specified in the first operand with the contents of
the 8-bit register specified in the second operand
and set the result in the 8-bit register specified in
the first operand.

Flag operation:
9 °p "2 'ac 'p/vicy

X P

XOR A, saddr

Function: A —=— A V¥ (saddr) saddr=FE20H~FF1FH
Exclusive-OR the A register contents with the con-
tents of the short direct memory addressed in the
second operand and set the result in the A register.
Describe the short direct memory address or label in
the second operand saddr as it is.

Flag operation: i

s 'z 'ac 'p/v'CY

X P

XOR A, sfr

Function: A =— A ¥ sfr
Exclusive-OR the A register contents with the con-
tents of the special function register specified in
the second operand and set the result in the A regis-
ter.

Flag operation:
g °p * "7 'ac 'p/vicy

X X P

18-140
B Lu27525 0L047?3bL 388 WA

XOR saddr,

Function:

Flag operation: T

XOR A, mem

Function:

Flag operation: I

saddr

(saddr) —=— (saddr) ¥ (saddr) saddr=FE20H-FF1FH
Exclusive-OR the contents of the short direct memory
addressed in the first operand with the contents of
the short direct memory addressed in the second
operand and set the result in the short direct memory
addressed in the first operand.

Describe the short direct memory address or label in

each of the first and second operands saddr as it is.

z 'AC 'P/V'CY
x P

S

A =~— AV (mem)

Exclusive-OR the A register contents with the con-
tents of the memory addressed by the memory address-
ing described in the second operand and set the
result in the A register.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] oxr [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.

s "z 'ac "p/vicy
X X P

18-141
B Lu42?525 0104?37 214 WA

XOR mem, A

Function:

Flag operation: T

{mem) —-— (mem) ¥V A

Exclusive-OR the contents of the memory addressed by
the memory addressing described in the first operand
with the A register contents and set the result in
the memory addressed in the first operand.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or {HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.

s 'z 'ac 'p/vicy
X X P

CMP A, #byte

Function:

Flag operation: T

A-byte byte=00H-FFH

Subtract the 8-bit immediate data specified in the
second operand from the A register contents. Set the
carry flag if a borrow is generated as a result of
the subtraction. Reset the carry flag if no borrow

is generated.

s 'z 'ac 'p/vicy
X X X v b 4

18-142
- Lby27525 0104738 150 IN

CMP saddr, #byte

Function: (saddr)-byte saddr=FE20H-FF1FH
byte=00H-FFH

Subtract the 8-bit immediate data specified in the
second operand from the contents of the short direct
memory addressed in the first operand. Set the carry
flag if a borrow is generated as a result of the
subtraction. Reset the carry flag if no borrow is
generated.
After the CMP instruction is executed, the short
direct memory contents do not change.
Describe the short direct memory address or label in
the first operand saddr as it is.

Flag operation: s Tz Tac TBivICY

X X v X

CMP sfr, #byte

Function:

Flag operation: T

sfr-byte byte=00H-FFH
Subtract the 8-bit immediate data specified in the
second operand from the contents of the special
function register specified in the first operand.
Set the carry flag if a borrow is generated as a
result of the subtraction. Reset the carry flag if
no borrow is generated.

After the CMP instruction is executed, the special
function register contents do not change.

s 'z 'ac 'p/vicy

X X X v X

18-143
B bLu42?525 0104739 097 A

CMP r, rl

Function:

Flag operation: I

r-rl

Subtract the contents of the 8-bit register specified
in the second operand from the contents of the 8-bit
register specified in the first operand. Set the
carry flag if a borrow is generated as a result of
the subtraction. Reset the carry flag if no borrow
is generated.

After the CMP instruction is executed, the 8-bit
register r and rl contents do not change.

z2 'AC 'P/V'CY
X X v X

S

CMP A, saddr

Function:

Flag operation: T

A-(saddr) : saddr=FE20H-FF1FH
Subtract the contents of the short direct memory
addressed in the second operand from the A register
contents. Set the carry flag if a borrow is generat-
ed as a result of the subtraction. Reset the carry
flag if no borrow is generated.

After the CMP instruction is executed, the A register
and short direct memory contents do not change.
Describe the short direct memory address or label in

the second operand saddr as it is.

s 'z 'ac 'p/vicy

X X X v X

18-144
B Lu427525 0104740 409 WE

CMP A, sfr

Function:

Flag operation: T

CMP saddr,

Function:

Flag operation: I

A-sfr

Subtract the contents of the special function regis-
ter specified in the second operand from the A regis-
ter contents. Set the carry flag if a carry is
generated as a result of the subtraction. Reset the
carry flag if no borrow is generated.

After the CMP instruction is executed, the A register
and special function register contents do not change.

7z 'AC 'P/V'CY

X X X \% X

saddr

(saddr)-(saddr) saddr=FE20H-FF1FH
Subtract the contents of the short direct memory
addressed in the second operand from the contents of
the short direct memory addressed in the first oper-
and. Set the carry flag if a borrow is generated as
a result of the subtraction.

After the CMP instruction is executed, the short
direct memory contents do not change.

Describe the short direct memory address or label in
each of the first and second operands saddr as it is.

s 'z 'ac 'p/v'cy

X X X v b 4

18-145
B L427525 010474l 745 EE

CMP A, mem

Function:

Flag operation: T

A~-(mem)

Subtract the contents of the memory addressed by the
memory addressing described in the second operand
from the A register. Set the carry flag if a borrow
is generated as a result of the subtraction. Reset
the carry flag if no borrow is generated.

If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.

After the CMP instruction is executed, the A register
and memory contents do not change.

z 'ac 'p/vV'cY

X X Vv x

CMP mem, A

Function: (mem)-A ,
Subtract the A register contents from the memory
addressed by the memory addressing described in the
first operand. Set the carry flag if a borrow is
generated as a result of the subtraction. Reset the
carry flag if no borrow is generated.
If auto increment ([DE+] or [HL+]) or auto decrement
([DE-] or [HL-]) is specified as mem, automatically
increment or decrement the register pair DE or HL
contents by one after the operation.
After the CMP instruction is executed, the A register
and memory contents do not change.

Flag operation: s T2 Tac 'B/V'CY

X b 4 v X

18-146
B Lu427?525 0104742 LAL W

18.6.4 16-bit arithmetic and logical instructions

ADDW AX, #word

Function:

AX, CY =— AX+word word=0000H-FFFFH
Add the 16-bit immediate data specified in the second
operand to the register pair AX contents in binary.
Set the carry flag if a carry is generated as a
result of the addition. Reset the carry flag if no
carry is generated. .

Flag operation: T

s 'z 'ac 'p/vicy

X X X v X

ADDW saddrp, #word

Function:

Flag operation: T

(saddrp), CY =— (saddrp)+word saddrp=FE20H-FF1EH
word=0000H-FFFFH

Add the 16-bit immediate data specified in the second
operand to the contents of the 2-byte area of the
short direct memory addressed in the first operand in
binary. Set the carry flag if a carry is generated
as a result of the addition. Reset the carry flag if
no carry is generated.

Describe the short direct memory address or label in

the first operand saddrp as it is (even address
only).

z 'AC 'pP/V'CY

p.4 b4 v X

S

18-147
I tu2?525 0104743 518 IE

ADDW sfrp, #word

Function:

Flag operation: T

sfrp, CY -— sfrp+word word=0000H-FFFFH

Add the 16-bit immediate data specified in the second
operand to the contents of the special function
register specified in the first operand in binary.
Set the carry flag if a carry is generated as a
result of the addition. Reset the carry flag if no
carry is generated.

s 'z 'ac 'p/v'cY
X X X v X

ADDW rp, rpl

Function:

Flag operation: T

rp, CY =-— 1rp+rpl

Add the contents of the 16-bit register pair speci-
fied in the second operand to the contents of the
16-bit register pair specified in the first operand
in binary. Set the carry flag if a carry is generat-
ed as a result of the addition. Reset the carry flag
if no carry is generated.

s 'z 'ac 'p/v'cy
X X X \'4 X

ADDW AX, saddrp

Function:

AX, CY -— AX+(saddrp) saddrp=FE20H-FF1EH

Add the contents of the 2-byte area of the short
direct memory addressed in the second operand to the
register pair AX contents in binary. Set the carry
flag if a carry is generated as a result of the
addition. Reset the carry flag if no carry is gener-
ated.

18-148
M Lu2?7525 0104744 454 EE

Flag operation: I

Describe the short direct memory address or label in

the second operand saddrp as it is (even address
only).

S 'z 'AC 'p/vicy

X X X \' X

ADDW AX, sfrp

Function:

Flag operation: ,

AX, CY =~— BAX+sfrpP

Add the contents of the 16-bit special function
register specified in the second operand to the
registr pair AX contents in binary. Set the carry
flag if a carry is generated as a result of the

addition. Reset the carry flag if no carry is gener-
ated.

s 'z 'ac "p/vicy

X b 4 v X

ADDW saddrp, saddrp

Function:

(saddrp), CY =— (saddrp)+(saddrp)
saddrp=FE20H-FF1EH
Add the contents of the 2-byte area of the short
direct memory addressed in the second operand to the
contentes of the 2-byte area of the short direct
memory addressed in the first operand in binary. Set
the carry flag if a carry is generated as a result of
the addition. Reset the carry flag if no carry is
generated.
Describe the short direct memory address or label in
each of the first and second operands saddrp as it is
(even address only).

18-149
B Lu42?525 0104745 390 WA

Flag operation: T

s 'z 'AC 'p/V'CY
X X X A\ X

SUBW AX, #word

Function:

Flag operation: T

AX, CY -— AX-word word=0000H-FFFFH

Subtract the 16-bit immediate data specified in the
second operand from the register pair AX contents.
Set the carry flag if a borrow is generated as a
result of the subtraction. Reset the carry flag if
no borrow is generated.

s 'z 'ac 'p/vV'cy
X b4 X v X

SUBW saddrp, #word

Function:

Flag operation: T

(saddrp), CY =— (saddrp)-word saddrp=FE20H-FF1EH
word=0000H-FFFFH

Subtract the 16-bit immediate data specified in the
second operand from the contents of the 2-byte area
of the short direct memory addressed in the first
operand. Set the carry flag if a borrow is generated
as a result of the subtraction. Reset the carry flag
if no borrow is generated.

Describe the short direct memory address or label in
the first operand saddrp as it is (even address
only).

7z 'AC 'p/vV'CY

b 4 X v X

S

18-150
M L427525 0L047u4b 227 N

SUBW sfrp, #word

Function: sfrp, CY — sfrp-word word=0000H-FFFFH
Subtract the 16-bit immediate data specified in the
second operand from the contents of the 16-bit spe-
cial function register specified in the first oper-
and. Set the carry flag if a borrow is generated as
a result of the subtraction. Reset the carry flag if
no borrow is generated.

Flag operation: T

SUBW rp, rpl

Function:

Flag operation: T

z 'AC 'P/V'CY

b4 X X A" b4

rp, CY =— rp-rpl

Subtract the contents of the 16-bit register pair
specified in the second operand from the contents of
the 16-bit register pair specified in the first
operand. Set the carry flag if a borrow is generated
as a result of the subtraction. Reset the carry flag
if no borrow is generated.

SUBW AX, saddrp

Function:

s 'z 'ac 'p/vicy
X x V x
AX, CY =—— AX-(saddrp) saddrp=FE20H-FF1EH

Subtract the contents of the 2-byte area of the short
direct memory addressed in the second operand from
the register pair AX contents. Set the carry flag if
a borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.
Describe the short direct memory address or label in
the second operand saddrp as it is (even address
only).

18-151
M L427525 0104747 163 HE

Flag operation: T

s 'z 'ac 'p/v'cy
X X X v X

SUBW AX, sfrp

Function:

AX, CY =-— BAX-(sfrp) :

Subtract the contents of the 16-bit special function
register specified in the second operand from the
register pair AX contents. Set the carry flag if a
borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.

Flag operation: I

s 'z 'ac 'p/v'cY
X X X \"4 X

SUBW saddrp, saddrp

Function:

(saddrp), CY -=— (saddrp)-(saddrp)
saddrp=FE20H-FF1EH

Subtract the contents of the 2-byte area of the short
direct memory specified in the second operand from
the contents of the 2-byte area of the short direct
memory specified in the first operand. Set the carry
flag if a borrow is generated as a result of the
subtraction. Reset the carry flag if no borrow is
generated.

