# **NEC Microcomputers, Inc.**

## **NEC** μ PD8080AF μ PD8080AF-2 μ PD8080AF-1

### μPD8080AF 8-BIT N-CHANNEL MICROPROCESSOR FAMILY

DESCRIPTION The  $\mu$ PD8080AF is a complete 8-bit parallel processor for use in general purpose digital computer systems. It is fabricated on a single LSI chip using N-channel silicon gate MOS process, which offers much higher performance than conventional microprocessors (1.28  $\mu$ s minimum instruction cycle). A complete microcomputer system is formed when the  $\mu$ PD8080AF is interfaced with I/O ports (up to 256 input and 256 output ports) and any type or speed of semiconductor memory. It is available in a 40 pin ceramic or plastic package.

FEATURES

- 78 Powerful Instructions
  - Three Devices Three Clock Frequencies μPD8080AF – 2.0 MHz μPD8080AF-2 – 2.5 MHz μPD8080AF-1 – 3.0 MHz
     Direct Access to 54K Budge of Memory with
  - Direct Access to 64K Bytes of Memory with 16-Bit Program Counter
  - 256 8-Bit Input Ports and 256 8-Bit Output Ports
  - Double Length Operations Including Addition
  - Automatic Stack Memory Operation with 16-Bit Stack Pointer
  - TTL Compatible (Except Clocks)
  - Multi-byte Interrupt Capability
  - Fully Compatible with Industry Standard 8080A

\_\_\_\_

• Available in either Plastic or Ceramic Package

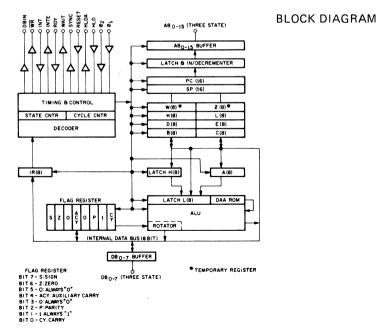
#### PIN CONFIGURATION

| A10 🗖       | 1  | $\bigcirc$ | 40 | A11            |
|-------------|----|------------|----|----------------|
| ∨ss ⊏       | 2  |            | 39 | A14            |
|             | 3  |            | 38 | A13            |
| D5 🗖        | 4  |            | 37 | A12            |
|             | 5  |            | 36 | A15            |
|             | 6  |            | 35 | Ag             |
| D3 🗖        | 7  |            | 34 | A <sub>8</sub> |
| D2          | 8  |            | 33 | A <sub>7</sub> |
|             | 9  | 00         | 32 | A <sub>6</sub> |
|             | 10 | μPD        | 31 | A <sub>5</sub> |
|             | 11 | 8080AF     | 30 | A4             |
| RESET       | 12 |            | 29 | A <sub>3</sub> |
| HOLD 🗖      | 13 |            | 28 | VDD            |
|             | 14 |            | 27 | A2             |
| φ2 <b>Π</b> | 15 |            | 26 | A1             |
|             | 16 |            | 25 | A              |
| DBIN 🗖      | 17 |            | 24 | WAIT           |
|             | 18 |            | 23 | READY          |
| SYNC 🗌      | 19 |            | 22 | Φ1             |
| Vcc 🗆       | 20 |            | 21 | HLDA           |
| 00          |    |            |    |                |

The  $\mu$ PD8080AF contains six 8-bit data registers, an 8-bit accumulator, four testable flag bits, and an 8-bit parallel binary arithmetic unit. The  $\mu$ PD8080AF also provides decimal arithmetic capability and it includes 16-bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The  $\mu$ PD8080AF utilizes a 16-bit address bus to directly address 64K bytes of memory, is TTL compatible (1.9 mA), and utilizes the following addressing modes: Direct; Register; Register Indirect; and Immediate.

The  $\mu$ PD8080AF has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.


The  $\mu$ PD8080AF also contains a 16-bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.

This processor is designed to greatly simplify system design. Separate 16-line address and 8-line bidirectional data buses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All buses, including the control bus, are TTL compatible.

Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address and data lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data buses.

The  $\mu$ PD8080AF has the capability to accept a multiple byte instruction upon an interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This allows the assignment of a separate location for each interrupt operation, and as a result no polling is required to determine which operation is to be performed.

NEC offers three versions of the  $\mu$ PD8080AF. These processors have all the features of the  $\mu$ PD8080AF except the clock frequency ranges from 2.0 MHz to 3.0 MHz. These units meet the performance requirements of a variety of systems while maintaining software and hardware compatibility with other 8080A devices.



# FUNCTIONAL DESCRIPTION

### PIN IDENTIFICATION

|                       |                 | PIN                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|-----------------------|-----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| NO.                   | SYMBOL          | NAME                                    | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1,<br>25-27,<br>29-40 | A15 - A0        | Address Bus<br>(output three-<br>state) | The address bus is used to address memory (up to 64K 8-bit words) or specify the I/O device number (up to 256 input and 256 output devices). A0 is the least significant bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 2                     | VSS             | Ground (input)                          | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 3-10                  | D7 - D0         | Data Bus (input/<br>output three-state) | The bidirectional data bus communicates between the processor,<br>memory, and I/O devices for instructions and data transfers. Dur-<br>ing each sync time, the data bus contains a status word that<br>describes the current machine cycle. D <sub>0</sub> is the least significant bit.                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 11                    | V <sub>BB</sub> | VBB Supply Voltage<br>(input)           | -5V ± 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 12                    | RESET           | Reset (input)                           | If the RESET signal is activated, the program counter is cleared.<br>After RESET, the program starts at location 0 in memory. The<br>INTE and HLDA flip-flops are also reset. The flags, accumulator,<br>stack pointer, and registers are not cleared. (Note: External syn-<br>chronization is not required for the RESET input signal which<br>must be active for a minimum of 3 clock periods.)                                                                                                                                                                                                                                        |  |  |  |  |  |
| 13                    | HOLD            | Hold (input)                            | HOLD requests the processor to enter the HOLD state. The HOLD state allows an external device to gain control of the $\mu$ PD8080AF address and data buses as soon as the $\mu$ PD8080AF has completed its use of these buses for the current machine cycle. It is recognized under the following conditions:<br>• The processor is in the HALT state.<br>• The processor is in the T2 or TW stage and the READY signal is active.<br>As a result of entering the HOLD state, the ADDRESS BUS (A15 – A0) and DATA BUS (D7 – D0) are in their high impedance state. The processor indicates its state on the HOLD ACKNOWLEDGE (HLDA) pin. |  |  |  |  |  |
| 14                    | INT             | Interrupt Request<br>(input)            | The $\mu$ PD8080AF recognizes an interrupt request on this line at<br>the end of the current instruction or while halted. If the<br>$\mu$ PD8080AF is in the HOLD state, or if the Interrupt Enable<br>flip-flop is reset, it will not honor the request.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 15                    | φ2              | Phase Two (input)                       | Phase two of processor clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 16                    | INTE (1)        | Interrupt Enable<br>(output)            | INTE indicates the content of the internal interrupt enable flip-<br>flop. This flip-flop is set by the Enable (EI) or reset by the<br>Disable (DI) interrupt instructions and inhibits interrupts from<br>being accepted by the processor when it is reset. INTE is auto-<br>matically reset (disabling further interrupts) during T <sub>1</sub> of the<br>instruction fetch cycle (M <sub>1</sub> ) when an interrupt is accepted and<br>is also reset by the RESET signal.                                                                                                                                                           |  |  |  |  |  |
| 17                    | DBIN            | Data Bus In<br>(output)                 | DBIN indicates that the data bus is in the input mode. This<br>signal is used to enable the gating of data onto the µPD8080AF<br>data bus from memory or input ports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 18                    | WR              | Write (output)                          | $\overline{WR}$ is used for memory WRITE or I/O output control. The data on the data bus is valid while the $\overline{WR}$ signal is active ( $\overline{WR}$ = 0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 19                    | SYNC            | Synchronizing Signal<br>(output)        | The SYNC signal indicates the beginning of each machine cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 20                    | Vcc             | VCC Supply<br>Voltage (input)           | +5V ± 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 21                    | HLDA            | Hold Acknowledge<br>(output)            | <ul> <li>HLDA is in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at:</li> <li>T<sub>3</sub> for READ memory or input operations.</li> <li>The clock period following T<sub>3</sub> for WRITE memory or OUTPUT operations.</li> <li>In either case, the HLDA appears after the rising edge of \$\phi_1\$ and high impedance occurs after the rising edge of \$\phi_2\$.</li> </ul>                                                                                                                                                                 |  |  |  |  |  |
| 22                    | φ1              | Phase One (input)                       | Phase one of processor clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 23                    | READY           | Ready (input)                           | The READY signal indicates to the $\mu$ PD8080AF that valid memory or input data is available on the $\mu$ PD8080AF data bus.<br>READY is used to synchronize the processor with slower memory or I/O devices. If after sending an address out, the $\mu$ PD8080AF does not receive a high on the READY pin, the $\mu$ PD8080AF enters a WAIT state for as long as the READY pin is low. (READY can also be used to single step the processor.)                                                                                                                                                                                          |  |  |  |  |  |
| 24                    | WAIT            | Wait (output)                           | The WAIT signal indicates that the processor is in a WAIT state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 28                    | VDD             | VDD Supply Voltage<br>(input)           | +12V ± 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                       |                 |                                         | scents interrupts on the second instruction following the EL This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

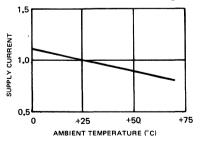
Note. ① After the El instruction, the μPD8080AF accepts interrupts on the second instruction following the El. This allows proper execution of the RET instruction if an interrupt operation is pending after the service routine.

