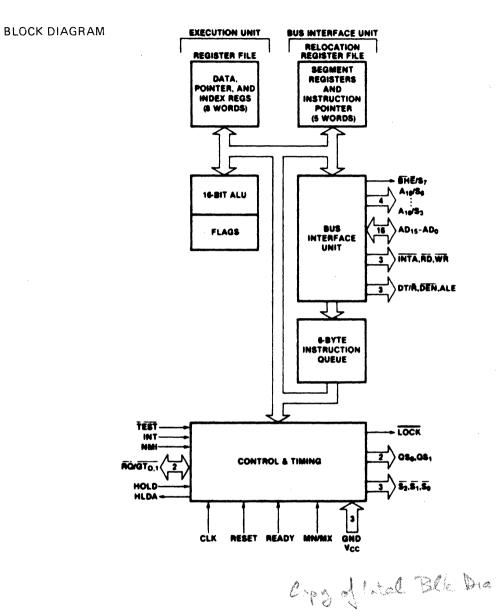
NEC Microcomputers, Inc.

16 BIT MICROPROCESSOR

DESCRIPTION


The μ PD8086 is a 16-bit microprocessor that has both 8-bit and 16-bit attributes. It has a 16-bit wide physical path to memory for high performance. Its architecture allows higher throughput than the 5 MHz μ PD8085A-2.

- FEATURES Can Directly Address 1 Megabyte of Memory
 - Fourteen 16-Bit Registers with Symmetrical Operations
 - Bit, Byte, Word, and Block Operations
 - 8 and 16-Bit Signed and Unsigned Arithmetic Operations in Binary or Decimal
 - Multiply and Divide Instructions
 - 24 Operand Addressing Modes
 - Assembly Language Compatible with the μPD8080/8085
 - Complete Family of Components for Design Flexibility

PIN CONFIGURATION GND d 1 40 D Vcc AD14 d 2 39 h AD15 3 A16/S3 38 AD13 4 37 🗖 A17/S4 AD12 AD11 5 36 A18/S5 35 A19/S6 AD10 C 6 34 BHE/ST AD9 C 7 33 MN/MX 32 RD 31 HOLD 8 AD8 AD7 C 9 AD6 10 (RO/GTO) **µ**PD8086 AD5 11 30 (RQ/GT1) CPU AD4 12 29 (LOCK) AD3 13 28 (S2) AD2 C 14 27 (\$1) DEN AD1 С (50) 15 26 AD0 (QS0) 25 16 NMI (QS1) 17 24 TEST INTR 18 23 CLK B READY 19 22 21 B RESET GND 20