Describe the short direct memory address or label in
each of the first and second operands saddrp as it is

(even address only).

Flag operation: T

s 'z 'ac 'p/vicy
X X b 4 v b4

18-152
B Lue?525 0104748 OTT N

CMPW AX, #word

Function: AX-word —=— word=0000H-FFFFH
Subtract the 16-bit immediate data specified in the
second operand from the register pair AX contents.
Set the carry flag if a borrow is generated as a
result of the subtraction. Reset the carry flag if
no borrow is generated.
After the CMPW instruction is executed, the register
pair AX contents do not change.

Flag operation: T

7z 'AC 'P/V'CY

X X v X

CMPW saddrp, #word

Functions:

Flag operation: T

(saddrp)-word saddrp=FE20H-FF1EH
word=0000H-FFFFH
Subtract the 16-bit immediate data specified in the
second operand from the contents of the short direct
memory addressed in the first operand. Set the carry
flag if a borrow is generated as a result of the
subtraction. Reset the carry flag if no borrow is
generated.
After the CMPW instruction is generated, the short
direct memory contents do not change.
Describe the short direct memory address or label in
the first operand saddrp as it 1is (even address
only).

z 'AC 'P/V'CY

X X v b4

S

18-153
B bLu2?525 010u?49 T3L WM

Description example: CMPW OFE50H, #8000H ; Branch to address

BGT $JMP indicated by label
JMP if the contents
of memory addresses
FE51H and FE50H are
greater than 8000H.

CMPW sfrp, #word

Function:

Flag operation:

CMPW rp, rpl

Function:

sfrp-word word=0000H-FFFFH
Subtract the 16-bit immediate data specified in the
second operand from the contents of the 16-bit spe-
cial function register specified in the first oper-
and. Set the carry flag if a borrow is generated as
a result of the subtraction. Reset the carry flag if
no borrow is generated.

After the CMPW instruction is executed, the contents
of the 16-bit special function register specified in

the first operand do not change.

s 'z 'ac 'p/vicy

X b4 X \'4 X

rp-rpl

Subtract the contents of the 16-bit registr pair
specified in the second operand from the contents of
the 16-bit register pair specified in the first
operand. Set the carry flag if a borrow is generated
as a result of the subtraction. Reset the carry flag
if no borrow is generated.

After the CMPW instruction is executed, the contents
of the register pairs specified in the first and
second operands do not change.

18-154
B L427?525 0104750 758 WA

Flag operation: T

s 'z 'ac 'p/v'cCY

X X v X

CMPW AX, saddrp

Function:

Flag operation: T

AX-(saddrp) saddrp=FE20H-FF1EH
Subtract the contents of the 2-byte area of the short
direct memory specified in the second operand from the
register pair AX contents. Set the carry flag if a
borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.

After the CMPW instruction is executed, the register
pair and short direct memory contents do not change.
Describe the short direct memory address or label in

the second operand saddrp as it 1is (even address
only).

z 'AC 'P/V'CY

X X v X

CMPW AX, sfrp

Function:

Flag operation:

AX-sfrp

Subtract the contents of the 16-bit special function
register specified in the second operand from the
register pair AX contents. Set the carry flag if a
borrow is generated as a result of the subtraction.
Reset the carry flag if no borrow is generated.

After the CMPW instruction is executed, the contents
of the register pair AX and the 16-bit special func-

tion register specified in the second operand do not
change.

s "z 'ac 'p/vicy

b 4 X X v b 4

18-155
B Ly2?525 0104751 694 WM

CMPW saddrp, saddrp

Function:

Flag operationé T

(saddrp)-(saddrp) | saddrp=FE20H-FF1EH

Subtract the contents of the 2-byte area of the short
direct memory addressed in the second operand from
the contents of the 2-byte area of the short direct
memory addressed in the first operand. Set the carry
flag if a borrow is generated as a result of the
subtraction. Reset the carry flag if no borrow is
generated.

After the CMPW instruction is executed, the short
direct memory contents do not change.

Describe the short direct memory address or label in
each of the first and second operands saddrp as it is

(even address only).

s 'z 'ac "p/vicy

X X X \'4 x

18-156
B L427525 0104?52 S20 Em

18.6.5 Multiplication and division instructions

MULU rl

Function: AX =— A x rl

Multiply the A register contents by the contents of

the 8-bit register specified in the operand and set
the result in the register pair AX.

Flag operation: No change

DIVUW rl

Function: AX, rl =— BAX + 1

Divide the register pair AX contents by the contents
of the 8-bit register specified in the operand and
set the quotient in the register pair AX and the
remainder in the register specified in the operand.

Flag operation: No change

MULUW rpl

Function: AX, rpl -— AX x rpl
Multiply the registr pair AX contents by the contents
of the 16-bit register pair specified in the operand
and set the high-order 16 bits of the result in the
register pair AX and the low-order 16 bits in the

16-bit register pair specified in the operand.

Flag operation: No change

18-157
M L427525 0104753 u4g? HE

DIVUX rpl

Function: AXDE, rpl -— AXDE + rpl

Divide the contents of the register pair AX (high-
order 16 Dbits) and register pair DE (low-order 16
bits), (32-bit data), by the contents of the 16-bit
register pair specified in the operand and set the
quotient in the register pair AX (high-order 16 bits)
and register pair DE (low-order 16 bits) and the
remainder in the 16-bit register pair specified in
the operand.

Flag operation: No change

18-158
B Ly27525 0L04754 373 IE

18.6.6 Signed multiplication instruction

MULW rpl

Function: AX, rpl -— AX x rpl (signed)
Multiply the register pair AX contents by the con-
tents of the 16-bit register pair specified in the
operand with sign and set the high-order 16 bits of
the result in the register pair AX and the low-order

16 bits in the 16-bit register pair specified in the
operand.

Flag operation: No change

18-159
B Lu27?525 0104?55 23T MR

18.6.7 Increment and decrement‘instructions

INC rl

Function: rl —— ril+l
Increment the contents of the 8-bit register speci-

fied in the operand by one.

Flag operation:
g op s 'z 'ac 'p/vicY

X X X v

INC saddr

Function: (saddr) —— (saddr) +1 saddr=FE20H-FF1FH
Increment the contents of the short direct memory

addressed in the operand by one.
Describe the short direct memory address or label in

the operand saddr as it is.

Flag operation:
g °p s 'z 'ac "'p/vicy

p. ¢ X ‘V

example: INC, TBl;Add one to the contents of the
short direct memory addressed by label

TB1.

Description

18-160
B Ly27525 0L047?56 17L IM

DEC rl

Function: rl —=-— rl-1

Decrement the contents of the 8-bit register speci-

fied in the operand by one.

Flag operation:
g P s 'z 'ac "p/vicy

b.4 X v

DEC saddr

Function: (saddr) -— (saddr) -1 saddr=FE20H~FF1FH

Decrement the contents of the short direct memory

addressed in the operand by one.
Describe the short direct memory address or label

the operand saddr as it is.

Flag operation:
g °p s 'z 'ac 'p/vicy

X X X v

INCW rp2
Function: rp2 -— rp2+l

Increment the contents of the 16-bit register

specified in the operand by one.

Flag operation: No change

Description example: INCW DE;DE —— DE+1

18-161
B Ly2?525 0104757 D02 W

in

pair

INCW saddrp

(saddrp) =— (saddrp)+l saddrp=FE20H-FF1lEH
Increment the contents of the 2-byte area
short direct memory addressed in the operand by one
Describe the short direct memory address or label
the operand saddr as it is (even address only).

Function:
of the

in

Flag operation: No change

DECW rp2

Function: rp2 -— rp2-1
Decrement the contents of the 16-bit

specified in the operand by one.

register pair

Flag operation: No change

Description example: DECW HL;HL -— HL-1

18-162
B byc?525 0104758 Ty9 WA -

DECW saddrp

(saddrp) =— (saddrp)-1 saddrp=FE20H-FF1EH
Decrement the contents of the 2-byte area
short direct memory addressed in the operand by one.
Describe the short direct memory address or label in
the operand saddrp as it is (even address only).

Function:
of the

Flag operation: No change

18-163
B L427525 0104759 9485 IE

18.6.8 Shift and rotate instructions

ROR rl, n
Function: (CY, rlq -=— rlg, rlp ;1 =— rly) xn n=0-7
7 0
Rotate the contents of the 8-bit register specified
in the first operand right as many bits as specified
by the 3-bit immediate data described in the second
operand. Transfer the LSB contents of the 8-bit
register to the MSB and also set the LSB contents in
the carry flag. (However, when n=0, the operation is
not performed.)
Flag operation: -
g°p s 'z 'aC 'P/VCY
P x
ROL rl, n
Function: (CY, rlg =— rlq, rlp,; = rly) xn n=0-7
7 0

Flag operation:

= :

Rotate the contents of the 8-bit register specified
in the first operand left as many bits as specified
by the 3-bit immediate data described in the second
operand. Transfer the MSB contents of the 8-bit
register to the LSB and also set the MSB contents in
the carry flag. (However, when n=0, the operation is

not performed.)

s 'z 'ac 'p/vicy
P x

18-164
B Lu27525 0104760 LT? IM

RORC rl, n

Function: (CY —-— rlyg, rl, -— CY, rly.1 ~— rlp) xn n=0-7

Rotate the contents of the 8-bit register specified

7 0

in the first operand right as many bits as specified
by the 3-bit immediate data described in the second
operand through the carry flag.

Flag operation: T

s 'z 'ac Tp/vicy

P x

ROLC rl, n

Function: (CY =~— rlq, rlg —-— CY, rlpyp — rlp) xn n=0-7

Rotate the contents of the 8-bit register specified
in the first operand left as many bits as specified
by the 3-bit immediate data described in the second
operand through the carry flag.

Flag operation: T

s 'z 'ac 'p/vicy
P x
SHR rl, n
Function: (CY —-— rlg, rlqy = 0, rigp.y — rly) x n n=0-7
7 0

-

18-165
B bu2?525 010476) 533 HE

Flag operation:

Shift the contents of the 8-bit register specified in
the first operand right as many bits as specified by
the 3-bit immediate data described in the second
operand. Shift the LSB contents of the 8-bit regis-
ter to the carry flag and set 0 in the MSB. (Howev-
er, when n=0, the operation is not performed.)

s 'z 'aC 'p/V'CY
X X 0 P x

Description example: SHR R1l, 1l;Halve the A register contents

SHL rl, n

Function:

Flag operation: T

(set the remainder in CY).

(CY =— rlq, rlg =— 0, rlp,; = rlp) xn n=0-7
7 0
|oYfe—i=- 0
Shift the contents of the 8-bit register specified in
the first operand left as many bits as specified by
the 3-bit immediate data described in the second
operand. Shift the MSB contents of the 8-bit regis-
ter to the carry flag and set 0 in the LSB. (Howev-

er, when n=0, the operation is not performed)

%2 'AC 'P/V'CY

X X 0 P x

Description example: SHL R1l4, 3;Left the L register contents

SHRW rpl, n

left three bits. Set the bit 5 contents
before the shift in the carry flag.

Function: (CY -=— rply, rpljg =— 0, rply_; = rply) x n n=0-7

15 4]

Y — cY

18-166
M L427525 0L04?L2 4°T I

Shift the contents of the 16-bit register pair speci-
fied in the first operand right as many bits as
specified by the 3-bit immediate data described in
the second operand. Shift the LSB contents of the
16-bit register pair to the carry flag and set 0 ‘in

the MSB. (However, when n=0, the operation is not
performed.)

Flag operation:
g op T2 'ac 'p/viCY

X 0 P x

SHLW rpl, n

Function: (CY -—— rpl;g, rplyg -— 0, rply,; — rply) x n n=0-7
15 0

lcy|-— o

Shift the contents of the 16-bit register pair speci-

fied in the first operand left as many bits as speci-
fied by the 3-bit immediate data described in the
second operand. Shift the MSB contents of the 16-bit
register pair to the carry flag and set 0 in the LSB.

(However, when n=0, the operation is not performed.)