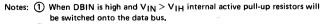
| •                                     |                   |
|---------------------------------------|-------------------|
| Operating Temperature                 | 0°C to +70°C      |
| Storage Temperature (Ceramic Package) | -65°C to +150°C   |
| Storage Temperature (Plastic Package) | -40°C to +125°C   |
| All Output Voltages ①                 | 0.3 to +20 Volts  |
| All Input Voltages ①                  |                   |
| Supply Voltages VCC, VDD and VSS ①    | -0.3 to +20 Volts |
| Power Dissipation                     |                   |
| Note: ① Relative to VBB.              |                   |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $*T_{a} = 25^{\circ}C$ 

 $T_a = 0^{\circ}C \text{ to } +70^{\circ}C, V_{DD} = +12V \pm 5\%, V_{CC} = +5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V,$ unless otherwise specified.


#### DC CHARACTERISTICS


ABSOLUTE MAXIMUM

**RATINGS\*** 

|                                                 |         |                     | LIMITS |                       |          |                                                                                                                                   |  |
|-------------------------------------------------|---------|---------------------|--------|-----------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| PARAMETER                                       | SYMBOL  | MIN                 | TYP    | MAX                   | UNIT     | TEST CONDITIONS                                                                                                                   |  |
| Clock Input Low<br>Voltage                      | VILC    | V <sub>SS</sub> - 1 |        | V <sub>SS</sub> + 0.8 | V,       |                                                                                                                                   |  |
| Clock Input High<br>Voltage                     | ∨інс    | 9.0                 |        | V <sub>DD</sub> + 1   | v        | e. <sup>4</sup>                                                                                                                   |  |
| Input Low Voltage                               | VIL     | Vss - 1             |        | V <sub>SS</sub> + 0.8 | v        |                                                                                                                                   |  |
| Input High Voltage                              | ViH     | 3.3                 |        | VCC + 1               | v        |                                                                                                                                   |  |
| Output Low Voltage                              | VOL     |                     |        | 0.45                  | V ·      | IOL = 1.9 mA on all outputs                                                                                                       |  |
| Output High Voltage                             | VOH     | 3.7                 |        |                       | v        | IOH = - 150 μA ②                                                                                                                  |  |
| Avg. Power Supply<br>Current (V <sub>DD</sub> ) | IDD(AV) |                     | 40     | 70                    | mA       |                                                                                                                                   |  |
| Avg. Power Supply<br>Current (V <sub>CC</sub> ) | ICC(AV) |                     | 60     | 80                    | mA       | tCY min                                                                                                                           |  |
| Avg. Power Supply<br>Current (V <sub>BB</sub> ) | BB(AV)  |                     | 0.01   | 1                     | mA       |                                                                                                                                   |  |
| Input Leakage                                   | կլ      |                     |        | ±10 (2)               | μA       | V <sub>SS</sub> ≤ V <sub>IN</sub> ≤ V <sub>CC</sub>                                                                               |  |
| Clock Leakage                                   | ICL     |                     |        | ±10 2                 | μA       | V <sub>SS</sub> ≤ V <sub>CLOCK</sub> ≤ V <sub>DD</sub>                                                                            |  |
| Data Bus Leakage<br>in Input Mode               | IDL ①   |                     |        | - 100<br>- 2 ②        | μA<br>mA | $\begin{array}{l} V_{SS} \leqslant V_{IN} \leqslant V_{SS} + 0.8V \\ V_{SS} + 0.8V \leqslant V_{IN} \leqslant V_{CC} \end{array}$ |  |
| Address and Data Bus<br>Leakage During HOLD     | IFL     |                     |        | +10<br>- 100 ②        | μA       | VADDR/DATA = VCC<br>VADDR/DATA = VSS + 0.45V                                                                                      |  |

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED (3)



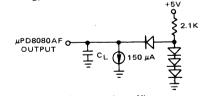


- 2 Minus (--) designates current flow out of the device,
- $(\overline{3}) \Delta I \text{ supply} / \Delta T_a = -0.45\% / C.$

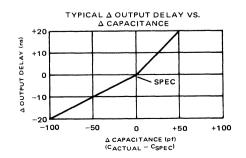
 $T_a = 25^{\circ}C, V_{CC} = V_{DD} = V_{SS} = 0V, V_{BB} = -5V.$ 

|                           |        | LIMITS |     |     |      |                        |
|---------------------------|--------|--------|-----|-----|------|------------------------|
| PARAMETER                 | SYMBOL | MIN    | ТҮР | MAX | UNIT | TEST CONDITIONS        |
| Clock Capacitance         | Сф     |        | 17  | 25  | pF   | f <sub>c</sub> = 1 MHz |
| Input Capacitance         | CIN    |        | 6   | 10  | pF   | Unmeasured Pins        |
| <b>Output Capacitance</b> | COUT   |        | 10  | 20  | pF   | Returned to VSS        |

#### CAPACITANCE


### AC CHARACTERISTICS µPD8080AF

 $T_{a}$  = 0° C to +70° C, V\_{DD} = +12V  $\pm$  5%, V\_{CC} = +5V  $\pm$  5%, V\_{BB} = -5V  $\pm$  5%, V\_{SS} = 0V, unless otherwise specified,


|                                                                  |                                 | 1    | LIMITS |                 |      |                         |
|------------------------------------------------------------------|---------------------------------|------|--------|-----------------|------|-------------------------|
| PARAMETER                                                        | SYMBOL                          | MIN  | TYP    | MAX             | UNIT | TEST CONDITIONS         |
| Clock Period                                                     | tcy 3                           | 0,48 |        | 2.0             | μsec |                         |
| Clock Rise and Fall Time                                         | t <sub>r</sub> , t <sub>f</sub> | 0    |        | 50              | nsec |                         |
| φ1 Pulse Width                                                   | tø1                             | 60   |        |                 | nsec |                         |
| φ2 Pulse Width                                                   | t <sub>ø2</sub>                 | 220  |        |                 | nsec |                         |
| Delay \$\$ to \$\$2                                              | <sup>t</sup> D1                 | 0    |        |                 | nsec |                         |
| Delay $\phi 2$ to $\phi 1$                                       | tD2                             | 70   |        |                 | nsec |                         |
| Delay $\phi$ 1 to $\phi$ 2 Leading Edges                         | <sup>t</sup> D3                 | 80   |        |                 | nsec |                         |
| Address Output Delay From $\phi 2$                               | tDA 2                           |      |        | 200             | nsec | a 100 F                 |
| Data Output Delay From $\phi 2$                                  | tDD 2                           |      |        | 220             | nsec | C <sub>L</sub> = 100 pF |
| Signal Output Delay From ¢1,<br>or ¢2 (SYNC, WR, WAIT,<br>HLDA)  | t <sub>DC</sub> ②               |      |        | 120             | nsec | CL = 50 pF              |
| DBIN Delay From $\phi$ 2                                         | <sup>t</sup> DF ②               | 25   |        | 140             | nsec |                         |
| Delay for Input Bus to Enter<br>Input Mode                       | <sup>t</sup> DI (1)             |      |        | <sup>t</sup> DF | nsec |                         |
| Data Setup Time During ¢1 and DBIN                               | <sup>t</sup> DS1                | 30   |        |                 | nsec |                         |
| Data Setup Time to ¢2 During<br>DBIN                             | tDS2                            | 150  |        |                 | nsec |                         |
| Data Hold Time From ¢2 During<br>DBIN                            | <sup>т</sup> рн (1)             | 1    |        |                 | nsec |                         |
| INTE Output Delay From $\phi 2$                                  | tie ②                           |      |        | 200             | nsec | CL = 50 pF              |
| READY Setup Time During $\phi 2$                                 | <sup>t</sup> RS                 | 120  |        |                 | nsec |                         |
| HOLD Setup Time to $\phi 2$                                      | tHS                             | 140  |        |                 | nsec |                         |
| INT Setup Time During $\phi$ 2<br>(During $\phi$ 1 in Halt Mode) | tis                             | 120  |        |                 | nsec |                         |
| Hold Time from $\phi 2$ (READY, INT, HOLD)                       | tн                              | 0    |        |                 | nsec |                         |
| Delay to Float During Hold<br>(Address and Data Bus)             | tFD                             |      |        | 120             | nsec |                         |
| Address Stable Prior to WR                                       | tAW 2                           | 6    |        |                 | nsec |                         |
| Output Data Stable Prior to WR                                   | tDW 2                           | 6    |        |                 | nsec |                         |
| Output Data Stable From WR                                       | twd 2                           | 0    |        |                 | nsec | CL = 100 pF: Addre      |
| Address Stable from WR                                           | twa ②                           | Ō    |        |                 | nsec | Data                    |
| HLDA to Float Delay                                              | the 2                           | 8    |        |                 | nsec | CL ≈ 50 pF: WR,         |
| WR to Float Delay                                                | twf 2                           | 9    |        |                 | nsec | HLDA, DBIN              |
| Address Hold Time after DBIN<br>during HLDA                      | <sup>т</sup> ан ②               | -20  |        |                 | nsec |                         |