NO.	SYMBOL	NAME	FUNCTION				
2-16, 39	AD0-AD15	Address/Data Bus	Multiplexed address (T ₁) and data (T ₂ , T ₃ , T _W , T ₄) bus. 8-bit paripherals tied to the lower 8 bits, use A0 to condition chip select functions. These lines are tri-state during interrupt acknowledge and hold states.				
-17	NMI	Non-Maskable Interrupt	This is an edge triggered input causing a type Z interrupt. A look-up table is used by the processor for vectoring information.				
18	INTR	Interrupt Request	A level triggered input sampled on the last clock cycle of each instruction. Vectoring is via an interrupt look-up table. INTR can mask in software by resetting the interrupt enable bit.				
19	CLK	Clock	The clock input is a 1/3 duty cycle input basic timing for the processor and bus controller.				
21	RESET	Reset	This active high signal must be high for 4 clock cycles. When it returns low, the processor restarts execution.				
22	READY	Ready	An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the µPD8284 clock generator.				
23	TEST	Test	This input is examined by the "WAIT" instruction, and if low, execution continues. Otherwise the processor waits in an "Idle" state. Synchronized by the processor on the leading edge of CLK.				
24	INTA	Interrupt Acknowledge	This is a read strobe for reading vectoring information. During T ₂ , T ₃ , and T _W of each interrupt acknowledge cycle it is low.				
25	ALE	Address Latch Enable	This is used in conjunction with the μ PD8282/8283 latches to latch the address, during T ₁ of any bus cycle.				
26	DEN	Data Enable	This is the output enable for the µPD8282/8287 transceivers. It is active low during each memory and I/O access and INTA cycles.				
27	DT/R	Data Transmit/Receive	Used to control the direction of data flow through the transceivers.				
28	м/іо	Memory/IO Status	This is used to separate memory access from I/O access.				
29	WR	Write	Depending on the state of the $M/\overline{10}$ line, the processor is either writing to I/O or memory.				
30	HLDA	Hold Acknowledge	A response to the HOLD input, causing the processor to tri-state the local bus. The bus return active one cycle after HOLD goes back low.				
31	HOLD	Hold	When another device requests the local bus, driving HOLD high, will cause the $\mu PD8086$ to issue a HLDA.				
32	RĎ	Read	Depending on the state of the M/IO line, the processor is reading from either memory or I/O.				
33	MN/MX	Minimum/Maximum	This input is to tell the processor which mode it is to be used in. This effects some of the pin descriptions.				
34	BHE/S7	Bus/High Enable	This is used in conjunction with the most significant half of the data bus. Peripheral devices on this half of the bus use BHE to condition chip select functions.				
35-38	A16-A19	Most Significant Address Bits	The four most significant address bits for memory opera- tions, Low during I/O operations.				
26, 27, 28 34-38	S0-S7	Status Outputs	These are the status outputs from the processor. They are used by the μ PD8288 to generate bus control signals.				
24, 25	QS₁, QS₀	Que Status	Used to track the internal μ PD8086 instruction que.				
29	LOCK	Lock	This output is set by the "LOCK" instruction to prevent other system bus masters from gaining control.				
30, 31	RO/GTO RO/GT1	Request/Grant	Other local bus masters can force the processor to rebase the local bus at the end of the current bus cycle.				

PIN IDENTIFICATION

Operating Temperature	ABSOLUTE MAXIMUM
Storage Temperature	RATINGS*
Voltage on Any Pin with Respect to Ground	
Power Dissipation	

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 25^{\circ}C$

					TEST	DC CHARACTERISTICS
PARAMETER	SYMBOL	MIN	MAX	UNITS	CONDITIONS	
Input Low Voltage	VIL	-0.5	+0.8	v		
Input High Voltage	∨ін	2.0	V _{CC} + 0.5	v		
Output Low Voltage	VOL		0.45	v	I _{OL} = 2.0 mA	
Output High Voltage	∨он	2.4		v	I _{OH} = -400 μA	
Power Supply Current µPD8086/ µPD8086-2	ICC		340 350	mA mA	T _a = 25°C	
Input Leakage Current	ILI		±10	μA	0V < VIN < VCC	
Output Leakage Current	^I LO		±10	μA	$0.45V \le V_{OUT} \le V_{CC}$	
Clock Input Low Voltage	VCL	-0.5	+0.6	v		
Clock Input High Voltage	Vсн.	3.9	VCC + 1.0	v		
Capacitance of Input Buffer (All input except AD0-AD15, RQ/GT)	CIN		15	pF	fc = 1 MHz	
Capacitance of I/O Buffer (AD0-AD15, RQ/GT)	C10		15	pF	fc = 1 MHz].

 $T_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 10\%$

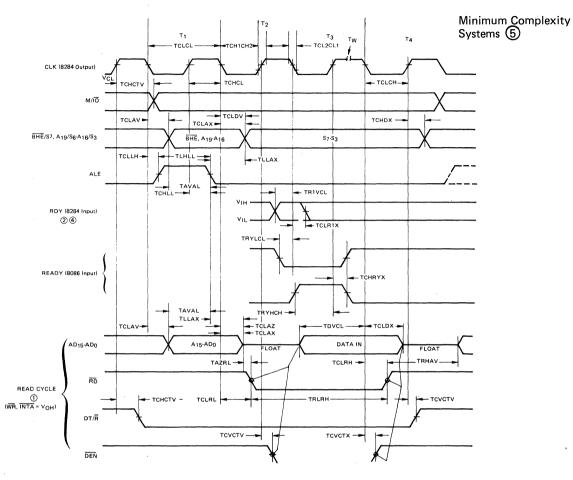
μ PD8086: T_a = 0°C to 70°<u>C</u>; V_{CC} = 5V ± 10%