Flag operation: T

s 'z 'ac 'p/vV'CY

X 0 P x

Description example: SHLW RPO, 1;Double the AX register pair

contents.

ROR4 [rpl]

Function: A3_g — (rpl)s_g- (rPl)y_q4 — A3_q:

(rpl)s_g — (xPl)7_4
7 4 3 0] 7 4 3 0
Unchange-—
Al e ? (rpl)
18-167

M Ly27v525 0104?63 306 IE

Rotate the low-order four bits of the A register and
the high-order four bits and low-order four bits of
the memory addressed in the operand right four bits.
(A register bits 7-4 are not affected.)

Description example: ROR4[HL];

Before execution 0O 0 0 0j0 0 1 0 01 0 110 0 1 1

After execution 0 0 0 0f{0 0 1 1 0 0 0 1}/0 1 0 1

ROL4 [rpl]

Function:

A ' (HL)
7 4 3 o 7 4 3 0

Az.o = (rPl)7.4, (rpl)3z_g = A3_g.
(rpl)7_4 = (xrPl)3_p

7 4 3 0 7 4 3 0
- Unchange- (rp1)

able L f

Rotate the low-order four bits of the A register and
the high-order four bits and low-order four bits of

the memory addressed in the operand left four bits.
(A register bits 7-4 are not affected.)

Flag operation: No change

18-168
B L427525 01047b4 2u2 W

18.6.9 BCD adjustment instructions

ADJBA .

Function: Judge the contents of the A register, carry f£flag
(CY), and auxiliary carry flag (AC) and make decimal
adjustments as listed in Table 18-7.

This instruction is significant only after decimal
(BCD) data pieces are added together.
Table 18-7 Decimal Data Adjustment (ADJBA Instruction)
After adjustment
Condition Operation
CY AC
A3_0S9 | A7.4%59 and CY¥Y=0 | A =— A 0 0
AC=0
Aq_4210 or CY=1 A —-— A+60H 1 0
A3_0;10 A7_4<9 and CyY=0 A —-— A+06H 0 1
=0
AC Aq_459 or C¥=1 | A —=— A+66H 1 1
Aq_429 and CY=0 | A —-— A+06H 0 1
AC=1 : '
Ag_4210 or CY=1] | A —— A+66H 1 1
Flag operation:
g °p "z 'ac 'p/vicy

X b 4 b4 P x

18-169
M Luy2?7525 0104765 189 W

ADJBS

Function: Judge the

(CY), and auxiliary carry flag (AC) and make decimal

contents of the A register,

adjustments as listed in Table 18-8.

This instruction is significant only after decimal
(BCD) data pieces are subtracted together.

carry flag

Table 18-8 Decimal Data Adjustment (ADJBS Instruction)

After adjustment

Condition Operation
CcY AC

A3_0§.9 A7_4_5.9 and CY=0 A -— A 0 0
AC=0 '

Aq_4210 or CY=1 A -=— A-60H 1 0
Aj3_0210 A_4<9 and CY=0 | A -— A-06H 0 1

AC=0

Aq_429 or CY=1 A -— A-66H 1 1

Aq_459 and CY=0 A - A-06H 0 1

Aq_4210 or CY=1 A -~— A-66H 1 1

Flag operation: I

s 'z 'ac 'p/V'CY
X x X P x
18-170

B bL427525 0104766 015 I

18.6.10 Data conversion instruction
CVTBW

Function: e When A5=0
X =— A, A -— 00H
« When Aq=1
X =-— A, A =— FFH
Extend the signed 8-bit data in the A register to the
signed 16-bit data in the AX register. (See Fig.
18-10)

Flag operation: No change
Fig. 18-10 Data Conversion by CVTBW Instruction

(a) When A4=0

7)

A register Lolx'lxlx|x|xlx|x]

i

A X
15 8 17 0
Ax Lofofofofofofofofo]x]xTxTxTx]x]x]
(b) When Aq=1
| A
7 0

A register [1] x x| x [%] x]x]

)
v LG LG

18-171
B buye2?525 0104767 T51 WE

18.6.11 Bit manipulation instructions

MOV1 CY, saddr.bit

Function: CY =— (saddr.bit) saddr=FE20H-FF1FH
bit=0-7
Transfer the contents of the short direct memory bit
addressed in the second operand to the carry flag.
Describe the short direct memory bit address or label
in the operand saddr.bit as it is.

Flag operation: T

s 'z 'ac "p/v'cy

X

MOVl CY, sfr.bit

Function: CY —=— sfr.bit bit=0-7
Transfer the contents of the bit of the special
function register specified in the second operand,
addressed by the 3-bit immediate data to the carry
flag.

Flag operation: T

s 'z 'ac 'p/vicy

X

MOVl CY, A.bit

Function: CY —-— A.bit bit=0-7
Transfer the contents of the A register bit addressed
by the 3-bit immediate data in the second operand to
the carry flag.

Flag operation: T

s 'z 'ac 'p/vicy

X

18-172
M L427525 0LO47LA 996 WM

MOV1 CY, X.bit

Function:

Flag operation: T

CY -— X.bit bit=0-7

Transfer the contents of the X register bit addressed
by the 3-bit immediate data in the second operand to
the carry flag.

z 'ac 'p/v'CY
X

S

MOV1 CY, PSWH.bit

Function:

Flag operation: ,

CY —=— PSWyh.bit bit=0-7

Transfer the contents of the bit of the high-order
eight bits of the program status word (PSW), ad-
dressed by the 3-bit immediate data in the second
operand to the carry flag.

2 'AC 'P/V'CY

X

S

MOV1 CY, PSWL.bit

Function:

Flag operation: T

CY -— PSWy.bit bit=0-7

Transfer the contents of the bit of the low-order
eight bits of the program status word (PSW), ad-
dressed by the 3-bit immediate data in the second
operand to the carry flag.

z 'AC 'P/V'CY
X

S

18-173
B Ly27?525 010u4?L9 &2y W

MOV1 saddr.bit, CY

Function:

(saddr.bit) =— CY saddr=FE20H-FF1FH

bit=0-7
Transfer the carry flag contents to the short direct
memory bit addressed in the first operand.
Describe the short direct memory bit address or label
in the operand saddr.bit as it is.

Flag operation: No change

MOVl sfr.bit, CY

Function:

sfr.bit -— CY bit=0-7

Transfer the carry flag contents to the bit of the
special function register specified in the first
operand, addressed by the 3-bit immediate data.

Flag operation: No change

MOV1 A.bit,

Function:

1004

A.bit =— CY bit=0-7

Transfer the carry flag contents to the A register
bit addressed by the 3-bit immediate data in the
first operand.

Flag operation: No change

MOVl X.bit,

Function:

Cy

X.bit =-— CY bit=0-7

Transfer the carry flag contents to the X register
bit addressed by the 3-bit immediate data in the
first operaﬁd.

18-174
M k427525 0104770 S4b BN

Flag operation: No change

MOV1 PSWH.bit, CY

Function:

PSWy.bit -— CY bit=0-7
Transfer the carry flag contents to the bit of the
high-order eight bits of the program status word

(PSW), addressed by the 3-bit immediate data in the
first operand.

Flag operation: No change

MOV1 PSWL.bit, CY

Function:

PSWr .bit =— CY bit=0-7

Transfer the carry flag contents to the bit of the
low-order eight bits of the program status word
(PSW), addressed by the 3-bit immediate data in the

" first operand.

Flag operation: No change

AND]1 CY, saddr.bit

Function:

Flag operation:

CY —=— CY A (saddr.bit) saddr=FE20H-FF1FH

bit=0-7
AND the carry flag contents with the contents of the
short direct memory bit addressed in the second
operand and set the result in the carry flag.
Describe the short direct memory bit address or label
in the operand saddr.bit as it is.

"z "ac 'p/vicy

X

S

18-175
W bLy27525 0LOu?71L udc N

AND1l CY, /saddr.bit

Function:

Flag operation: T

CY —=— CY A (saddr.bit) saddr=FE20H-FF1FH

bit=0-7
AND the carry flag contents with the inversion con-
tents of the short direct memory bit addressed in the
second operand and set the result in the carry flag.
Describe the short direct memory bit address or label
in the operand saddr.bit as it is.

Z 'AC 'P/V'CY

X

S

AND1 CY, sfr.bit

Function:

Flag operation: T

CY = CYAsfr.bit bit=0-7

AND the carry flag contents with the contents of the
bit of the special function register specified in the
second operand, addressed by the 3-bit immediate data
in the second operand and set the result in the carry

flag.

Zz 'AC 'P/V'CY

X

S

AND1 CY, /sfr.bit

Function:

CY =-— CYAsfr.bit bit=0-7
AND the carry flag contents with the inversion con-

- tents of the bit of the special function register

specified in the second operand, addressed by the 3-
bit immediate data in the second operand and set the
result in the carry flag. '

18-176
B Lu27525 0104772 319 -

Flag operation:

s 'z 'ac 'p/v'icy

X

AND1 CY, A.bit

Function:

Flag operation:

CY =— CYAA.bit bit=0-7
AND the carry flag contents with the contents of the
A register bit addressed by the 3-bit immediate data

in the second operand and set the result in the carry
flag.

"'z 'ac 'p/v'cy

X

S

AND1 CY, /A.bit

Function:

Flag operation:

CY =-— CYAA.bit bit=0-7

AND the carry flag contents with the inversion
contents of the A register bit addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

"'z 'ac 'p/vicy

X

S

AND1 CY, X.bit

Function:

Flag operation:

CY -— CYAX.bit bit=0-7
AND the carry flag contents with the contents of the
X register bit addressed by the 3-bit immediate data

in the second operand and set the result in the carry
flag.

"'z 'ac 'psvicy

X

S

18-177
B L42?525 0104773 255 W

AND1 CY, /X.bit

Function:

Flag operation: -

CY -— CY AX.Dbit bit=0-7

AND the carry flag contents with the inversion con-
tents of the X register bit addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

7z 'AC 'P/V'CY
X

AND1 CY, PSWH.bit

Function:

Flag operation: T

CY —-— CYA PSWy.bit bit=0-7

AND the carry flag contents with the contents of the
bit of the high-order eight bits of the program
status word (PSW), addressed by the 3-bit immediate
data in the second operand and set the result in the

AND1 CY, /PSWH.bit

Function:

Flag operation:

carry flag.
s ' z 'ac 'p/v'CY
X
CY =— CY APSWy.bit bit=0-7

AND the carry flag contents with the inversion
contents of the bit of the high-order eight bits of
the program status word (PSW), addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

s 'z 'AC p/V'CY

X

18-178
B Ly27525 0104774 191 N

AND1 CY, PSWL.bit

Function:

Flag operation:

CY =— CY A PSWf,.bit bit=0-7

AND the carry flag contents with the contents of the
bit of the low-order eight bits of the program status
word (PSW), addressed by the 3-bit immediate data in

the second operand and set the result in the carry
flag.

"'z 'ac "p/vicy

X

S

AND1 CY, /PSWL.bit

Function:

Flag operation: T

CY =— CY A PSW,.bit bit=0-7

AND the carry flag contents with the inversion con-
tents of the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

z 'AC 'p/v'CY
X

S

OR1 CY, saddr.bit

Function:

CY =— CY V (saddr.bit) saddr=FE20H-FF1FH

bit=0-7
OR the carry flag contents with the contents of the
short direct memory bit addressed in the second
operand and set the result in the carry flag.
Describe the short direct memory bit address or label
in the operand saddr.bit as it is.