Notes: ① Data input should be enabled with DBIN status, No bus conflict can then occur and data hold time is assured, t<sub>DH</sub> = 50 ns or t<sub>DF</sub>, whichever is less.

2 Load Circuit,



(3) Actual  $t_{CY} = t_{D3} + t_{r\phi 2} + t_{\phi 2} + t_{f\phi 2} + t_{D2} + t_{r\phi 1} > t_{CY}$  Min.



 $T_a = 0^{\circ}$ C to +70°C, V<sub>DD</sub> = +12V ± 5%, V<sub>CC</sub> = +5V ± 5%, V<sub>BB</sub> = -5V ± 5%, V<sub>SS</sub> = 0V, unless otherwise specified.

#### AC CHARACTERISTICS μPD8080AF-1

|                                                                 |                                 |      | LIMITS |                 |       |                               |
|-----------------------------------------------------------------|---------------------------------|------|--------|-----------------|-------|-------------------------------|
| PARAMETER                                                       | SYMBOL                          | MIN  | ТҮР    | MAX             | UNIT  | TEST CONDITIONS               |
| Clock Period                                                    | tcy 3                           | 0.32 |        | 2.0             | μsec  |                               |
| Clock Rise and Fall Time                                        | t <sub>r</sub> , t <sub>f</sub> | 0    |        | 25              | nsec  |                               |
| φ1 Pulse Width                                                  | tø1                             | 50   |        |                 | nsec  |                               |
| φ2 Pulse Width                                                  | t <sub>¢2</sub>                 | 145  |        |                 | nsec  |                               |
| Delay ø1 to ø2                                                  | <sup>t</sup> D1                 | 0    |        |                 | nsec  |                               |
| Delay φ2 to φ1                                                  | <sup>t</sup> D2                 | 60   |        |                 | nsec  |                               |
| Delay $\phi$ 1 to $\phi$ 2 Leading Edges                        | <sup>t</sup> D3                 | 60   |        |                 | nsec  |                               |
| Address Output Delay From $\phi 2$                              | tda ②                           |      |        | 150             | nsec  | CL = 50 pF                    |
| Data Output Delay From ¢2                                       | tDD 2                           |      |        | 180             | nsec  | CL - 50 pr                    |
| Signal Output Delay From φ1,<br>or φ2 (SYNC, WR, WAIT,<br>HLDA) | tDC ②                           |      |        | 110             | nsec  | CL = 50 pF                    |
| DBIN Delay From ¢2                                              |                                 | 25   |        | 130             | nsec  |                               |
| Delay for Input Bus to Enter                                    | 101 @                           | 25   |        | 100             | 11360 |                               |
| Input Mode                                                      | tDI (1)                         |      |        | <sup>t</sup> DF | nsec  |                               |
| Data Setup Time During $\phi$ 1 and DBIN                        | <sup>t</sup> DS1                | 10   |        |                 | nsec  |                               |
| Data Setup Time to ¢2 During<br>DBIN                            | tDS2                            | 120  |        |                 | nsec  |                               |
| Data Hold Time From ¢2 During<br>DBIN                           | тон ①                           | 1    |        |                 | nsec  |                               |
| INTE Output Delay From $\phi$ 2                                 | tie ②                           |      |        | 200             | nsec  | CL = 50 pF                    |
| READY Setup Time During $\phi 2$                                | <sup>t</sup> RS                 | 90   |        |                 | nsec  |                               |
| HOLD Setup Time to $\phi 2$                                     | tHS                             | 120  |        |                 | nsec  |                               |
| INT Setup Time During $\phi 2$<br>(for all modes)               | tIS                             | 100  |        |                 | nsec  |                               |
| Hold Time from $\phi 2$ (READY, INT, HOLD)                      | tH.                             | 0    |        |                 | nsec  |                               |
| Delay to Float During Hold<br>(Address and Data Bus)            | tFD                             | -    |        | 120             | nsec  |                               |
| Address Stable Prior to WR                                      | taw 2                           | 5    |        |                 | nsec  |                               |
| Output Data Stable Prior to WR                                  | tow 2                           | 6    |        |                 | nsec  |                               |
| Output Data Stable From WR                                      | twd 2                           | 0    |        |                 | nsec  | CL = 50 pF: Address,          |
| Address Stable from WR                                          | twa 2                           | 0    |        |                 | nsec  | Data                          |
| HLDA to Float Delay                                             | the 2                           | 8    |        |                 | nsec  | $C_L = 50  pF: \overline{WR}$ |
| WR to Float Delay                                               | twf 2                           | 9    |        |                 | nsec  | HLDA, DBIN                    |
| Address Hold Time after DBIN<br>during HLDA                     | <sup>т</sup> ан ②               | -20  |        |                 | nsec  |                               |

Notes Continued:

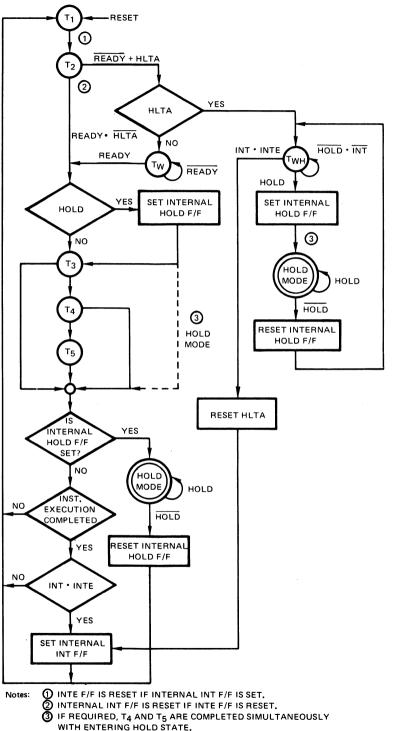
(4) The following are relevant when interfacing the  $\mu$ PD8080AF to devices having V<sub>IH</sub> = 3.3V.

a. Maximum output rise time from 0.8V to 3.3V = 100 ns at CL = SPEC. b. Output delay when measured to 3.0V = SPEC +60 ns at CL = SPEC.

c. If CL  $\neq$  SPEC, add 0.6 ns/pF if CL > CSPEC, subtract 0.3 ns/pF (from modified delay) if

CL < CSPEC.