AC CHARACTERISTICS

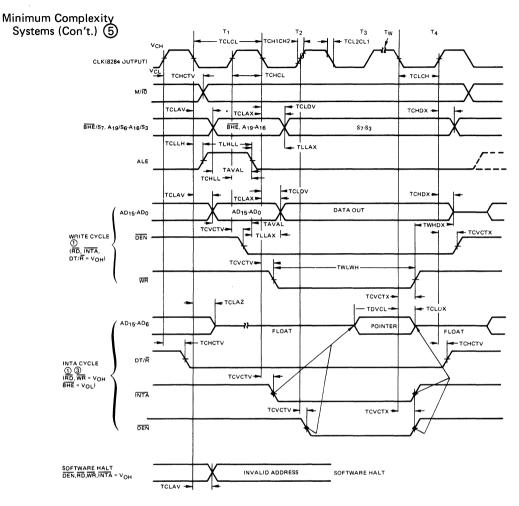
MINIMUM COMPLEXITY SYSTEM

		TIMING	REQUIR	EMENTS			
		μ PD8086		µPD8086-2 (Prelim	ninary)		TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
CLK Cycle Period – µPD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) -15		(2/3 TCLCL) -15		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2		(1/3 TCLCL) +2		ns	
CLK Rise Time	TCH1CH2		10		10	ns	From 1.0V to 3.5
CLK Fall Time	TCL2CL1		10		10	ns	From 3.5V to 1.0
Data In Setup Time	TDVCL	30		20		ns	
Data In Hold Time	TCLDX	10		10		ns	
RDY Setup Time into µPD8284 ① ②	TRIVCL	35		35		ns	
RDY Hold Time into µPD8284 ① ②	TCLR1X	0		0		ns	
READY Setup Time into #PD8086	TRYHCH	(2/3 TCLCL) -15		(2/3 TCLCL) -15		ns	
READY Hold Time into µPD8086	TCHRYX	30		20		ns	
READY Inactive to CLK	TRYLCL	-8		8		ns	
HOLD Setup Time	тнусн	35		20		ns	
INTR, NMI, TEST Setup Time	TINVCH	30		15		ns	

TIMING RESPONSES


		TIM	ING RE	SPONSES			
		μ PD8086		μPD8086-2 (Preli	minary)		TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
Address Valid Delay	TCLAV	10	110	10	60		
Address Hold Time	TCLAX	10		10		ns	
Address Float Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
ALE Width	TLHLL	TCLCH-20		TCLCH-10		ns	
ALE Active Delay	TCLLH		80		50	ns	
ALE Inactive Delay	TCHLL		85		55	ns	
Address Hold Time to ALE Inactive	TLLAX	TCHCL-10		TCHCL-10		ns	
Data Valid Delay	TCLDV	10	110	10	60	ns	CL = 20-100 pF for
Data Hold Time	TCHDX	10	1	10		ns	all µPD8086 Outputs
Data Hold Time After WR	TWHDX	TCLCH-30		TCLCH-30		ns	µPD8086 self-load)
Control Active Delay 1	TCVCTV	10	110	10	70	ns	
Control Active Delay 2	тснсту	10	110	10	60	ns	
Control Active Delay	TCVCTX	10	110	10	70	ns	
Address Float to READ Active	TAZRL	0		0		ns	
RD Active Delay	TCLRL	10	165	10	100	ns	
RD Inactive Delay	TCLRH	10	150	10	80	ns	
RD Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		ns	
HLDA Valid Delay	TCLHAV	10	160	10	100	ns	
RD Width	TRLRH	2TCLCL-75		2TCLCL-50		ns	
WR Width	TWLWH	2TCLCL-60		2TCLCL-40		ns	
Address Vaild to ALE Low	TAVAL	TCLCH-60		TCLCH-40	T	ns	

 NOTES:
 ① Signal at µPD8284 shown for reference only.


 ② Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

 ③ Applies only to T2 state. (8 ns into T3)

TIMING WAVEFORMS

TIMING WAVEFORMS

- NOTES: (1) All signals switch between V_{OH} and V_{OL} unless otherwise specified.
 - (2) RDY is sampled near the end of T₂, T₃, T_W to determine if T_W machines states are to be inserted.
 - 3 Two INTA cycles run back-to-back. The μPD8086 local ADDR/Data Bus is floating during both INTA cycles. Control signals shown for second INTA cycle.
 - (4) Signals at μ PD8284 are shown for reference only.
 - (5) All timing measurements are made at 1.5V unless otherwise noted.

