NEC Microcomputers, Inc.

NEC μPD8251 μPD8251A

PROGRAMMABLE COMMUNICATION INTERFACES

- DESCRIPTION The μPD8251 and μPD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters (USARTs) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the 8080A or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TxE and SYNDET, is available to the processor at any time.
 - FEATURES Asynchronous or Synchronous Operation
 - Asynchronous:
 - Five 8-Bit Characters
 - Clock Rate 1, 16 or 64 x Baud Rate
 - Break Character Generation
 - Select 1, 1-1/2, or 2 Stop Bits
 - False Start Bit Detector
 - Automatic Break Detect and Handling (µPD8251A)
 - Synchronous:
 - Five 8-Bit Characters Internal or External Character Synchronization Automatic Sync Insertion Single or Double Sync Characters
 - Baud Rate (1X Mode) DC to 56K Baud (μPD8251)
 - DC to 64K Baud (µPD8251A)
 - Full Duplex, Double Buffered Transmitter and Receiver
 - Parity, Overrun and Framing Flags
 - Fully Compatible with 8080A/8085/µPD780 (Z80TM)
 - All Inputs and Outputs are TTL Compatible
 - Single +5 Volt Supply, ±10%
 - Separate Device Receive and Transmit TTL Clocks
 - 28 Pin Plastic DIP Package
 - N-Channel MOS Technology