#### AC CHARACTERISTICS μPD8080AF-2

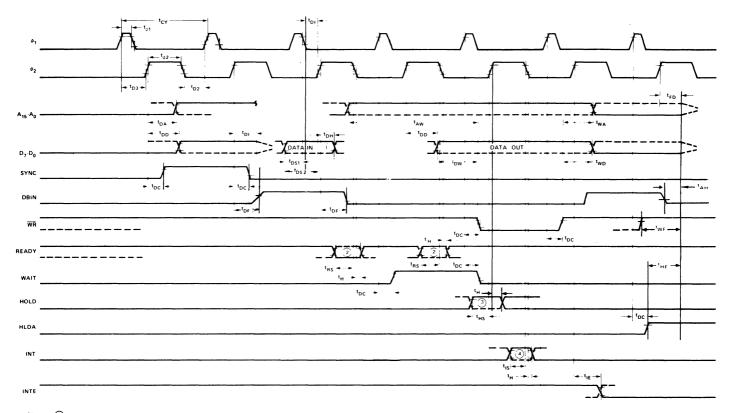

| $T_a = 0^{\circ}$ C to +70°C, V <sub>DD</sub> = +12V ± 5%, V <sub>CC</sub> = +5V ± 5%, V <sub>BB</sub> = -5V ± 5%, V <sub>SS</sub> = 0V, unless otherwise |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| specified.                                                                                                                                                |

|                                                                 |                                 |      | LIMITS |                 |      |                                  |  |
|-----------------------------------------------------------------|---------------------------------|------|--------|-----------------|------|----------------------------------|--|
| PARAMETER                                                       | SYMBOL                          | MIN  | TYP    | MAX             | UNIT | TEST CONDITIONS                  |  |
| Clock Period                                                    | tCY 3                           | 0,38 |        | 2.0             | μsec |                                  |  |
| Clock Rise and Fall Time                                        | t <sub>r</sub> , t <sub>f</sub> | 0    |        | 50              | nsec |                                  |  |
| φ1 Pulse Width                                                  | <sup>t</sup> φ1                 | 60   |        |                 | nsec |                                  |  |
| φ2 Pulse Width                                                  | · tφ2                           | 175  |        |                 | nsec |                                  |  |
| Delay $\phi$ 1 to $\phi$ 2                                      | <sup>t</sup> D1                 | 0    |        |                 | nsec |                                  |  |
| Delay ¢2 to ¢1                                                  | tD2                             | 70   |        |                 | nsec |                                  |  |
| Delay $\phi$ 1 to $\phi$ 2 Leading Edges                        | <sup>t</sup> D3                 | 70   |        |                 | nsec |                                  |  |
| Address Output Delay From $\phi 2$                              | 1 DA 2                          |      |        | 175             | nsec | C <sub>L</sub> = 100 pF          |  |
| Data Output Delay From $\phi 2$                                 | tDD 2                           |      |        | 200             | nsec | C[ - 100 pF                      |  |
| Signal Output Delay From φ1,<br>or φ2 (SYNC, ₩R, WAIT,<br>HLDA) | t <sub>DC</sub> ②               |      |        | 120             | nsec | Cլ = 50 pF                       |  |
| DBIN Delay From $\phi 2$                                        | tdf 2                           | 25   |        | 140             | nsec |                                  |  |
| Delay for Input Bus to Enter<br>Input Mode                      | t <sub>DI</sub> (1)             |      |        | <sup>t</sup> DF | nsec |                                  |  |
| Data Setup Time During ¢1 and<br>DBIN                           | <sup>t</sup> DS1                | 20   |        |                 | nsec |                                  |  |
| Data Setup Time to $\phi 2$ During DBIN                         | tDS2                            | 130  |        |                 | nsec |                                  |  |
| Data Hold Time From $\phi$ 2 During DBIN                        | тон ①                           | 1    |        |                 | nsec |                                  |  |
| INTE Output Delay From $\phi$ 2                                 | ¹IE ②                           |      |        | 200             | nsec | CL = 50 pF                       |  |
| READY Setup Time During $\phi 2$                                | <sup>t</sup> RS                 | 90   |        |                 | nsec |                                  |  |
| HOLD Setup Time to $\phi$ 2                                     | tHS                             | 120  |        |                 | nsec |                                  |  |
| INT Setup Time During $\phi 2$<br>(for all modes)               | tis                             | 100  |        |                 | nsec |                                  |  |
| Hold Time from $\phi$ 2 (READY, INT, HOLD)                      | tн                              | 0    |        |                 | nsec |                                  |  |
| Delay to Float During Hold<br>(Address and Data Bus)            | <sup>t</sup> FD                 |      |        | 120             | nsec |                                  |  |
| Address Stable Prior to WR                                      | tAW 2                           | 6    |        |                 | nsec |                                  |  |
| Output Data Stable Prior to WR                                  | tDW 2                           | 6    |        |                 | nsec |                                  |  |
| Output Data Stable From WR                                      | twd 2                           | Ō    |        |                 | nsec | C <sub>L</sub> = 100 pF: Address |  |
| Address Stable from WR                                          | twa 2                           | Ō    |        |                 | nsec | Data                             |  |
| HLDA to Float Delay                                             | the 2                           | 8    |        |                 | nsec | $C_L = 50 pF: WR$ ,              |  |
| WR to Float Delay                                               | twf 2                           | Ő    |        |                 | nsec | HLDA, DBIN                       |  |
| Address Hold Time after DBIN<br>during HLDA                     | <sup>т</sup> ан ②               | -20  |        |                 | nsec |                                  |  |

| Notes Continued: (5) | Device      | tAW                                     |
|----------------------|-------------|-----------------------------------------|
|                      | µPD8080AF   | $2 t_{CY} - t_{D3} - t_{r\phi 2} - 140$ |
|                      | µPD8080AF-2 | $2 t_{CY} - t_{D3} - t_{r\phi 2} - 130$ |
|                      | µPD8080AF-1 | $2 t_{CY} - t_{D3} - t_{r\phi 2} - 110$ |

| 6 | Device      | tDW                                   |
|---|-------------|---------------------------------------|
|   | µPD8080AF   | $t_{CY} - t_{D3} - t_{r\phi 2} - 170$ |
|   | µPD8080AF-2 | $t_{CY} - t_{D3} - t_{r\phi 2} - 170$ |
|   | µPD8080AF-1 | $t_{CY} - t_{D3} - t_{r\phi 2} - 150$ |

- (7) If not HLDA,  $t_{WD} = t_{WA} = t_{D3} + t_{r\phi 2} + 10$  ns. If HLDA,  $t_{WD} = t_{WA} = t_{WF}$ .
- (a)  $t_{HF} = t_{D3} + t_{r\phi 2} 50 \text{ ns.}$ (b)  $t_{WF} = t_{D3} + t_{r\phi 2} 10 \text{ ns.}$




#### PROCESSOR STATE TRANSITION DIAGRAM

### TIMING WAVEFORMS 5

391

(Note: Timing measurements are made at the following reference voltages: CLOCK "1" = 8.0V, "0" = 1.0V; INPUTS "1" = 3.3V, "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8V.)



- Notes: ① Data in must be stable for this period during DBIN T3. Both tDS1 and tDS2 must be satisfied.
  - 2 Ready signal must be stable for this period during T<sub>2</sub> or T<sub>W</sub>. (Must be externally synchronized.)
  - ③ Hold signal must be stable for this period during T<sub>2</sub> or T<sub>W</sub> when entering hold mode, and during T<sub>3</sub>, T<sub>4</sub>, T<sub>5</sub> and T<sub>WH</sub> when in hold mode. (External synchronization is not required.)
  - Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized in the following instruction. (External synchronization is not required.)
  - 5 This timing diagram shows timing relationships only; it does not represent any specific machine cycle.
  - (6) Timing measurements are made at the following reference voltages: CLOCK "1" = 8.0V, "0" = 1.0V; INPUTS "1" = 3.3V; "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8V.



The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)

The Sign flag is set (High) if bit 7 of the result is a "1"; otherwise it is reset (Low). The Zero flag is set if the result is "0"; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is "0" (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the  $\mu$ PD8080AF has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the  $\mu$ PD8080AF. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the  $\mu$ PD8080AF instruction set.

The special instruction group completes the  $\mu$ PD8080AF instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16-bit register pairs directly.