18-179
B Lu2?7525 0104775 D258 IW

Flag operation: T

OR1 CY, /saddr.bit

Function:

Flag operation: T

s 'z 'ac 'p/V'CY
X
- CY =— CY V (saddr.bit) saddr=FE20H-~FF1FH

bit=0-7
OR the carry flag contents with the inversion con-
tents of the short direct memory bit addressed by the
3-bit immediate data in the second operand and the
result in the carry flag.
Caution: Describe the short direct memory bit ad-
dress or label in the operand saddr.bit as
it is.

s 'z 'ac 'p/v'cy

X

OR1 CY, sfr.bit

Function:

Flag operation: I

CY =— CY V sfr.bit bit=0-7

OR the carry flag contents with the contents of the
bit of the special function register specified in the
second operand, addressed by the 3-bit immediate data
in the second operand and set the result in the carry
flag.

s 'z ac 'P/VCY

X

18-180
BN LY427525 0L04776 Thy EE

ORl CY, /sfr.bit

Function:

Flag operation: T

CY -— CY V sfr.bit bit=0-7

OR the carry flag contents with the inversion con-
tents of the bit of the special function register
specified in the second operand, addressed by the 3-
bit immediate data in the second operand and set the
result in the carry flag.

z 'AC 'P/V'CY

X

S

OR1l CY, A.bit

Function:

Flag operation: T

CY =-— CYAA.bit bit=0-7
OR the carry flag contents with the contents of the A
register bit addressed by the 3-bit immediate data in

the second operand and set the result in the carry
flag.

z 'ac 'p/v'cy

X

S

OR1 CY, /A.bit

Function:

Flag operation:)

CY -—— CY V A.bit bit=0-7

OR the carry flag contents with the inversion con-
tents of the A register bit addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

7z 'AC 'pP/V'CY

X

S

18-181
B b4y2?525 0L0u4??? 970 WA

ORl CY, X.bit

Function: CY -— CY V X.bit bit=0-7
OR the carry flag contents with the contents of the X
register bit addressed by the 3-bit immediate data in
the second operand and set the result in the carry
flag.

Flag operation: T

s 'z 'ac 'p/vicy

X

ORl CY, /X.bit

Function: CY —-— CY V X.bit bit=0-7
OR the carry flag contents with the inversion con-
tents of the X register bit addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

Flag operation: T

s 'z 'ac 'p/v'cY

X

OR1 CY, PSWH.bit

Function: CY -— CY V PSWy.bit bit=0-7
OR the carry flag contents with the contents of the
bit of the high-order eight bits of the program
status word (PSW), addressed by the 3-bit immediate
data in the second operand and set the result in the
carry flag.

Flag operation: T

s 'z 'ac 'p/v'cY

X

18-182
B buy2?7525 0104778 8437 WM

ORl1 CY, /PSWH.bit

Function:

Flag operation: I

CY -—— CY PSWy.bit bit=0-7

OR the carry flag contents with the inversion con-
tents of the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

2 'AC 'P/V'CY

X

S

OR1 CY, PSWL.bit

Function:

Flag operation: T

CY -— CY PSWp.bit bit=0-7

OR the carry flag contents with the contents of the
bit of the low-order eight bits of the program status
word (PSW), addressed by the 3-bit immediate data in

the second operand and set the result in the carry
flag.

z 'AC 'P/V'CY

X

S

OR1 CY, /PSWL.bit

Function:

Flag operation: T

CY —— CY V PSWp,.bit bit=0-7

OR the carry flag contents with the inversion con-
tents of the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

Zz 'AC 'P/V'CY
X

S

18-183
B Lu2?7525 0104779 7?73 M

XOR1l CY, saddr.bit

Function:

Flag operation: r

CY —=— CY ¥ (saddr.bit) saddr=FE20H-FF1FH

bit=0-7
Exclusive-OR the carry flag contents with the con-
tents of the short direct memory bit addressed in the
second operand and set the result in the carry flag.
Describe the short direct memory bit address or label

in the operand saddr.bit as it is.

7 'AC 'P/V'CY

X

S

XOR1 CY, sfr.bit

Function:

Flag operation: T

CY -— CY ¥ sfr.bit bit=0-7

Exclusive-OR the carry flag contents with the con-~
tents of the bit of the special function register
specified in the second operand, addressed by the 3-
bit immediate data in the second operand and set the

result in the carry flag.

z 'AC 'P/V'CY

X

S

XOR1l CY, A.bit

Function:

Flag operation: T

CY -— CY ¥ A.bit bit=0-7

‘Exclusive-OR the carry flag contents with the con-

tents of the A register bit addressed by the 3-bit
immediate data in the second operand and set the

result in the carry flag.

7z 'AC 'P/V'CY
X

S

18-184
B L4y2?525 0104780 495 EE

XOR1 CY, X.bit

Function:

Flag operation:

CY =-— CY ¥ X.bit bit=0-7
Exclusive-OR the carry flag contents with the con-
tents of the X register bit addressed by the 3-bit

immediate data in the second operand and set the
result in the carry flag.

"2 'ac 'p/vicy

X

S

XOR1 CY, PSWH.bit

Function:

Flag operation: ,

CY -—— CY ¥ PSWy.bit bit=0-7

Exclusive-OR the carry flag contents with the con-
tents of the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit

immediate data in the second operand and set the
result in the carry flag.

7z 'AC 'P/V'CY

X

S

XOR1l CY, PSWL.bit

Function:

CY -—— CY ¥ PSWp,.bit bit=0-7

Exclusive-OR the carry flag contents with the con-
tents of the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the second operand and set the
result in the carry flag.

Flag operation: T

S 'z 'AC 'P/V'CY
X

18-185
B bu2?525 0104781 321

SET1 saddr.bit

saddr=FE20H-FF1FH
bit=0-7
Set the short direct memory bit addressed

Function: (saddr.bit) —=— 1
in the

operand to 1.
Describe the short direct memory bit address or label

in the operand saddr.bit as it is.
Flag operation: No change

SET1 sfr.bit

Function: sfr.bit =— 1 bit=0-7
Set the bit of the special function register

fied in the operand, addressed by the 3-bit immediate

speci-

data in the operand to 1.
Flag operation: No change

SET1 A.bit

Function: A.bit —=— 1 bit=0-7
Set the A register bit addressed by the 3-bit immedi-

ate data in the operand to 1.
Flag operation: No change

SET1 X.bit
Function: X.bit =-— 1 bit=0-7

Set the X register bit addressed by the 3-bit immedi-

ate data in the operand to 1.

Flag operation: No change

18-186
B L427525 0L04782 2L HE

SET1 PSWH.bit

Function:

PSWy.bit —=— 1 bit=0-7

Set the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the operand to 1.

Flag operation: No change

SET1 PSWL.bit

Function:

PSWy.bit -— 1 bit=0-7

Set the bit of the low-order eight bits of the pro-
gram status word (PSW), addressed by the 3-bit imme-
diate data in the operand to 1. ’

Flag operation: No change

SET1 CY

Function:

Flag operation: T

CY -— 1
Set the carry flag to 1.

CLR1 saddr.bit

Function:

s 'z 'ac 'p/vicy
1
(saddr.bit) =-— 0 saddr=FE20H-FF1FH
bit=0-7

Reset the short direct memory bit addressed in the
operand to 0.

Describe the short direct memory bit address or label
in the operand saddr.bit as it is. '

Flag operation: No change

18-187
B Ly27525 0104783 1Ty WM

CLRl sfr.bit

Function: sfr.bit -— 0 bit=0-7
Reset the bit of the special function register speci-
fied in the operand, addressed by the 3-bit immediate
data in the operand to 0.

Flag operation: No change
CLR1 A.bit
Function: A.bit =-— 0 bit=0-7
Reset the A register bit addressed by the 3-bit
immediate data in the operand to 0.
Flag operation: No change
CLR1 X.bit
Function: X.bit -—0 bit=0-7
' Reset the X register bit addressed by the 3-bit
immediate data in the operand to 0.
Flag operation: No change
CLR1 PSWH.bit
Function: PSWy.bit — 0 bit=0-7
Reset the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit

immediate data in the operand to 0.

Flag operation: No change

18-188
M L427525 0104784 030 Wm

CLR1 PSWL.bit
Function: PSWp.bit —— 0 bit=0-7
Reset the bit of the low-order eight bits of the

program status word (PSW), addressed by the 3-bit
immediate data in the operand to 0.

Flag operation: The flag addressed in the operand is reset to 0.

CLR1 CY

Function: CY =— 0
Reset the carry flag to 0.

Flag operation: ,

s 'z 'ac '/vicy
0
NOT1 saddr.bit
Function: (saddr.bit) —=— (saddr.bit) saddr=FE20H-FF1FH

bit=0-7
Invert the contents of the short direct memory bit

addressed in the operand.
Describe the short direct memory bit address or label

in the operand saddr.bit as it is.
Flag operation: No change

NOT1 sfr.bit

Function: sfr.bit —=— sfr.bit bit=0-7
Invert the contents of the bit of the special func-
tion register specified in the operand, addressed by
the 3-bit immediate data in the operand.

Flag operation: No change

18-189
B Ly27525 0104785 T?7 I

NOT1 A.bit

Function: A.bit =— A.bit bit=0-7
Invert the contents of the A register bit addressed
by the 3-bit immediate data in the operand.

Flag operation: No change
NOT1 X.bit

Function: X.bit -— X.bit bit=0-7
Invert the contents of the X register bit addressed
by the 3-bit immediate data in the operand.

Flag operation: No change
NOT1 PSWH.bit

Function: PSWH.bit -~ PSWH.bit bit=0-7
Invert the contents of the high-order eight bits of
the program status word (PSW), addressed by the 3-bit

immediate data in the operand.
Flag operation: No change
NOT1 PSWL.bit
Function: PSWy.bit —-— PSWL.Bit ‘ bit=0-7
Invert the contents of the bit of the low-order eight
bits of the program status word (PSW), addressed by

the 3-bit immediate data in the operand.

Flag operation: The flag addressed in the operand is inverted.

18-190
B Ly27525 0LO478bL 903 WA

NOT1 CY

Function: CY -— CY
Invert the carry flag contents.

Flag operation: r

s 'z 'ac 'p/vicy

X

18-191
B L427525 0104787 84T W

18.6.12 Call and return instructions
CALL !addrls

Function: (SP-1) —=— (PC+3)y, (SP-2) =— (PC+3);, PC —— addrle,
SP -— SP-2 '

addr16=0000H-FDFFH

Save the top address of the next instruction (return

address) in the stack memory addressed by the stack

pointer (SP) and decrement the SP, then branch to the

address addressed by the 3-bit immediate data speci-
fied in the operand.

Caution: No instruction can be fetched from addresses FEQOH-
FFFFH. Do not describe any of the addresses in
addrls.

Flag operation: No change

CALLF laddrill

Function: (SP-1) =— (PC+2)y, (SP-2) =— (PC+2)p,

Pcls_ll -— 00001, Pclo_o —— fa, SP —— SP-2.

addrl11=0800H-0FFFH

Fig. 18-11 Data Flow when CALLF Instruction is BExecuted

7 3 2 0
OP fay
fﬁ]_
15 11 1048 7 0
PC| 00001
18-192

B Lu2?525 0104788 76L WM

Save the top address of the next instruction (return
address) in the stack memory addressed by the stack
pointer (SP) and decrement the SP, then branch to the
address addressed by the effective address made up of
11-bit immediate data fa in the operation code.

The call enable range is addresses 0800H-OFFFH only.
Describe the branch destination address directly with
a label or numeric value in the operand addrll by
considering the entry address range.

Flag operation: No change

CALLT ([addr5]

Function: (SP-1) —=— (PC+l)y, (SP-2) — (PC+1)q,,
PCy —-— (TPF, 000000001, ta, 1), PCy, —

(TPF, 000000001, ta, 0), SP —— SP-2
addr5=40H-7EH

18-193
Bl Lu427525 0104789 bl2 I

Fig. 18-12 Data Flow when CALLT Instruction is Executed

15 14 8 76 5 10
Effective address = TPF |0000000j01 ta
7 0
Effective address Low Adder.
Effective address +1 High Adder. Memory (branch destination
address table)
15 8 7 0
pC

Remarks:

Save the top address of the next instruction (return
address) in the stack memory addressed by the stack
pointer (SP) and decrement the SP, then set the
contents of the memory (branch destination address
table) addressed by the effective address made up of
5-bit immediate data ta in the operation code in the
program counter (PC) and branch to the address indi-

cated by the memory contents.

The branch destination address table must be placed
in addresses 0040H-~007FH.

Describe the branch destination address table address
directly with a label or numeric value in the operand
addrs.

The branch destination address table can be placed in
the external memory area (8040H-807FH) by setting the
TPF flag to 1.

Flag operation: No change

18-194
B 6427525 0104790 334 EW

Description example: CALL [TBL1l];Branch to the address ad-

CALL rpl

Function:

dressed by the contents of the
table specified by label TBL1.