TIMING WITH µPB8288 BUS CONTROLLER

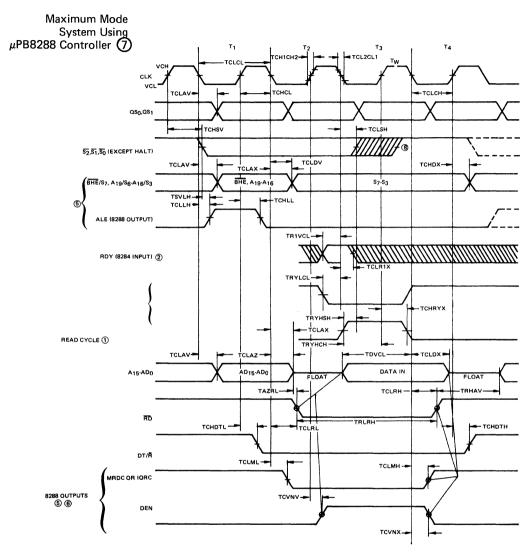
•		TIMIN	IG REQ	UIREMENTS			
,		μ PD8086		µPD8086-2 (Prelim	inary)		TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
CLK Cycle Period - µPD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) -15		(2/3 TCLCL) -15		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2		(1/3 TCLCL) +2		ns	
CLK Rise Time	TCH1CH2		10		10	ns	From 1.0V to 3.5V
CLN Fall Time	TCL2CL1		10		10	ns	From 3.5V to 1.0V
Data in Setup Time	TDVCL	30		20		ns	
Data in Hold Time	TCLDX	10		10		ns	
RDY Setup Time into µPD8284	TRIVCL	35		35		ns	
RDY Hold Time into µPD8284	TCLR1X	0		0		ns	
READY Setup Time into #PD8086	TRYHCH	(2/3 TCLCL) -15		(2/3 TCLCL) -15		ns	
READY Hold Time into µPD8086	TCHRYX	30		20		ns	
READY inactive to CLK	TRYLCL	-8	ч.	-8		ns	
Setup Time for Recognition (INTR, NMI, TEST) ②	TINVCH	30		15		ns	
RQ/GT Setup Time	TGVCH	30		. 15		ns	
RQ Hold Time into #PD8086	тсндх	40		30		ns	