Data in the  $\mu$ PD8080AF is stored as 8-bit binary integers. All data/instruction transfers to the system data bus are in the following format:

| D7  | D6 | $D_5$ | D4  | D3  | D <sub>2</sub> | D1 | D <sub>0</sub> |  |
|-----|----|-------|-----|-----|----------------|----|----------------|--|
| MSB |    | D     | ATA | WOF | D              |    | LSB            |  |

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

| D7 | D <sub>6</sub> | D5 | D4 | D3 | D <sub>2</sub> | D <sub>1</sub> | D <sub>0</sub> | OP CODE |
|----|----------------|----|----|----|----------------|----------------|----------------|---------|
|    |                |    |    |    |                |                |                |         |

Two Byte Instructions

| D7   | D6                      | D5 | D4 | D3 | D <sub>2</sub> | D1 | D <sub>0</sub> | OP CODE |  |  |  |  |
|------|-------------------------|----|----|----|----------------|----|----------------|---------|--|--|--|--|
| D7   | D <sub>6</sub>          | D5 | D4 | D3 | D <sub>2</sub> | D1 | DO             | OPERAND |  |  |  |  |
| Thre | Three Byte Instructions |    |    |    |                |    |                |         |  |  |  |  |

| inte | e Dyi          | e ms | nucç | 10113 |                |                |                |   |
|------|----------------|------|------|-------|----------------|----------------|----------------|---|
| D7   | D6             | D5   | D4   | D3    | D <sub>2</sub> | D <sub>1</sub> | D <sub>0</sub> | С |
| D7   | D <sub>6</sub> | D5   | D4   | D3    | D <sub>2</sub> | D1             | $D_0$          | L |
| D7   | D6             | D5   | D4   | D3    | D <sub>2</sub> | D1             | Ď0             | н |

#### TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable, or disable interrupt instructions

Immediate mode or I/O instructions

OP CODE Jump, call or direct load and store instructions OW ADDRESS OR OPERAND 1

HIGH ADDRESS OR OPERAND 2

#### INSTRUCTION SET

#### DATA AND INSTRUCTION FORMATS

392

### INSTRUCTION SET TABLE

## μΡD8080AF

|                        |                                                        |             |         |        |        |                  |     |     | ,   |        |                              |      | FLA      |        | ~      | ļ                                    |                                                                                                       |       |        |                            |        |        |          | ,        |        |                              |         |       | *°°<br>∠ |
|------------------------|--------------------------------------------------------|-------------|---------|--------|--------|------------------|-----|-----|-----|--------|------------------------------|------|----------|--------|--------|--------------------------------------|-------------------------------------------------------------------------------------------------------|-------|--------|----------------------------|--------|--------|----------|----------|--------|------------------------------|---------|-------|----------|
| MNEMONIC <sup>1</sup>  | DESCRIPTION                                            | D7          | ۱<br>D6 |        |        |                  |     |     |     | Do     | Clock<br>Cycles <sup>3</sup> | SIGN | ZERO     | PARITY | CARRY  | MNEMONIC                             | DESCRIPTION                                                                                           | Dz    |        |                            |        |        |          |          | Do     | Clock<br>Cycles <sup>3</sup> | SIGN    | ZERO  | PARITY   |
|                        |                                                        |             |         | 101    |        |                  |     |     |     |        |                              |      |          |        |        |                                      |                                                                                                       |       |        | GIST                       |        | -      |          |          |        |                              |         |       | -        |
| MOVds                  | Move register to register                              | 0           | 1       | d      | d      | d                |     |     | <   | s .    | 5                            |      |          |        |        | LXI 8,D16                            | Load immediate register                                                                               |       |        |                            |        |        |          |          |        |                              |         |       |          |
| MOV M,s<br>MOV d,M     | Move register to memory                                | 0<br>0      | 1       | ١      | 1      | 0                | ;   |     |     | ۲<br>0 | 7                            |      |          |        |        | LXI D.D16                            | pair BC<br>Load immediate register                                                                    | 0     | 0      | 0                          | 0      | 0      | 0        | 0        | 1      | 10                           |         |       |          |
| MVId,D8                | Move memory to register<br>Move immediate to register  | 0           | 0       | d<br>d | đ      | d                |     |     | 1 1 | 0      | 7                            |      |          |        |        |                                      | pair DE                                                                                               | 0     | 0      | 0                          | 1      | о      | 0        | 0        | 1      | 10                           |         |       |          |
| MVI M,D8               | Move immediate to memory                               | 0           | 0       | 1      | 1      | 0                |     |     | 1 1 | 0      | 10                           |      |          |        |        | LXI H,D16                            | Load immediate register<br>pair HL                                                                    | 0     | 0      | 1                          | 0      | 0      | 0        | 0        | 1      | 10                           |         |       |          |
|                        | IN                                                     | CRE         | MEN     | T/D    | ECRE   | EME              | NT  |     |     |        |                              |      |          |        |        | LXI SP,D16                           | Load immediate Stack                                                                                  | -     |        |                            |        |        |          |          |        |                              |         |       |          |
| INR di<br>DCR di       | Increment register<br>Decrement register               | 0<br>0      | 0       | d<br>d | d<br>d | d                |     |     |     | 0      | 5<br>5                       | •    | :        | :      |        |                                      | Pointei                                                                                               | 0     | 0      |                            | 1      | 0      | 0        | 0        | 1      | 10                           |         |       |          |
| INR M                  | Increment memory                                       | 0           | 0       | 1      | 1      | 0                |     |     | יכ  | 0      | 10                           | :    | ٠        | ٠      |        |                                      |                                                                                                       |       |        | PUSH                       |        |        |          |          |        |                              |         |       |          |
| DCR M                  | Decrement memory                                       | 0           | 0       | 1      |        |                  |     |     |     | 1      | 10                           | •    | •        | •      |        | PUSH B                               | Push register pair BC<br>on stack                                                                     | ,     | 1      | 0                          | 0      | 0      | 1        | 0        | 1      | 11                           |         |       |          |
|                        | ALU – F                                                | EGI         | STER    | то     | ACC    | :UMI             | JLA | TOR |     |        |                              |      |          |        |        | PUSH D                               | Push register pair DE                                                                                 |       |        |                            | 1      | 0      | 1        |          | 1      |                              |         |       |          |
| ADD s<br>ADC s         | Add register to A                                      | 1           | 0       | 0      | 0      | 0                | 1   |     | s   | \$     | 4                            | •    | •        | ٠      | •      | PUSH H                               | on stack<br>Push register pair HL                                                                     |       |        | 0                          |        |        |          | 0        | '      | 11                           |         |       |          |
|                        | Add register to A with<br>carry                        | 1           | 0       | 0      | 0      | 1                | ,   | . , | s . | s      | 4                            | •    | •        | •      |        | PUSH PSW                             | on stack<br>Push A and flags on stack                                                                 | 1     | 1      | 1                          | 0      | 0      | 1        | 0        | 1      | 11                           |         |       |          |
| SUB s<br>SBB s         | Subtract register from A<br>Subtract register from A   | 1           | 0       | 0      | 1      | 0                | 1   |     | s   | s      | 4                            | •    | •        | •      | •      |                                      | - dan A dha haga ch shack                                                                             | · · · |        | POP                        |        |        |          | <u> </u> |        |                              |         |       |          |
|                        | with borrow                                            | 1           | 0       | 0      | 1      | 1                | ,   |     | s   | s      | 4                            | •    | •        | •      | •      |                                      |                                                                                                       |       |        | FOF                        |        |        |          |          |        |                              |         |       |          |
| ANA s<br>XRA s         | AND register with A<br>Exclusive OR Register           | 1           | 0       | 1      | 0      | 0                | 1   |     | 5   | s      | 4                            | •    | •        | •      | 0      | POP B                                | Pop register pair BC off<br>stack                                                                     | 1     | 1      | 0                          | 0      | 0      | 0        | 0        | 1      | 10                           |         |       |          |
| ORAS                   | with A<br>OR register with A                           | 1           | 0       | !      | 0      | 1<br>0           |     |     |     | s      | 4                            | •    | :        | :      | 0<br>0 | POP D                                | Pop register pair DE off<br>stack                                                                     |       | 1      | 0                          | 1      | 0      | 0        | 0        | 1      | 10                           |         |       |          |
| CMPs                   | Compare register with A                                | i           | o       | i      | 1      | 1                | ,   |     |     | s<br>s | 4                            | :    | :        | :      | •      | POP H                                | Pop register pair HL off                                                                              |       |        |                            |        |        |          |          |        |                              |         |       |          |
|                        | ALU -                                                  | MEN         | NORY    | то     | ACC    | UM               | ULA | TOR |     |        |                              |      |          |        |        | POP PSW                              | stack<br>Pop A and flags off stack                                                                    | 1     | 1      | 1                          | 0<br>1 | 0      | 0        | 0        | 1      | 10<br>10                     |         |       |          |
| ADD M                  | Add memory to A                                        | 1           |         |        |        |                  |     |     | 1 1 | 0      | 7                            | •    | •        | •      | •      |                                      |                                                                                                       |       | DOI    | BLE                        | ADD    |        |          |          |        |                              |         |       |          |
| ADC M                  | Add memory to A with<br>carry                          |             | 0       | 0      | 0      | 1                |     |     |     |        | ,                            |      |          | •      | •      | DAD B                                | Add BC to HL                                                                                          | 0     | 000    | 0                          | 0      | 1      | 0        | 0        | 1      | 10                           |         |       |          |
| SUB M                  | Subtract memory from A                                 | i           | 0       | ō      | 1      |                  |     |     |     |        | 7                            | :    | :        | :      | :      | DADD                                 | Add DE to HL                                                                                          | 0     | 0      | 0                          | 1      | 1      | 0        | 0        | i      | 10                           |         |       |          |
| SBB M                  | Subtract memory from A<br>with borrow                  | 1           | 0       | 0      | 1      | 1                | ,   |     |     | 0      | 7                            |      | ۰.       |        |        | DAD H<br>DAD SP                      | Add HL to HL<br>Add Stack Pointer to HL                                                               | 0     | 0      | 1                          | 0      | 1      | 0        | 0        | 1      | 10<br>10                     |         |       |          |
| ANA M                  | AND memory with A                                      | 1           | 0       | 1      | 0      | 0                |     |     |     |        | 7                            | ٠    | •        | •      | 0      |                                      |                                                                                                       | CREN  |        |                            |        |        |          |          |        |                              |         |       |          |
| XRA M                  | Exclusive OR memory<br>with A                          | 1           | 0       | 1      | 0      | 1                |     | 1   |     | 0      | 7                            | •    | •        |        | 0      |                                      |                                                                                                       |       |        |                            |        |        |          | <u> </u> |        |                              |         |       |          |
| ORA M<br>CMP M         | OR memory with A<br>Compare memory with A              | 1           | 0       | 1<br>1 | 1      | 0                |     |     |     |        | 7                            | :    | :        | :      | 0      | INX B<br>INX D                       | Increment BC<br>Increment DE                                                                          | 0     | 0<br>0 | 0                          | 0<br>1 | 0<br>0 | 0<br>0   | 1        | 1      | 5<br>5                       |         |       |          |
|                        | ALU - I                                                |             |         |        | _      |                  |     |     |     |        |                              |      |          | -      |        | INX H<br>INX SP                      | Increment HL<br>Increment Stack Pointer                                                               | 0     | 0      | 1                          | 0      | 0      | 0        | 1        | 1      | 5<br>5                       |         |       |          |
|                        |                                                        | IME         |         |        |        |                  |     |     |     | -      |                              |      |          |        |        |                                      |                                                                                                       | ECREN |        |                            |        |        |          |          |        |                              |         |       |          |
| ADI D8<br>ACI D8       | Add immediate to A<br>Add immediate to A with          | 1           | 1       | 0      | 0      | 0                | 1   | 1   |     | 0      | 7                            | •    | •        | •      | •      |                                      |                                                                                                       |       |        |                            | _      |        |          |          |        |                              |         |       |          |
| SULD8                  | carry<br>Subsect and the set                           | 1           | 1       | 0      | 0      | 1                | ļ   |     |     |        | 7                            | •    | •        | •      | •      | DCX B<br>DCX D                       | Decrement BC<br>Decrement DE                                                                          | 0     | 0<br>0 | 0                          | 0<br>1 | . 1    | 0<br>0   | 1        | 1      | 5                            |         |       |          |
| SBI D8                 | Subtract immediate from A<br>Subtract immediate from A |             | ,       | 0      | 1      | 0                | 1   | 1   |     | 0      | '                            | •    | •        | •      | •      | DCX H<br>DCX SP                      | Decrement HL<br>Decrement Stack Pointer                                                               | 0     | 0<br>0 | 1                          | 0<br>1 | 1<br>1 | 0<br>0   | 1        | 1<br>1 | 5<br>5                       |         |       |          |
| ANI D8                 | with borrow<br>AND immediate with A                    | 1           | 1       | 0      | 1<br>0 | 1                | 1   |     |     |        | 7                            | :    | :        | :      | •      | OCA ar                               | Decrement Stack Pointer                                                                               |       |        | B IN                       |        |        |          | <u> </u> |        | 5                            |         |       |          |
| XRI D8                 | Exclusive OR immediate                                 | ÷           |         | ÷      |        |                  |     |     |     |        |                              |      |          |        |        |                                      |                                                                                                       |       | -      |                            |        |        |          |          |        |                              |         |       |          |
| ORI D8                 | with A<br>OR immediate with A                          | i           | 1       | 1      | 0      | 1                | 1   |     |     |        | 7                            | :    | •        | :      | 0      | STAX B<br>STAX D                     | Store A at ADDR in BC<br>Store A at ADDR in DE                                                        | 0     | 0      | 0<br>0                     | 0<br>1 | 0<br>0 | 0        | 1        | 0      | 7                            |         |       |          |
| CPI D8                 | Compare immediate with A                               | 1           | 1       | 1      | 1      | 1                | 1   | 1   |     | 0      | 7                            | •    | •        | ٠      | •      | LDAX B<br>LDAX D                     | Load A at ADDR in BC<br>Load A at ADDR in DE                                                          | 0     | 0      | 0                          | 0      | 1      | 0        | 1        | 0      | 7                            |         |       |          |
|                        |                                                        | Α           | LU -    | RO     | TAT    | E                |     |     |     |        |                              |      |          |        |        | LURAD                                |                                                                                                       | ····  |        |                            |        |        | <u> </u> | <u> </u> |        | · · · ·                      |         |       |          |
| RLC                    | Rotate A left, MSB to                                  | 0           | 0       | 0      | 0      | 0                |     |     |     |        |                              |      |          |        |        |                                      |                                                                                                       |       |        | RECT                       |        |        |          |          |        |                              |         |       |          |
| RRC                    | carry (8-bit)<br>Rotate A right, LSB to                |             |         |        |        | 0                | 1   | 1   |     | '      | 4                            |      |          |        | •      | STA ADDR<br>LDA ADDR                 | Store A direct<br>Load A direct                                                                       | 0     | 0      | 1                          | 1      | 0      | 0        | 1        | 0      | 13<br>13                     |         |       |          |
| RAL                    | carry (8-bit)<br>Rotate A left through                 | 0           | 0       | 0      | 0      | 1                | 1   | 1   |     | 1      | 4                            |      |          |        | •      | SHLD ADDR                            | Store HL direct<br>Load HL direct                                                                     | 0     | 0<br>0 | 1                          | 0      | 0,     | 0        | 1        | 0      | 16<br>16                     |         |       |          |
| RAR                    | carry (9-bit)                                          | 0           | 0       | 0      | 1      | 0                | 1   | ۱   |     | 1      | 4                            |      |          |        | •      |                                      | Long The united                                                                                       |       |        |                            |        |        |          | <u> </u> |        |                              |         |       |          |
| nan                    | Rotate A right through<br>carry (9-bit)                | 0           | 0       | 0      | 1      | 1                | 1   | 1   |     | 1      | 4                            |      |          |        | •      |                                      |                                                                                                       | MU    | VE R   | EGIS                       | ER     | PAIN   |          |          |        |                              |         |       |          |
|                        | · · · · · · · · · · · · · · · · · · ·                  |             | JI      | UMP    | ,      |                  |     |     |     |        |                              |      |          |        |        | XCHG                                 | Exchange DE and HL<br>register pairs                                                                  | 1     | 1      | 1                          | 0      | 1      | 0        | 1        | 1      | 4                            |         |       |          |
| JMP ADDR               | Jump unconditional                                     | 1           | 1       | 0      | 0      | 0                | c   | 1   |     | 1      | 10                           |      |          |        |        | XTHL                                 | Exchange top of stack<br>and HL                                                                       | 1     | 1      | 1                          | 0      | 0      | 0        | 1        | 1      | 18                           |         |       |          |
| JNZ ADDR               | Jump on not zero                                       | 1           | 1       | 0      | 0      | 0                | C   | 1   |     |        | 10                           |      |          |        |        | SPHL                                 | HL to Stack Pointer                                                                                   | 1     | 1      | 1                          | 1      | 1      | Ó        | 0        | 1      | 5                            |         |       |          |
| JZ ADDR<br>JNC ADDR    | Jump on zero<br>Jump on no carry                       | 1           | 1       | 0      | 0      | 1                | 0   |     |     |        | 10<br>10                     |      |          |        |        | PCHL                                 | HL to Program Counter                                                                                 | 1     | 1      | 1                          | 0      | 1      | 0        | 0        | 1      | 5                            |         |       |          |
| JC ADDR<br>JPO ADDR    | Jump on carry<br>Jump on parity odd                    | 1           | 1       | 0      | 1<br>0 | 1                | 0   |     | 0   |        | 10<br>10                     |      |          |        |        |                                      |                                                                                                       | IN    | IPUT   | /OUT                       | PUT    |        |          |          |        |                              |         |       |          |
| JPE ADDR               | Jump on parity even                                    | 1           | 1       | 1      | 0      | 1                | C   | 1   | c   | )      | 10                           |      |          |        |        | IN A<br>OUT A                        | Input<br>Output                                                                                       | 1     | 1      | 0                          | 1<br>1 | 1<br>0 | 0        | 1        | 1      | 10<br>10                     |         |       |          |
| JP ADDR<br>JM ADDR     | Jump on positive<br>Jump on minus                      | 1           | 1       | 1      | 1      | 0                | 0   |     |     |        | 10<br>10                     |      |          |        |        | EI                                   | Enable interrupts                                                                                     | i     | i.     | 1                          | 1      | 1      | 0        | 1        | 1      | 4                            |         |       |          |
|                        |                                                        |             | c       | ALL    |        |                  |     |     |     |        |                              |      | <u> </u> |        |        | DI<br>RST A                          | Disable interrupts<br>Restart                                                                         | 1     | 1      |                            | 1<br>A | 0<br>A | 0<br>1   | 1        | 1      | 4<br>11                      |         |       |          |
| CALL ADDR              | Call unconditional                                     | 1           | 1       | 0      | 0      | 1                |     | 0   |     |        | 17                           |      |          |        |        | <u> </u>                             | ·····                                                                                                 | MIS   |        | LANE                       |        | ~~~~   |          |          |        |                              |         |       |          |
| CNZ ADDR               | Call on not zero                                       | 1           | i       | Ó      | ō      | 0                | i   | 0   | ) ( |        | 11/17                        |      |          |        |        | CMA                                  | Complement *                                                                                          |       |        |                            |        |        |          | <u> </u> |        |                              |         |       |          |
| CZ ADDR<br>CNC ADDR    | Call on zero<br>Call on no carry                       | 1           | 1       | 0<br>0 | 0      | 0                | 1   | 0   |     |        | 11/17<br>11/17               |      |          |        |        | CMA<br>STC                           | Complement A<br>Set carry                                                                             | 0     | 0<br>0 |                            | 0<br>1 | 1<br>0 | 1        | 1        | 1      | 4                            |         |       |          |
| CC ADDR                | Call on carry                                          | 1           | 1       | 0      | 1      | 1                | 1   | 0   | 0   | )      | 11/17                        |      |          |        |        | CMC                                  | Complement carry<br>Decimal adjust A                                                                  | 0     | 0<br>0 | 1                          | 1<br>0 | 1<br>0 | 1        | 1        | 1      | 4                            |         |       |          |
| CPE ADDR               | Call on parity odd<br>Call on parity even              | 1           | 1       | 1      | 0      | 1                | 1   | 0   | 0   | 5      | 11/17                        |      |          |        |        | NOP                                  | No operation                                                                                          | 0     | 0      | 0                          | 0      | 0      | 0        | ò        | ò      | . 4                          | •       | •     | •        |
| CP ADDR<br>CM ADDR     | Call on positive<br>Call on minus                      | 1           | 1       | 1<br>1 | 1      | 0                | 1   |     |     |        | 11/17<br>11/17               |      |          |        |        | HLT                                  | Halt                                                                                                  | 0     | 1      | 1                          | 1      | 0      | 1        | 1        | 0      | 7                            |         |       |          |
|                        |                                                        |             | RET     |        |        | · ·              |     |     |     |        |                              |      |          |        |        | Notes.                               |                                                                                                       |       |        |                            |        | -      | _        |          |        |                              |         |       |          |
| 0.57                   | 0                                                      |             |         |        |        |                  |     |     |     |        |                              |      |          |        |        | <sup>1</sup> Operand Symb<br>A = 8-b | ools used<br>at address or expression                                                                 |       |        |                            |        |        |          | 001 0    |        | 10 D – 01                    | 1 E - ' | 100 H | -        |
| RET                    | Return<br>Return on not zero                           | 1<br>1      | 1       | 0<br>0 | 0      | 1<br>0           | 0   |     |     |        | 10<br>5/11                   |      |          |        |        | s = sou                              | urce register                                                                                         |       |        |                            |        |        |          |          |        |                              |         |       |          |
| RNZ                    | Return on zero                                         | 1           | 1       | 0      | 0      | 1                | Ó   | 0   | c   | 5      | 5/11                         |      |          |        |        | d = def<br>PSW = Pro                 | stination register<br>ocessor Status Word                                                             |       |        |                            |        |        |          |          |        | indicate<br>condition        |         |       |          |
| RZ                     | Return on no carry                                     | 1           | 1       | 0<br>0 | 1      | 0                | 0   |     |     |        | 5/11<br>5/11                 |      |          |        |        | SP = Sta                             | ick Pointer<br>bit data quantity, expression, c                                                       |       |        | ags.                       |        |        | ſ        |          |        |                              |         |       |          |
| RZ<br>RNC<br>RC        | Return on carry                                        | 1           |         |        |        |                  |     |     |     |        |                              |      |          |        |        |                                      | in used quantity, expression, o                                                                       |       |        |                            |        |        |          |          |        |                              |         |       |          |
| RZ<br>RNC<br>RC<br>RPO | Return on carry<br>Return on parity odd                | 1           | 1       | 1      | 0      | 0                | 0   |     |     |        | 5/11                         |      |          |        |        | cor                                  | nstant, always B2 of instructio                                                                       | in    | 4.     | - flag                     | g affe | ected  |          |          |        |                              |         |       |          |
|                        | Return on carry                                        | 1<br>1<br>1 | 1       |        | 0      | 0<br>1<br>0<br>1 | 0   | 0   | 0   | )      | 5/11<br>5/11<br>5/11         |      |          |        |        | Cor<br>D16 = 16-                     | nstant, always B2 of instruction<br>bit data quantity, expression,<br>instant, always B3B2 of instruc | or or |        | = flag<br>= flag<br>= flag | not    | affec  | ted      |          |        |                              |         |       |          |