PIN CONFIGURATION

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D ₂ 🗖 1	\cup	28 🗖	D1	D7-D0	Data Bus (8 bits)
R xD 3 26 V CC WR Write Data of Control Command GND 4 25 R xC CL CS Chip Enable QA 5 24 DTR Transmitter Clock (TTL) RESET Rest D5 6 µPD 23 RTS TxD TxC Transmitter Clock (TTL) D5 6 µPD 23 RTS TxD TxC Transmitter Clock (TTL) D6 7 8251/ 22 DSR RxC Receiver Clock (TTL) D7 8 8251A 21 RESET RxRD Receiver Ready (has character for 0000) TxC 9 20 CLK DSR Data Set Ready WR 10 19 T xD SYNDET SYNDET Sync Detect/Break Detect CSC 11 18 T xE RTS Request to Send Data C/D 12 17 CTS Crise Clock Clock Prive Crise Send Data R/D 13 16 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Control or Data is to be Written or Read</td>						Control or Data is to be Written or Read
RXD 3 20 VCC GND 4 25 RXC CL D4 5 24 DTR RESET D5 6 µPD 23 RTS D6 7 8251/ 22 DSR D7 8 8251A 21 RESET TxC 9 20 CLK OF 10 19 T xD TxC 11 18 T xE C/D 12 17 CTS RD 13 16 SYNDET (µPD8251) RXD 14 15 RXD 14 15	D3 🖵 2		27	D ₀	RD	Read Data Command
GND 4 25 RxC Cit Clock Pulse (TTL) D4 5 24 DTR CLK Clock Pulse (TTL) D5 6 µPD 23 RTS TxC Transmitter Clock (TTL) D5 6 µPD 23 RTS TxD TxA Transmitter Clock (TTL) D6 7 8251/ 22 DSR RXC Receiver Clock (TTL) D7 8 8251A 21 RESET RxRD Receiver Ready (his character for 8000) TxC 9 20 CLK DSR Data Set Ready WRC 10 19 T xD SVNDET Svp. Detect CS 11 18 T xE SVNDET/BD Sync Detect/Break Detect C/D 12 17 CTS CTS CTS RD 13 16 SVNDET (µPD8251) SYNDET (BD (µPD8251A) TxE Transmitter Empty VCC 45 Volt Supply 20 SVNDET (MPD8251A) 45 Volt Supply TxE	Byo da		26 h	Vee	ŴŔ	Write Data or Control Command
D4 5 24 DTR RESET Rest D5 6 µPD 23 RTS Tx0 Transmitter Olack (TTL) D6 7 8251/ 22 OSR RXC Receiver Clock (TTL) D7 8 8251A 21 RESET RxRD Receiver Resdy (his character for 8060) TxC 9 20 CLK DSR Data Set Resdy WR 10 19 T xD SYNDET SYNDET Sync Detect/Break Detect. CS 11 18 T xE RTS Rouse Constrained Resdy RBD 13 16 SYNDET (µPD8251) SYNDET Sync Detect Transmitter Empty RBD 14 T TRBDY Transmitter Empty			~ –		CS	Chip Enable
Da 5 24 DTR D5 6 µPD 23 RTS TxC Transmitter Clock (TTL) D5 6 µPD 23 RTS TxD Transmitter Clock (TTL) D6 7 8251/ 22 DSR RxC Receiver Clock (TTL) D7 8 8251A 21 RESET RxD Receiver Clock (TTL) TxC 9 20 CLK DSR Receiver Clock (TTL) WR 10 19 TxD Transmitter Redy (ready for char. from 8080) CS 11 18 TxE SVNDET/BD SVNDET/BD C/D 12 17 CTS GTS Cleat RC 13 16 SVNDET/BD (µPD8251A) TxE Transmitter Empty VCC 45 Volt Supply Type Type 45 Volt Supply 45 Volt Supply	GND 🗖 4		25 🗖	R×C	CLK	Clock Pulse (TTL)
D5 6 µPD 23 RTS TxC Transmitter Olock (TTL) D6 7 8251/ 22 DSR RXC Receiver Clock (TTL) D7 8 8251A 21 RESET RxRD Receiver Ready (has character for 8000) TxC 9 20 CLK DSR Data Set Ready WR C 10 19 TxD SYNDET SYNDET/BD Detect/Break Detect C/D 12 17 CTS CTS CTS CTS R/D 13 16 SYNDET/BD (µPD8251) SYNDET/BD (µPD8251) TxE Transmitter Data R/RD 14 15 T TxD Transmitter Clock (TTL)			~h	DTR		Reset
D6 7 8251/ 8251A 22 DSR RxC Reciver Clock (TTL) D7 8 8251A 21 RESET RxRD Receiver Data RxRDV Receiver Ready (his character for 8080) TxC 9 20 CLK DSR DSR DSR WR 10 19 T xD DTR Data Set Ready OTR Data Set Ready CS 11 18 T xE SVNDET SVNDET/BD Svin Detect/Break Detect C/D 12 17 CTS CTS Clar Set Node T CTS RD 13 16 SVNDET/BD (µPD8251) SVEDT/BD (µPD8251A) TxE Transmitter Prepty VCC 45 Volt Supply T xERDY Transmitter Tempty	⁰⁴ H ³		-24 -	DIR	TxC	Transmitter Clock (TTL)
D6 7 8251/ 8251A 22 DSR RxC Receiver Clock (TTL) D7 8 8251A 21 RESET RxD Receiver Clock (TTL) TxC 9 20 CLK DTR Data Set Rescy Data Set Rescy WR 10 19 TxD DTR Data Terminal Redy CS 11 18 TxE SYNDET SynDet Clock DTR RDC 12 17 CTS CTS<	D5 🗖 6	//PD	23 🗋	RTS	TxD	Transmitter Data
NBD Receiver Bata D7 8 8251A 21 RESET RRBV Receiver Bata TxC 9 20 CLK DSR Data Set Ready (ready (ready for char, from 8080) WR 10 19 T xD DSR Data Set Ready CS 11 18 T xE SVNDET SvnDetext/Break Detect C/D 12 17 CTS CTS CTS CTS RDC 13 16 SVNDET/BD (µPD8251A) TxE Transmitter Empty VCC 45 Volt Supply 14 15 T REDY Tase	~ H,		h	505	RxC	Receiver Clock (TTL)
U7 8 21 RESET Tradition from 80801 TxC 9 20 CLK DSR Data St Ready WR 10 19 T xD DTR DTR DSR CS 11 18 T xE SYNDET/BD Sync Detect Result C/D 12 17 CTS Crist Crist Crist Crist Crist Crist Crist Transmitter Empty RDC 13 16 SYNDET/BD (µPD82511) TxE Transmitter Empty VCC 45 Volt Supply VCC VCC	^{U6} Ц′		~~ µ	DSR	RxD	Receiver Data
TxC 9 20 CLK Transmitter Ready (ready for char. from 8080) WR 10 19 TxD DRS Data Set Ready CS 11 18 TxE SVNDET SynDetr/BD Detect/Break Detect C/D 12 17 CTS Reguest to Send Data CTS		8251A	21	BESET	RxRDY	Receiver Ready (has character for 8080)
WR 10 19 T xD Date Terminal Ready CS 11 18 T xE SYNDET Sync Detect/Break Detect C/D 12 17 CTS RTS Reguest to Send Date RD 13 16 SYNDET/BD (µPD8251) SYNDET/BD (µPD8251A) T xE Transmitter Empty VCC 14 15 T xRDY VCC +5 Volt Supply					TxRDY	Transmitter Ready (ready for char. from 8080)
WH 10 19 TxD SYNDET Sync Detect CS 11 18 TxE SYNDET/BD Sync Detect/Break Detect C/D 12 17 CTS Request to Send Data RD 13 16 SYNDET/BD (µPD8251A) TxE Transmitter Empty VCC 45 Volt Supply 45 Volt Supply VCC 45 Volt Supply	тхсЦ9		20	CLK	DSR	Data Set Ready
CS 11 18 TxE SYNDET Sync Detect/Break Detect C/D 12 17 CTS SYNDET/BD Rync Detect/Break Detect RDC 13 16 SYNDET (µPD8251) TxE Transmitter Empty SYNDET/BD (µPD8251A) TxE Transmitter Empty VCC 45 Volt Supply			10 h	T*D	DTR	Data Terminal Ready
C/D 12 17 CTS Request to Send Data RD 13 16 SYNDET (µPD8251) TxE Transmitter Empty XBDY 14 15 TXRDY 45 Volt Supply Voc			"" H		SYNDET	Sync Detect
C/D 12 17 CTS Clear to Send Data RD 13 16 SYNDET (μPD8251) TxE Transmitter Empty RVBDY 14 15 TxRDY VCC +5 Volt Supply	CS 🗖 11		18 🗖	TxE	SYNDET/BD	Sync Detect/Break Detect
CTS Clear Cost				CTC		Request to Send Data
ND 13 16 SYNDET/BD (μPD8251A) 1xe 1ransmitter empty BYBDY 14 15 TYBDY VCC +5 Volt Supply	UUH'2		·''P		CTS	Clear to Send Data
	RD 🗖 13		16 🗖		TxE	Transmitter Empty
RXRDY 14 15 1 XRDY GND Ground			Б		Vcc	+5 Volt Supply
			ىر ق	12001	GND	Ground