MAXIMUM MODE SYSTEM

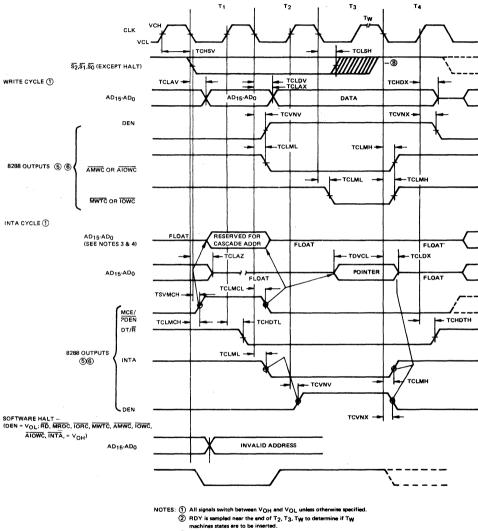
With µPB8288 Bus Controller

		#PD8086		µPD8086-2 (Prelim	inary)		
PARAMETER	SYMBOL	MIN	мах	MIN	мах	UNITS	TEST CONDITIONS
Command Active Delay (See Note 1)	TCLML	10	35	10	35	ns	
Command Inactive Delay (See Note 1)	TCLMH	10	35	10	35	ns	
READY Active to Status Passive (See Note 3)	TRYHSH		110		65	ns	
Status Active Delay	TCHSV	10	110	10	60	ns	
Status Inactive Delay	TCLSH	10	130	10	70	ns	
Address Valid Delay	TCLAV	10	110	10	60	ns	
Address Hold Time	TCLAX	10		10		ns	
Address Float Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
Status Valid to ALE High (See Note 1)	TSVLH		15		15	ns	
Status Valid to MCE High (See Note 1)	тѕумсн		15		15	ns	
CLK Low to ALE Valid (See Note 1)	TCLLH		15		15	ns	
CLK Low to MCE High (See Note 1)	TCLMCH		15		15	ns	
ALE Inactive Delay (See Note 1)	TCHLL		15		15	ns	C _L = 20-100 pF for
MCE Inactive Delay (See Note 1)	TCLMCL		15		15	ns	all µPD8086 Outputs (In addition to
Data Valid Delay	TCLDV	10	110	10	60	ns	µPD8086 self-load)
Data Hold Time	TCHDX	10		10		ns	1
Control Active Delay (See Note 1)	TCVNV	5	45	5	45	ns	
Control Inactive Delay (See Note 1)	TCVNX	10	45	10	45	ns	
Address Float to Read Active	TAZRL	0		0		ns	
RD Active Delay	TCLRL	10	165	10	100	ns	
RD Inactive Delay	TCLRH	10	150	10	80	ns	
RD Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		ns	
Direction Control Active Delay (See Note 1)	TCHDTL		50		50	ns	
Direction Control Inactive Delay (See Note 1)	тснотн		30		30	ns	
GT Active Delay	TCLGL	0	85	0	50	ns	
GT Inactive Delay	TCLGH	0	85	0	50	ns	
RD Width	TRLRH	2TCLCL-50		2TCLCL-50		ns	

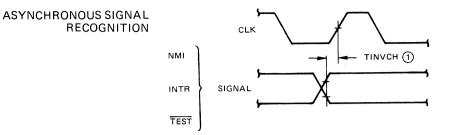
TIMING RESPONSES

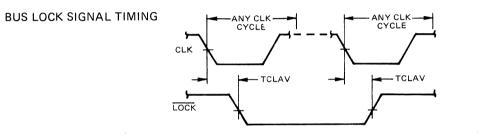

 NOTES:
 ① Signal at µPB8284 or µPB8288 shown for reference only.

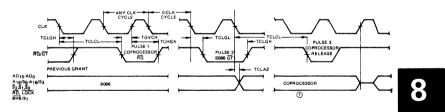
 ②
 Setup requirement for skynchronous signal only to guarantee recognition at next CLK.


 ③
 Applies only to T3 and wait states.

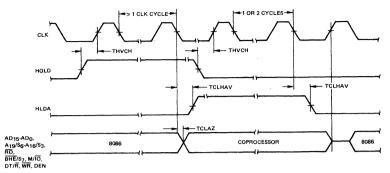
 ④
 Applies only to T2 state (8 ns into T3).

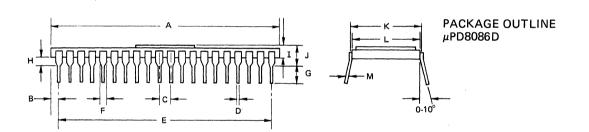

TIMING WAVEFORMS


TIMING WAVEFORMS Maximum Mode System Using μPB8288 Controller (Con't.) 7


- (3) Cascade address is valid between first and second INTA cycle.
- Two INTA cycles run back-to-back. The 8086 local ADDR/Data Bus is floating during both INTA cycles. Control for pointer address is shown for second INTA cycle.
- (5) Signals at 8284 or 8288 are shown for reference only.
- (6) The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) lags the active high 8288 CEN.
- ⑦ All timing measurements are made at 1.5V unless otherwise noted.
- (8) Status inactive in state just prior to T4.

NOTE: (1) Setup requirements for asynchronous signals only to guarantee recognition at next CLK.


REQUEST/GRANT SEQUENCE TIMING*


NOTE: (1) The coprocessor may not drive the buses outside the region shown without risking contention.

*for Maximum Mode only

HOLD/HOLD ACKNOWLEDGE TIMING*

*for Minimum Mode only

~	6	•	
Ce	ra	Ip	

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
Β.	1.62 MAX.	0.06 MAX.
С	2,54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3,2 MIN.	0,13 MIN.
Н	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4,5 MAX.	0.18 MAX.
К	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019