One to five machine cycles (M<sub>1</sub> -- M<sub>5</sub>) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times (T<sub>1</sub> - T<sub>5</sub>). During  $\phi_1 \cdot$  SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.

INSTRUCTION CYCLE TIMES

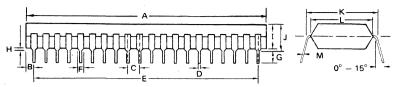
Execution times and machine cycles used for each type of instruction are shown below.

| INSTRUCTION                                                                                                                        | MACHINE CYCLES EXECUTED                      | CLOCK TIMES<br>(MIN/MAX) |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|
| RST X and PUSH RP                                                                                                                  | PCR5 ① SPW3 ⑤ SPW3 ⑤                         | . 11                     |
| All CALL Instructions                                                                                                              | PCR5 1 PCR3 2 PCR3 2 SPW3 5 SPW3 5           | 11/17                    |
| Conditional TURN<br>Instructions                                                                                                   | PCR5 ① SPR3 ④ SPR3 ④                         | 5/11                     |
| RET Instruction                                                                                                                    | PCR4 () SPR3 () SPR3 ()                      | 10                       |
| XTHL                                                                                                                               | PCR4 (1) SPR3 (4) SPR3 (4) SPW3 (5) SPW5 (5) | 18                       |
| DAD RP                                                                                                                             | PCR4 () PCX3 () PCX3 ()                      | 10                       |
| INR R; INX RP, DCR R;<br>DCX RP; PCHL;<br>MOV R, R; SPHL                                                                           | PCR5 ①                                       | 5                        |
| All JUMP Instructions<br>and LXI RP                                                                                                | PCR4 ① PCR3 ② PCR3 ②                         | 10                       |
| POP RP                                                                                                                             | PCR4 () SPR3 () SPR3 ()                      | 10                       |
| LDA                                                                                                                                | PCR4 ① PCR3 ② PCR3 ② BBR3 ③                  | 13                       |
| STA                                                                                                                                | PCR4 ① PCR3 ② PCR3 ② BBW3 ③                  | 13                       |
| LHLD                                                                                                                               | PCR4 ① PCR3 ② PCR3 ② BBR3 ② BBR3 ②           | 16                       |
| SHLD                                                                                                                               | PCR4 (1) PCR3 (2) PCR3 (2) BBW3 (3) BBW3 (3) | 16                       |
| STAX B                                                                                                                             | PCR4 () BCW3 (3)                             | 7                        |
| STAX D                                                                                                                             | PCR4 1 DEW3 3                                | 7                        |
| LDAX B                                                                                                                             | PCR4 () BCR3 (2)                             | 7                        |
| LDAX D                                                                                                                             | PCR4 1 DER3 2                                | 7                        |
| MOV R, M; ADD M;<br>ADC M; SUB M; SB B M;<br>ANA M; XRA M;<br>ORA M; CMP M                                                         | PCR4 () HLR3 ()                              | 7                        |
| INR M and DCR M                                                                                                                    | PCR4 () HLR3 (2) HLW3 (3)                    | 10                       |
| MVIM                                                                                                                               | PCR4 1 PCR3 2 HLW3 3                         | 10                       |
| MVI R; ADI; ACI; SUI;<br>SBI; ANI; XRI; ORI; CPI                                                                                   | PCR4 (1) PCR3 (2)                            | 7                        |
| MOV M, R                                                                                                                           | PCR4 ① HLW3 ③                                | 7                        |
| EI; DI ADD R;<br>ADC R; SUB R;<br>SBB R; ANA R; XRA R;<br>ORA R; CMP R; RLC;<br>RRC; RAL; RAR;<br>DAA; CMA; STC;<br>CMC; NOP; XCHG | PCR4 ①                                       | 4                        |
| ουτ                                                                                                                                | PCR4 (1) PCR3 (2) ABW3 (7)                   | 10                       |
| IN                                                                                                                                 | PCR4 ① PCR3 ② ABR3 ⑥                         | 10                       |
| HLT                                                                                                                                | PCR4 ① PCX3 ⑨                                | 7                        |