(SP-1) =—— (BC+2)g, (SP-2) -— (PC+2),

Save the top address of the next instruction (return
address) in the stack memory addressed by the stack
pointer (SP) and decrement the SP, then set the
contents of the 16-bit register pair specified in the
operand in the program counter (PC) for a branch.

Flag operation: No change

CALL [rpl)

Function:

(SP-1) =— (PC+2)y, (SP-2) —— (PC+2)p,
PCy —=— (rpl+#l), PC;, —— (rpl), SP =—— SP-2

Save the top address of the next instruction (return
address) in the stack memory addressed by the stack
pointer (SP) and decrement the SP, then set the
contents of the 2-bit area of the memory addressed by
the contents of the 16-bit register pair specified in
the operand in the program counter (PC) for a branch.

Flag operation: No change

18-195
EM b427525 0104781 270 W

BRK

Function:

(SP-1) =— PSWy, (SP-2) =— PSW, (SP-3) =— (PC+l)y,
(SP-4) —— (PC+l), PC;, =— (003EH), PCy —-— (O003FH),
SP =—— SP-4, IE = 0

Save the top address of the next instruction (return
address) and the program status word (PSW in the
stack memory addressed by the stack pointer and
decrement the SP, then set the BRK instruction branch
destination address table (003EH and 003FH) contents
in the program counter (PC) for branch. Reset the IE
flag to 0 to disable the subsequent maskable inter-
rupt requests. (The BRK instruétion is acknowledged
even in the DI state (IE=0).

Flag operation: No change

RET

Function:

PC;, =~ (SP), PCy =— (SP+l), SP —— SP+2

Restore the contents of the stack memory addressed by
the stack pointer (SP) to the program counter, then

increment the SP contents.

Flag operation: No change

18-196
B Ly27525 0104792 107 =

RETB

Function: PCy —-— (SP), PCy —— (SP+l),
PSWp, —-— (SP+2), PSWy —-— (SP+3), SP —=— SP+4
Restore the contents of the stack memory addressed by
the stack pointer (SP) to the program counter (PS)
and program status word (PSW), then increment the SP
contents.
The RETB instruction is used to return from BRK

instruction or operation code trap.

Flag operation:
g op "'z 'ac 'p/vicy

R R R R R

Caution: To return from the interrupt service routine accompa-
nying BRK instruction or operation code trap, be sure
to use the RETB instruction.

If the RETI instruction is used, the interrupt con-
trol circuit does not operate normally.

RETI

Function: PC; =— (SP), PCy —=— (SP+l), PSW;, —— (SP+2),
PSWy —— (SP+3), SP —— SP+4
Restore the contents of the stack memory addressed by
the stack pointer (SP) to the program counter (PC)
and program status word (PSW), then increment the SP
contents.

The RETI instruction is used to return from interrupt
service routine.

Flag operation:
g °p S 2 'AC 'P/V'CY

R R R R R

Caution: To return from the interrupt service routine accompa-
nying BRK instruction or operation code trap, do not
use the RETI instruction.

18-197
B Lu2?525 0104793 043 WA

18.6.13 Stack handling instruction

PUSH sfrp

Function:

(sP-1) —=— sfry, (SP-2) -— sfry, SP —«— SP-2

Save the contents of the special function register
(register that can be handled in 16-bit units) in the
stack memory addressed by the stack pointer (SP),
then decrement the SP.

Flag operation: No change

PUSH post

Function:

{(S8P-1) =— posty, (SP-2) =— post;, SP —=— SP-2} x n
(n is the number of register pairs described as post)
Save the contents of the 16-bit register pair
specified in the operand in the stack memory, then
decrement the SP.

More than one register pair name can be described in
the operand post.

The save operation is performed starting at the
register pair assigned to bit 7 of the 8-bit immedi-
ate data in the second byte (Post Byte).

The upper half of the register pair is saved in the
stack addressed by (SP-2n+l) and the lower half is
saved in the stack addressed by (SP-2n).

Flag operation: No change

18-198
B b427525 0104794 TAT N

PUSH PSW

Function:

(SP-1) —— PSWy, (SP-2) —=— PSW;, SP —— SP-2

Save the program status word (PSW) contents in the
stack memory addressed by the stack pointer (SP) and
decrement the SP.

Flag operation: No change

PUSHU post

Function:

{(UP~1) —— posty, (UP-2) —— posty, UP —— UP-2} x n
(n is the number of register pairs described as post)
Save the contents of the 16-bit register pair speci-
fied in the operand in the memory addressed by the
user stack pointer (UP), then decrement the UP.
More than one register pair name can be described in
the operand post.

The save operation is performed starting at the
register pair assigned to bit 7 of the 8-bit immedi-
ate data in the second byte (Post Byte).

The upper half of the register pair is saved in the
memory addressed by (UP-2n+l) and the low half is
saved in the stack addressed by (UP-2n).

Flag operation: No change

POP sfrp

Function:

sfry —-— 8P, sfry —— (SP+1), SP =— SP+2

Restore the contents of the stack memory addressed by
the stack pointer (SP) to the special function regis-
ter (register that can be handled in 16-bit units),
then increment the SP.

Flag operation: No change

18-199
B Luy27525 0104795 91t W

POP post

Function:

{posty —-— (SP), posty =— (SP+l), SP = SP+2} x n
(n is the number of register pairs described as post)
Restore the contents of the stack memory addressed by
the stack pointer (SP) to the 16-bit register pair
Specified in the operand, then increment the SP.
More than one register pair name can be described in
the operand post.

The transfer operation is performed starting at the
register pair assigned to bit 0 of the 8-bit immedi-
ate data in the second byte (Post Byte). The con-
tents of the stack addressed by (SP+2n-2) are re-
stored to the lower half of the register pair and the
contents of the stack addressed by (SP+2n-1) are
restored to the upper half.

Flag operation: No change

POP PSW

Function:

PSW;, —— (SP), PSWy —=— (SP+l), SP —=— SP+2
Restore the contents of the stack memory addressed by
the stack pointer (SP) to the program status word
(PSW) and decrement the SP.

Flag operation: T

1 1 l
S Z AC P/V CY

R R R R R

18-200
E L427525 0104796 452 ER

POPU post

Function:

{post;, —=— (UP), posty —=— (UP+l), UP =-— UP+2} x n
(n is the number of register pairs described as post)
Restore the contents of the stack memory addressed by
the user stack pointer (UP) in the register pair
specified in the operand, then increment the UP.
More than one register pair name can be described in
the operand post.

The transfer operation is performed starting at the
register pair assigned to bit 0 of the 8-bit immedi-
ate data in the second byte (Post Byte). The con-
tents of the stack addressed by (UP+2n-2) are re-
stored to the lower half of the register pair and the
contents of the stack addressed by (UP+2n-1) are
restored to the upper half.

Flag operation: No change

MOVW SP, #woxrd

Function:

SP —~— word word=0000H-FDFEH (any desired addresses)
word=FEQOH-FFFEH (limited to even
addresses)

Transfer the 16-bit immediate data specified in the
second operand to the stack pointer (SP).

Flag operation: No change

MOVW SP, AX

Function:

SP —-— AX

Transfer the 16-bit register pair AX contents to the
stack pointer (SP).

When AX contains 0000H-FDFEH, any desired address can
be used, but when it contains FEOOH-FEFEH, only even
addresses can be used.

Flag operation: No change

18-201
B Lu27525 210u?97 799 M

MOVW AX, SP

Function: AX -— SP

Transfer the stack pointer (SP) contents to the 16-
bit register pair AX.

Flag operation: No change
INCW SP

Function: SP —=— SP+1
Increment the stack pointer (SP) contents by one.
If an interrupt is acknowledged when the address
stored in the SP is an odd address of FEOQOH-FEFFH, an
error may be caused. Therefore, be sure to set the
stored address to an even address.

Flag operation: No change
DECW SP

Function: SP -=— SP-1
Decrement the stack pointer (SP) contents by one.
If an interrupt is acknowledged when the address
stored in the SP is an odd address of FEOOH-FEFFH, an
error may be caused. Therefore, be sure to set the
stored address to an even address.

Flag operation: No change

18-202
B L42?525 0104798 k25 W

18.6.14 Special instructions

CHKL sfr

Function: (Pin level) ¥ (signal level at prestage of output
buffer)
Exclusive-OR the pin level with the signal level at
the prestage of the output buffer and set the result
in the flags S and 2.

Flag operation: T

s 'z 'ac 'p/v'cY

b 4 X P

CHKLA sfr

Function: A -=— (pin level) ¥ (signal level at presentage of
output buffer)
Exclusive-OR the pin level with the signal level at
the prestage of the output buffer and set the result
in the A register.

Flag operation:
g op ™2 Tac IP/VICY

X X P

18-203
B b427525 0104799 561 HM

18.6.15 Unconditional branch instructions

BR !addrlé
Function: PC —=— addrlé addrl16=0000H-FDFFH

Pransfer the 16-bit immediate data specified in the
operand to the program counter (PC) for a branch to
the address addressed by the PC.

A branch can be taken to memory addresses 0000H-
FDFFH.

Flag operation: No change

Caution: Instructions cannot be fetched from addresses FEOOH-
FFFFH. Do not describe any of the instructions in
addrlé6.

Description example: BR BLK3;Branch to the address indicated by
label BLK3.

BR rpl

Function: PCy —— rply, PC; —— rply,
Transfer the contents of the 16-bit register pair
specified in the operand to the program counter (PC)
for a branch to the address addressed by the PC.
A branch can be taken to memory addresses 0000H-

FDFFH.
Flag operation: No change

Caution: Instructions cannot be fetched from address FEOOH-
FFFFH. Do not set any of the addresses in rpl.

18-204
BN L427525 0104800 0O3 WE

BR [rpl]

Function:

PCy =— (rpl+l), PCy —=— (xpl)

Transfer the contents of the 2-byte area of the
memory addressed by the contents of the 16-bit
register pair specified in the operand to the program
counter (PC) for a branch to the address addressed by
the PC.

A branch can be taken to memory addresses 0000H-
FDFFH.

Flag operation: No change

Caution:

BR S$addrlé

Function:

Instructions cannot be fetched from address FEOOH-

FFFFH. Do not set any of the addresses in rpl.

PC —— PC+2+jdisp addrl6=(PC~126)- (PC+129)
Transfer the value resulting from adding 8-bit dis-
placement value jdisp in the second byte of the
operation code to the top address of the next in-
struction to the program counter (PC) for a branch to
the address addressed by the PC.

jdisp is handled as signed two’s complement data (-
128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

18-205
B b427525 0104801 THT HE

18.6.16 Conditional branch instructions

BC $addrleé6
BL $addrlé6

Punction:

PC —-— PC+2+jdisp if CY=1 addrl6=(PC-126)-(PC+129)
When the carry flag is 1, transfer the value result-
ing from adding 8-bit displacement value jdisp in the
second byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two’s complement data (-
128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BNC S$Saddrlé
BNL Saddrlé

Function:

PC —=— PC+2+jdisp if CY=0 addrl6=(PC-126)~-(PC+129)
When the carry flag is 0, transfer the value result-
ing from adding 8-bit displacement value jdisp in the
second byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé6
by considering the branch range.

Flag operation: No change

18-206
B Luy2?525 0104802 9486 ER

BZ S$addrlé6
BE Saddrlé

Function:

PC —— PC+2+jdisp if 2=1 addrl6=(PC-126)-(PC+129)
When the zero flag is 1, transfer the value resulting
from adding 8-bit displacement value jdisp in the
second byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrilé
by considering the branch range.

Flag operation: No change

Description example:

DEC OFE20H
BZ ¢ JgMp ¢ Decrement the contents of the memory

addressed by FE20H by one. When the
memory contains 0, branch to the address
indicated by label JMP. (However the
branch destination must range from "top
address of the next instruction -128"
to "top address +127".