#### Machine Cycle Symbol Definition

| XX Y Z (N) Status word defining type of machine | XX - | HL = Registers H and L used as address |
|-------------------------------------------------|------|----------------------------------------|
| TTT cycle (See Status Word Chart)               |      | BC = Registers B and C used as address |
| Number of clocks for this machine cycle         |      | DE = Registers D and E used as address |
| R = Read cycle data into processor              |      | SP = Stack Pointer used as address     |
| W = Write cycle - data out of processor         |      | BB = Byte 2 and 3 used as address      |
| X = No data transfer                            |      | AB = Byte 2 used as address            |
| PC = Program Counter used as address            |      |                                        |

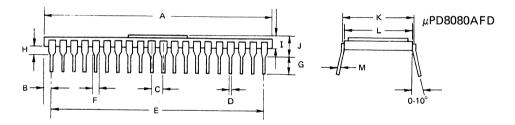
Underlined (XXYZ(N)) indicates machine cycle is executed if condition is True.


# STATUS INFORMATION DEFINITION

STATUS WORD CHART

| SYMBOLS        | DATA BUS BIT   | DEFINITION                                                                                                                                                                                 |  |  |  |  |  |  |
|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| inta 🛈         | D <sub>0</sub> | Acknowledge signal for INTERRUPT<br>request, Signal should be used to gate<br>a restart or CALL instruction onto<br>the data bus when DBIN is active,                                      |  |  |  |  |  |  |
| WO             | D1             | Indicates that the operation in the<br>current machine cycle will be a<br>WRITE memory or OUTPUT function<br>(WO = 0). Otherwise, a READ<br>memory or INPUT operation will be<br>executed. |  |  |  |  |  |  |
| STACK          | D <sub>2</sub> | Indicates that the address bus holds<br>the pushdown stack address from the<br>Stack Pointer.                                                                                              |  |  |  |  |  |  |
| HLTA           | D3             | Acknowledge signal for HALT instruction.                                                                                                                                                   |  |  |  |  |  |  |
| OUT            | D4             | Indicates that the address bus contains<br>the address of an output device and<br>the data bus will contain the output<br>data when WR is active.                                          |  |  |  |  |  |  |
| M <sub>1</sub> | D5             | Provides a signal to indicate that the<br>CPU is in the fetch cycle for the first<br>byte of an instruction.                                                                               |  |  |  |  |  |  |
| INP ①          | D <sub>6</sub> | Indicates that the address bus contains<br>the address of an input device and the<br>input data should be placed on the data<br>bus when DBIN is active.                                   |  |  |  |  |  |  |
| MEMR ①         | D <sub>7</sub> | Designates that the data bus will be used for memory read data.                                                                                                                            |  |  |  |  |  |  |

Note: (1) These three status bits can be used to control the flow of data onto the  $\mu \text{PD8080AF}$  data bus.


|   |                |        |              |                   |         |                           |          | түр     | EOFN       | ACHI    | IE CYO       | CLE            |                      |
|---|----------------|--------|--------------|-------------------|---------|---------------------------|----------|---------|------------|---------|--------------|----------------|----------------------|
|   | DAT            | ABISBI | INFORMED RUN | AATION<br>STRUCTU | ON FETC | the solution of the state | RITE REA | D RANNE | ALL REPORT | O WE IN | ITE PROPERTY | ACLAND ALT ACT | NUT OF THE TRANSPORT |
| ĺ |                |        | 0            | 2                 | 3       | (4)                       | 5        | 6       | $\bigcirc$ | 8       | 9            | 10             | N STATUS WORD        |
| [ | D <sub>0</sub> | INTA   | 0            | 0                 | 0       | 0                         | 0        | 0       | 0          | 1       | 0            | 1              |                      |
|   | D1             | WO     | 1            | 1                 | 0       | 1                         | 0        | 1       | 0          | 1       | 1            | 1              | 1                    |
| [ | D <sub>2</sub> | STACK  | 0            | 0                 | 0       | 1                         | 1        | 0       | 0          | 0       | 0            | 0              | 1                    |
|   | D3             | HLTA   | 0            | 0                 | 0       | 0                         | 0        | 0       | 0          | 0       | 1            | 1              |                      |
| [ | D4             | OUT    | 0            | 0                 | 0       | 0                         | 0        | 0       | 1          | 0       | 0            | 0              |                      |
| [ | D5             | M1     | 1            | 0                 | 0       | 0                         | 0        | 0       | 0          | 1       | 0            | 1              |                      |
| [ | D <sub>6</sub> | INP    | 0            | 0                 | 0       | 0                         | 0        | 1       | 0          | 0       | 0            | 0              | 1                    |
| [ | D7             | MEMR   | 1            | 1                 | 0       | 1                         | 0        | 0       | 0          | 0       | 1            | 0              |                      |



PACKAGE OUTLINE µPD8080AFC

(PLASTIC)

| ITEM | MILLIMETERS | INCHES        |  |  |  |  |
|------|-------------|---------------|--|--|--|--|
| A    | 51.5 MAX.   | 2.028 MAX.    |  |  |  |  |
| В    | 1.62 MAX.   | 0.064 MAX.    |  |  |  |  |
| С    | 2.54 ± 0.1  | 0.10 ± 0.004  |  |  |  |  |
| D    | 0.5 ± 0.1   | 0.019 ± 0.004 |  |  |  |  |
| E    | 48.26 ± 0.1 | 1.9 ± 0.004   |  |  |  |  |
| F    | 1.2 MIN.    | 0.047 MIN.    |  |  |  |  |
| G    | 2.54 MIN.   | 0.10 MIN.     |  |  |  |  |
| н    | 0.5 MIN.    | 0.019 MIN.    |  |  |  |  |
| I    | 5.22 MAX.   | 0.206 MAX.    |  |  |  |  |
| J    | 5.72 MAX.   | 0.225 MAX.    |  |  |  |  |
| к    | 15.24 TYP.  | 0.600 TYP.    |  |  |  |  |
| L    | 13.2 TYP.   | 0.520 TYP.    |  |  |  |  |
| м    | 0.25 +0.1   | 0.010 +0.004  |  |  |  |  |
|      | -0.05       | -0.002        |  |  |  |  |



|      | (CERAINIC)  |               |
|------|-------------|---------------|
| ITEM | MILLIMETERS | INCHES        |
| A    | 51.5 MAX.   | 2.03 MAX.     |
| В    | 1.62 MAX.   | 0.06 MAX.     |
| С    | 2.54 ± 0.1  | 0.1 ± 0.004   |
| D    | 0.5 ± 0.1   | 0.02 ± 0.004  |
| E    | 48.26 ± 0.1 | 1.9 ± 0.004   |
| F    | 1.02 MIN.   | 0.04 MIN.     |
| G    | 3.2 MIN.    | 0.13 MIN.     |
| н    | 1.0 MIN.    | 0.04 MIN.     |
| I    | 3.5 MAX.    | 0.14 MAX.     |
| J    | 4.5 MAX.    | 0.18 MAX.     |
| к    | 15.24 TYP.  | 0.6 TYP.      |
| L    | 14.93 TYP.  | 0.59 TYP.     |
| М    | 0.25 ± 0.05 | 0.01 ± 0.0019 |

(CERAMIC)