18-207
B bLuy2v525 0104403 812 W

BNZ S$addrlé
BNE $addrlé

Function:

PC -— PC+2+jdisp if Z=0 addrl6=(PC-126)~(PC+129)
When the zero flag is 0, transfer the value resulting
from adding 8-bit displacement value jdisp in the
second byte of the operation code to the top address
of the néxt instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BV Saddrle
BPE $addrlé

Function:

PC -—— PC+2+jdisp if P/V=1 addrl6=(PC-126)-(PC+129)
When the parity/overflow flag is 1, transfer the
value resulting from adding 8-bit displacement value
jdisp in the second byte of the operation code to the
top address of the next instruction to the program
counter (PC) for a branch to the address addressed by
the PC.

jdisp is handled as signed two’s complement data
(~-128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

 18-208
B Lu27?525 0104804 759 EM

BNV Saddrlé6
BPO S$addrlé6

Function:

PC -—— PC+2+jdisp if P/V=0 addrl6=(PC-126)-(PC+129)
When the parity/overflow flag is 0, transfer the
value resulting from adding 8-bit displacement value
jdisp in the second byte of the operation code to the
top address of the next instruction to the program
counter (PC) for a branch to the address addressed by
the PC.

jdisp is handled as signed two’s complement data
(=128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly

with a label or numeric value in the operand addrlé6
by considering the branch range.

Flag operation: No change

BN $addrlé6

Function:

PC -— PCt+2+jdisp if S=1 addrl6=(PC-126)~-(PC+129)
When the sign flag is 1, transfer the value resulting
from adding 8-bit displacement value jdisp in the
second byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly

with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

18-209
B Lu4e?525 0104805 695

BP $addrlé

Function:

PC -— PC+2+jdisp if S=0 addrl6=(PC-126)~(PC+129)
When the sign flag is 0, transfer the value resulting
from adding 8-bit displacement value jdisp in the
second byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two'’s complement data
(=128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BGT $addrilé

Function:

PC -—— PC+3+jdisp if (P/V ¥ §) V 2=0
addrlé6=(PC-125)-(PC+130)
Exclusive-0OR the parity/overflow flag contents with
the sign flag contents and OR the result with the
zero flag contents. When the result of ORing is 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly

~with a label or numeric value in the operand addrlé6

by considering the branch range.

Flag operation: No change

18-210
B Lu27525 0104806 521 WE

Description example: CMP A, #0FH

BGE $addrlé

Function:

BGT $MR2 ;Branch to the address indicated
by label MR2 if the two’s com-
plement data in the A register
is greater than FH.

PC =-—— PC+3+jdisp if P/V ¥ S=0
addrl6=(PC-125)~(PC+130)
Exclusive-OR the parity/overflow flag contents with
the sign flag contents. When the result is 0, trans-
fer the value resulting from adding 8-bit displace-
ment value jdisp in the third byte of the operation
code to the top address of the next instruction to
the program counter (PC) for a branch to the address
addressed by the PC.
jdisp is handled as signed two'’s complement data
(=128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé6
by considering the branch range.

Flag operation: No change

18-211
B L427?525 0LO4807 4bd MR

BLT $addrlé

Function:

PC -— PC+3+jdisp if P/V ¥ S=1
addrl6=(PC-125)-(PC+130)
Exclusive-OR the parity/overflow flag contents with
the sign flag contents. When the result is 1, trans-
fer the value resulting from adding 8-bit displace-
ment value jdisp in the third byte of the operation
code to the top address of the nextvinstruction to
the program counter (PC) for a branch to the address
addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé

by considering the branch range.

Flag operation: No change

BLE $addrlé

Function:

PC -—— PC+3+jdisp if (P/V ¥ §) V 2Z=1
addrl6=(PC~125)-(PC+130)

Exclusive-OR the parity/overflow flag contents with
the sign flag contents and OR the result with zero
flag contents. When the result of ORing is 1,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.

jdisp is handled as signed two’s complement data

(-128 to +127) and bit 7 becomes a sign bit.

18-212
M b427525 0104808 3Ty W

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BH $addrlé

Function:

PC -— PC+3+jdisp if Z V CY=0
addrl6=(PC-125)-(PC+130)
OR the zero flag contents with the carry flag con-
tents. When the result is 0, transfer the value
resulting from adding 8-bit displacement value jdisp
in the third byte of the operation code to the top
address of the next instruction to the program coun-
ter (PC) for a branch to the address addressed by the
PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BNH $addrlé6

Function:

PC -— PC+3+jdisp if Z V CY=1
addrl6=(PC-125)-(PC+130)
OR the zero flag contents with the carry flag con-
tents. When the result is 1, transfer the value
resulting from adding 8-bit displacement value jdisp
in the third byte of the operation code to the top
address of the next instruction to the program coun-
ter (PC) for a branch to the address addressed by the
PC. .
jdisp is handled as signed two’'s complement data
(=128 to +127) and bit 7 becomes a sign bit.

18-213
BN 5427525 0104809 230 W

Describe the branch destination address directly with
a label or numeric value in the operand addrlé by
considering the branch range.

Flag operation: No change

BT saddr. bit, S$addrlé

Function:

PC -—— PC+3+jdisp if (saddr.bit) =1
addr16=(PC-125)-(PC+130)
saddr=FE20H-FF1FH
bit=0-7

When the short direct memory bit addressed in the

first operand is set to 1, transfer the value result-

ing from adding 8-bit displacement value jdisp in the
third byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.

jdisp is handled as signed two’s complement data

(=128 to +127) and bit 7 becomes a sign bit.

Describe the short direct memory bit address or label

in the first operand saddr.bit as it is and the

branch destination address directly with a label or
numeric value in the second operand addrlé by consid-
ering the branch range.

Flag operation: No change

18-214
B L4y27525 0104810 TS2 WA

BT sfr.bit, S$addrlsé

Function:

PC -— PC+4+jdisp if sfr.bit=1
addr16=(PC-124)-(PC+131)
bit=0-7

When the bit of the special function register
specified in the first operand, addressed by the 3-
bit immediate data in the first operand is set to 1,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the fourth byte of the
operation code to the top address of the next in-
struction to the program counter (PC) for a branch to
the address addressed by the PC.

jdisp is handled as signed two’s complement data

(-128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly

with a label or numeric value in the second operand

addrlé by considering the branch range.

Flag operation: No change

BT A.bit, $addrlé6

Function:

PC — PC+3+jdisp if A.bit=1
addrl6=(PC-125)-(PC+130)
bit=0-7
When the A register bit addressed by the 3-bit imme-
diate data in the first operand is set to 1, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.

18-215
M 42?525 0104811 999 W

Describe the branch destination address directly
with a label or numeric value in the second operand
addrlé by considering the branch range.

Flag operation: No change

Description example: BT A.3, $JMP1l;Branch to the address indi-
cated by label JMP1l if A
register bit 3 is "1".

BT X.bit, $addrlé

Functions PC -— PC+3+jdisp if X.bit=1
addrl6=(PC-125)-(PC+130)
bit=0-7
When the X register bit addressed by the 3-bit
immediate data in the first operand is set to 1,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

18-216
B Ly2?525 0104812 825 M

BT PSWH.bit,

Function:

Saddrleé

PC -— PC+3+jdisp if PSWy.bit=1
addrl6=(PC-125)-(PC+130)
bit=0-7

When the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 1,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.

jdisp is handled as signed two’s complement data

(-128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly

with a label or numeric value in the operand addrlé

by considering the branch range.

Flag operation: No change

BT PSWL.bit,

Function:

Saddrlé

PC —— PC+3+jdisp if PSWy.bit=1l
addrl6=(PC-125)-(PC+130)
bit=0-7

When the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 1,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.

jdisp is handled as signed two’s complement data

(=128 to +127) and bit 7 becomes a sign bit.

18-217
B 42?525 0104a13 761 mm

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range. '

Flag operation: No change

BF saddr.bit, S$addrlé

Function:

PC ~— PC+4+jdisp if (saddr.bit) =0
addrl6=(PC-124)-(PC+131)
saddr=FE20H-FF1FH
bit=0-7

When the short direct memory bit addressed in the

first operand is set to 0, transfer the value result-

ing from adding 8-bit displacement value jdisp in the
fourth byté of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.

jdisp is handled as signed two’s complement data

(-128 to +127) and bit 7 becomes a sign bit.

Describe the short direct memory bit address or label

in the first operand saddr.bit as it is and the

branch destination address directly with a label or
numeric value in the second operand addrl6é by consid-
ering the branch range.

Flag operation: No change

18-218 |
B L427525 0104814 LTA HN

BF sfr.bit,

Function:

$addrlé6

PC —-— PC+4+jdisp if sfr.bit=0
addrl6=(PC-124)-(PC+131)
bit=0-7

When the bit of the special function register speci-
fied in the first operand, addressed by the 3-bit
immediate data in the first operand is set to 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the fourth byte of the
operation code to the top address of the next in-
struction to the program counter (PC) for a branch to
the address addressed by the PC.

jdisp is handled as signed two’s complement data

(=128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly

with a label or numeric value in the operand addrlsé

by considering the branch range.

Flag operation: No change

BF A.bit, S$addrilse

Function:

PC —-—— PC+3+jdisp if A.bit=0
addrl6=(PC-125)-(PC+130)
bit=0-7
When the A register bit addressed by the 3-bit imme-
diate data in the first operand is set to 0, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the

program counter (PC) for a branch to the address
addressed by the PC.

jdisp is handled as signed two'’s complement data
(=128 to +127) and bit 7 becomes a sign bit.

18-219
B tuy27525 0104815 534 1N

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change
BF X.bit, $addrlé

Function¢ PC -—— PC+3+jdisp if X.bit=0
addrl6=(PC-125)-(PC+130)
bit=0-7
When the X register bit addressed by the 3-bit imme-
diate data in the first operand is set to 0, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

18-220
" M Lu427525 010481k 470 N

BF PSWH.bit, S$addrlé

Function:

PC -— PC+3+jdisp if PSWg.bit=0
addrl6=(PC-125)-(PC+130)
bit=0-7

When the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.

jdisp is handled as signed two’s complement data

(-128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly

with a label or numeric value in the operand addrlé

by considering the branch range.

Flag operation: No change

BT PSWL.bit, $addrlé

Function:

PC -— PC+3+jdisp if PSWy,.bit=0
addrl6=(PC-125)-(PC+130)
bit=0-7

When the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC.

jdisp is handled as signed two’s complement data

(-128 to +127) and bit 7 becomes a sign bit.

18-221
" Il bu2?525 010u4s1? 307 WM

Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BTCLR saddr.bit, $addrlé

Function:

PC -— PC+4+jdisp if (saddr.bit) =1
then clear
addrl6=(PC-124)~(PC+131)
saddr=FE20H-FF1FH
bit=0-7
when the short direct memory bit addressed in the
first operand is set to 1, transfer the value result-
ing from adding 8-bit displacement value jdisp in the
fourth byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the short direct memory bit address or label
in the first operand saddr.bit as it is and the
branch destination address directly with a label or
numeric value in the second operand addrlé by consid-
ering the branch range.

Flag operation: No change

18-222
" Ml b427525 0104818 243 M

BTCLR sfr.bit, Saddrle

Function: PC -— PC+4+jdisp if sfr.bit=1
then clear
addrlé=(PC-124)-(PC+131)
bit=0-7
When the bit of the special function register speci-
fied in the first operand, addressed by the 3-bit
immediate data in the first operand is set to 1,
transfer the value resulting from 8-bit displacement
value jdisp in the fourth byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC.
jdisp is handled as signed two’s complement data
(=128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change
BTCLR A.bit, S$addrlé

Function: PC -— PC+3+jdisp if A.bit=1
then clear
addrl6=(PC-125)-(PC+130)
bit=0-7
When the A register bit addressed by the 3-bit imme-
diate data in the first operand is set to 1, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC. Then, reset the bit to 0.

jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.

18-223
"M@ k427525 0104819 18T HE

Describe the branch destination address directly
with a label or numeric value in the operand addrlé6
by considering the branch range.

Flag operation: No change

BTCLR X.bit, $addrlé

Function:

PC — PC+3+jdisp if X.bit=1
then clear
addrl6=(PC-125)-(PC+130)
bit=0-7
When the X register bit addressed by the 3-bit imme-
diate data in the first operand is set to 1, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC. Then, reset the bit to 0.
jdisp is handled as signed two's complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

18-224
" El by427525 0104820 9T1 W

BTCLR PSWH.bit, S$addrlé

Function:

PC -—— PC+3+jdisp if PSWy.bit=1
then clear
addrl6=(PC-125)-(PC+130)
bit=0-7
When the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 1,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC. Then, reset the bit to
0.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BTCLR PSWL.bit, $addrlé

Function:

PC -—— PC+3+]jdisp if PSWy.bit=1
then clear
addrl6=(PC-125)-(PC+130)
bit=0-7
When the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 1,
transfer the value resulting from adding 8-~bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC. Then, reset the bit to
0.

18-225
- Ly27?525 0104821 &34 W

jdisp is handled as signed two'’s complement data
(128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly
with a label or numeric value in the operand addrlé6

by considering the branch range.

Flag operation: If the specified flag is "1", it is reset to 0.

Description example: BTCLR PSWL.3, $OF6EH;Reset UF flag to 0 if

the flag is "1" and
branch to address
F6EH.

BFSET saddr.bit, $addrlé

Function:

PC -—— PC+4+jdisp if (saddr.bit) =0
then set
addrl6=(PC-124)~-(PC+131)
saddr=FE20H-FF1FH
bit=0-7
When the short direct memory bit addressed in the
first operand is set to 0, transfer the value result-
ing from adding 8-bit displacement value jdisp in the
fourth byte of the operation code to the top address
of the next instruction to the program counter (PC)
for a branch to the address addressed by the PC.
Then set the addressed bit to 1.
jdisp is handled as signed two’s complement data
(=128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly with
a label or numeric value in the operand addrlé6 by
considering the branch range.

Flag operation: No change

18-226 |
" Bl LY27525 0104822 774 WA

BESET sfr.bit, $addrlsé

Function:

PC -—— PC+4+jdisp if sfr.bit=0
then set
addrl6=(PC-124)-(PC+131)
bit=0-7
When the bit of the special function register speci-
fied in the first operand, addressed by the 3-bit
immediate data in the first operand is set to 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the fourth byte of the
operation code to the top address of the next in-
struction to the program counter (PC) for a branch to
the address addressed by the PC. Then, set the
addressed bit to 1.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

BFSET A.bit, $addrlé6

Function:

PC -— PC+3+jdisp if A.bit=0
then set
addr16=(PC-125)-(PC+130)
bit=0-7
When the A register bit addressed by the 3-bit imme-
diate data in the first operand is set to 0, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC. Then, set the addressed bit to
1.

18-227
- El b427525 0104823 LOD HE

jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.

Describe the branch destination address directly
with a label or numeric value in the operand addrlé

by considering the branch range.

Flag operation: No change

BFSET X.bit, $addrlé

Function:

PC -— PC+3+jdisp if X.bit=0
then set
addrl6=(PC-125)-(PC+130)
bit=0-7
When the X register bit addressed by the 3-bit imme-
diate data in the first operand is set to 0, transfer
the value resulting from adding 8-bit displacement
value jdisp in the third byte of the operation code
to the top address of the next instruction to the
program counter (PC) for a branch to the address
addressed by the PC. Then, set the addressed bit to
1.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé

by considering the branch range.

Flag operation: No change

18-228
"l b42?525 0104824 547

BFSET PSWH.bit, $addrlé

Function:

PC -— PC+3+jdisp if PSWy.bit=0
then set
addrlé=(PC~125)-(PC+130)
bit=0-7
When the bit of the high-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC. Then, set the addressed
bit to 1.
jdisp is handled as signed two’s complement data
(=128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: No change

18-229
- El by2?525 0104825 483 W

BFSET PSWL.bit, $addrlé

Function:

PC -— PC+3+jdisp if PSWy.bit=0
then set
addrl6=(PC-125)-(PC+130)
bit=0-7
When the bit of the low-order eight bits of the
program status word (PSW), addressed by the 3-bit
immediate data in the first operand is set to 0,
transfer the value resulting from adding 8-bit dis-
placement value jdisp in the third byte of the opera-
tion code to the top address of the next instruction
to the program counter (PC) for a branch to the
address addressed by the PC. Then, set the addressed
bit to 1.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly
with a label or numeric value in the operand addrlé
by considering the branch range.

Flag operation: If the specified flag is "0", it is set to 1.

DBNZ r2, $addrlé6

Function:

r2 ~— r2-1, then PC -— PC+2+jdisp if r2#0
addr16=(PC-126)-(PC+129)
Decrement the contents of the 8-bit register speci-
fied in the first operand by one. If the result is
not 0, transfer the value resulting from adding 8-bit
displacement value jdisp in the second byte of the
operation code to the top address of the next in-
struction to the program counter (PC) for a branch to
the address addressed by the PC.
jdisp is handled as signed two’s complement data (-
128 to +127) and bit 7 becomes a sign bit.

18-230
"Il bye?525 0:0ua26L 31T IR

Describe the branch destination address directly with
a label or numeric value in the operand addrlég by
considering the branch range.

Flag operation: No change

DBNZ saddr,

Function:

Saddrilé

(saddr) -—— (saddr)-1 then PC -— PC+3+jdisp is
(saddr)#0

addrl6=(PC125)-(PC+130)

saddr=FE20H-FF1FH

Decrement the contents of the short direct memory
specified in the first operand by one. If the result
is not 0, transfer the value resulting from adding
8-bit displacement value jdisp in the third byte of
the operation code to the top address of the next
instruction to the program counter (PC) for a branch
to the address addressed by the PC.
jdisp is handled as signed two’s complement data
(-128 to +127) and bit 7 becomes a sign bit.
Describe the branch destination address directly with
a label or numeric value in the operand addrlé by
considering the branch range.

Flag operation: No change

18-231
" Hl b4yev525 0104827 256 IR

18.6.17 Context switching instruction

BRKCS RBEn

Function:

RBS2-0 -— n, PCy —— R5, PCy —— R4, R7 -—— PSWy,
R6 —— PSW;, RSS — 0, IE — 0 n=0-7

Set 3-bit immediate data N,_o in the operation code
in the register bank selection flag (RBS2-0) to
select register bank n described in the operand.
Exchange the contents of the 8-bit registers R5 and
R4 of the register bank and the program counter (PC)
and save the program status word (PSW) contents in
the 8-bit register R7 and R6 for a branch to the
address set in R5 and R4. Then, reset the RSS and IE
flags to 0.

Flag operation: No change

RETCS !addrlé

Function:

PCy —=—— R5, PCp, —=— R4, RS = addrléy,
R4 —— addrléyp, PSWy —-— R7, PSWy, —— R6
addrl16=0000H~-FDFFH
Transfer the contents of 8-bit register R7 to R4 in
the register bank specified during execution of the
RETCS instruction to the program status word (PSW)
and program counter (PC) and return to the address
set in RS and R4. Then, transfer the 16-bit immedi-
ate data specified in the operand to R5 and R4.
The RETCS instruction is effective for context
switching when an interrupt request occurs; it is
used to return from context switching branch
instruction. addrl6é described in the operand becomes
branch destination address when the same register
bank is again specified by the context switching
function.

18-232
" H bLuy2?525 0104828 192 W

Flag operation: T

Caution 1:

2 'AC 'P/V CY
R R R R R

Instructions cannot be fetched from address FEQQH-
FFFFH. Do not describe any of the addresses in
addrlse.

To return from BRKCS instruction branch processing,
do not use the RETCS instruction.

RETCSB !addrlé

Function:

Flag operation: I

Caution:

PCy —=— R5, PC;, —=— R4, R5 —=— addrléy,

R4 — addrléy, PSWy —-— R7, PSW; —-— R6
addrl6=0000H-FDFFH

Transfer the contents of 8-bit register R7 to R4 in

the register bank specified during execution of the

RETCSB instruction to the program status word (PSW)

and program counter (PC).

Then, return to the address set in R5 and R4.

The BRKCSB instruction is used to return from the

BRKCS instruction (See 13.5).

s 'z 'ac 'p/vicy
R R R R R

To return from the interrupt service routine started
by executing the BRKCS instruction, be sure to use
the RETCSB instruction.

If the RETCS instruction is used, the interrupt
control circuit does not operate normally.

18-233
- W@ k427525 0104829 029 W

18.6.18 String instructions

MOVM [DE+],A
MOVM [DE-],A

Function:

{(DE) =— A, DE =-— DE+l/-1, C— C-1}

End if C=0

Transfer the A register contents to the memory ad-
dressed by the register pair DE and increment/decre-
ment the register pair DE contents by one. Then,
decrement the C register contents by one. Repeat
these steps until the C register contains 0.

Flag operation: No change

Description example:

MOVBK [DE+],
MOVBK [DE-],

Function:

MOV R2, #0OH ; C =—— OH

MoV R1l, #00H ;s A —-— 00H

MOVW RP6, #FEOOH ; DE -— FEOOH

MOVM [DE+],A ; Clear RAM of FEOOH-FEFFH.
[HL+]
[HL-]

{(DE) =— (HL), DE =— DE+1/-1, HI, = HL+1/-1,

C -— C-1}

End if C=0

Transfer the contents of the memory addressed by the
register pair HL to the memory addressed by the
register pair DE and increment/decrement the register
pair DE and HL contents by one. Then, decrement the
C register contents by one. Repeat these steps until
the C register contains 0.

Flag operation: No change

18-234
M L42?525 0104830 440 mm

Description example:
MOV R2, #10H
MOVW RP6, #3000H
MOVW RP7, #5000H
MOVBK [DE+],[HL+]

XCHM [DE+],A
XCHM [DE-},A

-

-

~e

C -— 10H

DE -— 3000H

HL -— 5000H

Transfer the contents of memory
addresses 5000H-500FH to memory
addresses 3000H-300FH.

Function: {(DE) = A, DE —— DE+1/-1, C =— C-1}

End if C=0

Exchange the contents of the A register and the

memory addressed by the register pair DE and incre-

ment/decrement the register pair DE contents by one.

Then, decrement the C register contents by one.

Repeat these steps until the C register contains 0.

Flag operation: No change

" Description example:
MOV R2, #10H
MOV R1l, #00H
MOVW RP6, #3050H
XCHM [DE+],A

C -— 10H

A -=— 00H

DE -— 3050H

; Shift the contents of memory
addresses 3050H-305FH backward
one address (Address 3050H
contents are set to 0.)

18-235

B Lu27525 0104431 747 W

XCHBK [DE+],
XCHBK [DE-1,

Function:

[HL+]
[HL-]

{(DE) == (HL), DE —-— DE+l1/-1, HL -— HL+1/-1,

c -— C-1}

End if C=0

Exchange the contents of the memory addressed by the
register pair HL to the memory addressed by the
register pair DE and increment/decrement the register
pair DE and HL contents by one. Then, decrement the
C register contents by one. Repeat these steps until

the C register contains 0.

Flag operation: No change

CMPME [DE+],
CMPME [DE-],

Function:

Flag operation: ,

A
A

{(DE)-A, DE —— DE+1/-1, C —=— C-1}

End if C=0 or 2=0

Compare the A register contents with the contents of
the memory addressed by the register pair DE, incre-
ment/decrement the register pair DE contents by one,
and decrement the C register contents by one.

Repeat these steps until a mismatch is found as a
result of the comparison or the C register contains
0.

Execution of the instruction does not affect the A
register contents or the contents of the memory
addressed by the register pair DE.

s 'z 'ac 'p/V'CY

X X X v X

18-236
B Lu27525 0104832 13 WM

CMPBKE [DE+], [HL+)
CMPBKE [DE-], [HL-]

Function:

Flag operation: T

{(DE)-(HL), DE =— DE+1/-1, HL =— HL+1/-1, C —-—
C~1}

End if C=0 or 2=0

Compare the contents of the memory addressed by the
register pair HL with the contents of the memory
addressed by the register pair DE, increment/decre-
ment the register pair DE and HL contents by one, and
decrement the C register contents by one. Repeat
these steps until a mismatch is found as a result of
the comparison or the C register contains 0.
Execution of the instruction does not affect the
contents of the memory locations addressed by the
register pairs HL and DE.

Zz 'AC 'P/V'CY

X X v X

S

CMPMNE [DE+],A
CMPMNE [DE-],A

Function:

{(DE)-A, DE —=— DE+1/-1, C —=— C-1}

End if C=0 or Z=1

Compare the A register contents with the contents of
the memory addressed by the register pair DE, incre-
ment/decrement the register pair DE contents by one,
and decrement the C register contents by one.

Repeat these steps until a match is found as a result
of the comparison or the C register contains 0.
Execution of the instruction does not affect the A
register contents or the contents of the memory
addressed by the register pair DE.

18-237
B Lu2?525 0104833 55T WA

Flag operation:
g °p s 'z 'ac "p/vicy

X X X v b 4

Description example:

MOV R2, #00H ; C -— (0OH

MOVW RP6, #3000H ; DE -— 3000H

CMPMNE[DE+], A

BZ : Branch to the address indicated

by label JMP if any of address-
es 3000H-30FFH contains the
same value as the A register.

CMPBKNE [DE+], [HL+]
CMPBKNE [DE-], [HL-]

Function: {(DE)-(HL), DE —=— DE+1/-1, HL -=— HL+1/-1, C =
c-1} |
End if C=0 or 2Z=1
Compare the contents of the memory addressed by the
register pair HL with the contents of the memory
addressed by the register pair DE, increment/decre-
ment the register pair DE and HL contents by one, and
decrement the C register contents by one. Repeat
these steps until a match is found as a result of the
comparison or the C register contains 0.
Execution of the instruction does not affect the
contents of the memory locations addressed by the
register pairs HL and DE.

Flag operation:
3P s 'z 'AC 'P/V'CY

X X p 4 v p.4

18-238
B Lye?525 0104434 49: I

CMPMC [DE+],A
CMPMC [DE-],A

Function:

Flag operation: T

{(DE)-A, DE -— DE+l1/-1, C -— C-1}

End if C=0 or CY=0

Compare the A register contents with the contents of
the memory addressed by the register pair DE, incre-
ment/decrement the register pair DE contents by one,
and decrement the C register contents by one.

Repeat these steps until the contents of the memory
addressed by the register pair DE becomes greater
than the A register contents as a result of the
comparison or the C register contains 0.

Execution of the instruction does not affect the A
register contents or the contents of the memory

addressed by the register pair DE.

s 'z 'aC 'p/V'CY

b4 b 4 b 4 v b 4

CMPBKC [DE+], [HL+]
CMPBKC [DE-], [HL-]

Function:

{(DE)-(HL), DE =~— DE+1/-1, HL —=— HL+1/-1, C =
c-1}

End if C=0 or CY=0

Compare the contents of the memory addressed by the
register pair HL with the contents of the memory
addressed by the register pair DE, increment/decre-
ment the register pair DE and HL contents by one, and
decrement the C register contents by one. Repeat
these steps until the contents of the memory ad-
dressed by the register pair DE become greater than
the contents of the memory addressed by the register
pair HL as a result of the comparison or the C regis-
ter contains 0.

18-239
@ bu2?525 0104835 322 A

Flag operation: T

Execution of the instruction does not affect the
contents of the memory locations addressed by the
register pairs HL and DE.

s 'z 'ac 'p/v'cy
b 4 X x v X

CMPMNC [DE+],A
CMPMNC [DE-],A

Function:

Flag operation: T

{(DE)~A, DE =-— DE+1/-1, C —=— C-1}

End if C=0 or C¥=1

Compare the A register contents with the contents of
the memory addressed by the register pair DE, incre-
ment/decrement the register pair DE contents by one,
and decrement the C register contents by one.

Repeat these steps until the A register contents
become greater than the éontents of the memory ad-
dressed by the register pair DE as a result of the
comparison or the C register contains 0.

Execution of the instruction does not affect the A
register contents or the contents of the memory

addressed by the register pair DE.

s 'z 'ac 'p/VcY
X X X v b4

Description example:

MOV R2, #00H ; C =— OOH

MOVW RP6, #8000H ; DE -— 8000H

CLR1 CYy ; CY — 0

CMPMNC [DE+], A

BC SIMP ; Branch to the address indicated

by label JMP if any of address-
es 8000H-80FFH contains a
greater value than the A regis-
ter.

18-240

B b4y2?525 0104436 269 WA

CMPBKNC [DE+], [HL+]
CMPBKNC [DE-], [HL-]

Function:

{(DE)~(HL), DE =— DE+1/-1, HL -=— HL+1/-1,

C =-— C-1} '

End if C=0 or CyY=1

Compare the contents of the memory addressed by the
register pair HL with the contents of the memory
addressed by the register pair DE, increment/decre-
ment the register pair DE and HL contents by one, and
decrement the C register contents by one. Repeat
these steps until the contents of the memory ad-
dressed by the register pair HL become greater than
the contents of the memory addressed by the register
pair DE as a result of the comparison or the C regis-
ter contains 0.

Execution of the instruction does not affect the
contents of the memory locations addressed by the
register pairs HL and DE

Flag operation: T

s 'z 'ac 'p/v'CY

X X X v X

18-241
B Lu2?525 CLOH&3? LTS M

18.6.19 CPU control instructions

MOV STBC, #byte

Function: STBC -— byte byte=00H-FFH
Set the 8-bit immediate data specified in the second
operand in the standby control register (STBC).
This instruction has a special operation code to set
the STBC register. |

Flag operation: No change
Description example: MOV STBC, #01H,Set HALT mode.
MOV WDM, #byte
Function: WDM -— byte byte=00H-FFH
Set the 8-bit immediate data specified in the second
operand in the watchdog timer mode register (WDM) .
This instruction has a special operation code to set
the WDM register.
Flag operation: No change
SWRS
Function: RSS -— RSS
Invert the register set selection flag (RSS) con-

tents.

Flag operation: No change

18-242
B 42?525 0104438 031 W

SEL RBn

Function:

RBS2-0 =— n, RSS =-— 0 n=0-7

Set the 3-bit immediate data in the operation code
(Ng.2) in the register bank selection flag (RBSO-
RBS2) to select the register bank described in the
operand. Reset the register set selection flag (RSS)
to 0.

Flag operation: No change

SEL RBn, ALT

Function:

RBS2-0 -— n, RSS —-— 1 n=0-7

Set the 3-bit immediate data in the operation code
(Ng.2) in the register bank selection flag (RBSO-
RBS2) to select the register bank described in the
operand. Set the register set selection flag (RSS)
to 1.

Flag operation: No change

NOP

Function:

No Operation
Perform no operation and consume two clocks.

Flag operation: No change

18-243
B L427525 0104839 T74 M

EI

Function: IE —=— 1
Set the interrupt request enable flag (IE) to 1.
Whether maskable interrupt acknowledge is enabled or
disabled is controlled by setting the interrupt
request control registers.

Flag operation: No change

DI

Function: IE -~— 0
Reset the interrupt request enable flag (IE) to 0 to
disable acknowledge of every maskable interrupt.

Flag operation: No change

18-244
M Ly2?525 0LO4840 797 W

CHAPTER 4 BLOCK FUNCTION OUTLINE

4.1 Execution Unit

The execution unit (EXU) executes address calculation, arithmetic
and logical operations, data transfer, etc., under the micropro-
gram control.

The EXU contains 256-byte main RAM. Eight register banks are
mapped in the EXU internal main RAM.

4,2 Bus Control Unit

The bus control unit (BCU) starts necessary bus cycles based on
the physical address provided by the execution unit (EXU). When
the EXU does not request bus cycle start, the BCU generates an
address for prefetch and fetches a given instruction. The code
of the prefetched instruction is read into a 3-byte instruction
queue.

4.3 Program Memory/Data Memory
This block consists of 32K-byte program memory (ROM) and 768-byte
data memory (peripheral RAM). However, the uPD78330 does not

contain the ROM.

If the EA pin of the uPD78334, 78P334 is fixed low, an access to
the uPD78334 internal mask ROM, PROM can be inhibited.

4-1
B buy2?525 0104289 COs WM

4.4 Ports
Table 4-1 lists the uPD78334 port types.

Every port can be handled bit-wise as well as in 8-bit units for
extremely versatile control. In addition to digital port opera-
tion, the ports function of on-chip hardware input/output pins as

dual function.

4-2
B L42?525 0104290 82T WA

Table 4-1

Port Function and Dual Function

Port name Port function Dual function
Port 0 8-bit input/output port. Real-time output port (RTP) in
Input or output mode can be | control mode.
specified bit-wise.
i
Port 1 8-bit input/output port. Real-time pulse unit (RPU)
Input or output mode can be | output in control mode.
specified bit-wise.
External interrupt input and
real-time pulse unit (RPU)
Port 2 8-bit input-only port. capture trigger input and
count pulse input in control
mode.
8-bit input/output port. §eria1 interfacg (UA%T or CSI)
Port 3 Input or output mode can lnfut/oquut and real-time
be specified bit-wise. pulse unit (RPU) output in
control mode
8-bit input/output port. Address/data bus (AD0-AD7)
Port 4(Note 1) Input or output mode can be | when memory is expanded
specified in 8-bit units.
8-bit input/output port. Address bus (A8-Al5) when
Port 5(Note 1) | 1nput or output mode can memory is expanded.
be specified bit-wise.
Port 7 8-bit input-only port. A/D converter analog input in
control mode
Port 8 8-bit input-only port. A[D converter analog input in
control mode.
6-bit input/output port. Control signal output when
Input or output mode can be | memory is expanded is
Port 9({Note 2) | gpnecified bit-wise. connected. PWM signal output
in control mode.
Note 1: uPD78330 ports 4 (P4) and 5 (P5) function only as ad-

dress/data bus and address bus respectively.

Note 2:

and WR signals.

The low-order two bits of port 9 (P9) function as the RD
When the uPD78334 EA pin is fixed

the pins also function as the RD and WR signals.

4-3

B b42?7525 0104291 76L EE

low,

4.5 Real-Time Pulse Unit (RPU)

The real-time pulse unit (RPU) consists of the following hardware
devices:

* 18/16-bit timer/counter x 1
18/16-bit compare registers x 5
18/16-bit capture registers x 3
18/16-bit capture/compare registers x 2
pulse output lines x 6

¢« 16-bit timer/counter x 3
l6-bit compare registers x 5
l6-bit capture register x 1
timer ocutput pins x 5

* Real-time output port x 8

The RPU can perform programmable pulse output and pulse interval
and frequency measurements.

The greatest feature of the real-time pulse unit lines in rich
and multifunctional timer pulse output. A total of six timer
pulse output lines such as toggle output, set output, and reset
output can be controlled independently. 1In addition, the real-
time output port output timing can be controlled.

The set and reset timings of real-time output port output are
also controlled.

4.6 A/D Converter

High-speeds, high-resolution 10-bit A/D (analog/digital) convert-
er is contained.

16 analog input lines (ANIO-ANI15) are contained and various
functions are provided conforming to application such as the
select mode, scan mode, and mix mode.

4-4
B 6427525 0104292 LT2

4.7 Serial Interface

Two independent serial interface channels of asynchronous serial
interface (UART) and clocked serial interface are provided.

Also, a baud rate generator common to both the channels is con-
tained.

On the asynchronous serial interface, data is transferred through
the TxD and RxD pins.

The clocked serial interface has the following two operation
modes :

e 3-line serial I/0 mode
Data is transferred through the three pins of serial clock
(SCK), serial input (SI), and serial output (S0).

» Serial bus interface (SBI) mode
Data is transferred through the two pins of serial clock (SCK)
and serial data bus (SBO or SBl).

4.8 Watchdog Timer

The watchdog timer is a free-running timer which has the nonmask-
able interrupt function to prevent software upset or deadlock. A
program error can be known by the fact that a watchdog timer
overflow interrupt (INTWDT) occurs or the watchdog timer output
pin (WDTO) goes low. If the output is connected to the RESET
pin, a program error can be prevented from causing an application
system error.

4.9 PWM Qutput Unit

Two 8-bit precision PWM signal outputs are contained. PWM output
can be used as digital-analog conversion output by connecting an
external low-pass filter, etc. It is appropriate for actuator
control signals of motors, etc.

4-5
M Ly27525 01C4e93 539 M

4.10 Interrupt Controller

The interrupt controller handles various interrupt requests
occurring from the peripheral hardware and the external (NMI and
INTPO-INTP6) in any mode of context switching, vectored inter-
rupt, and macro service. In addition, three interrupt priority
levels are programmable by the software.

4-6
M L427525 0104294 475 .