PIN NAMES

9

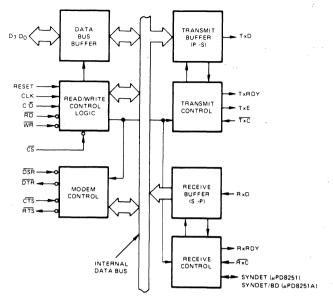
The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters are designed specifically for 8080 microcomputer systems but work with most 8-bit processors. Operation of the μ PD8251 and μ PD8251A, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the μ PD8251 or μ PD8251A converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

The μ PD8251A is an advanced design of the industry standard 8251 USART. It operates with a wide range of microprocessors, including the 8080, 8085, and μ PD780 (Z80TM). The additional features and enhancements of the μ PD8251A over the μ PD8251 are listed below.

- The data paths are double-buffered with separate I/O registers for control, status, Data In and Data Out. This feature simplifies control programming and minimizes processor overhead.
- 2. The Receiver detects and handles "break" automatically in asynchronous operations, which relieves the processor of this task.
- The Receiver is prevented from starting when in "break" state by a refined Rx initialization. This also prevents a disconnected USART from causing unwanted interrupts.
- When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
- 5. The Tx Disable command is prevented from halting transmission by the Tx Enable Logic enhancement, until all data previously written has been transmitted. The same logic also prevents the transmitter from turning off in the middle of a word.
- Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is provided through a flip-flop which clears itself upon a status read.
- 7. The possibility of a false sync detect is minimized by:
 - ensuring that if a double sync character is programmed, the characters be contiguously detected.
 - clearing the Rx register to all Logic 1s (VOH) whenever the Enter Hunt command is issued in Sync mode.
- 8. The \overline{RD} and \overline{WR} do not affect the internal operation of the device as long as the $\mu PD8251A$ is not selected.
- The μPD8251A Status can be read at any time, however, the status update will be inhibited during status read.
- The µPD8251A has enhanced AC and DC characteristics and is free from extraneous glitches, providing higher speed and improved operating margins.
- 11. Baud rate from DC to 64K.

C/D	RD	WR	CS	
0	0	1	0	μPD8251/μPD8251A → Data Bus
0	1	0	0	Data Bus → µPD8251/µPD8251A
1	0	1	0	Status → Data Bus
1	1	0	0	Data Bus → Control
X	X	X	1	Data Bus → 3-State
X	1	1	0	


BASIC OPERATION

FUNCTIONAL DESCRIPTION

μPD8251A FEATURES AND ENHANCEMENTS

TM: Z80 is a registered trademark of Zilog.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM	Operating Temperature :	0°C to +70°C
RATINGS*	Storage Temperature	-65°C to +125°C
	Ali Output Voltages	-0.5 to +7 Volts
	All Input Voltages	-0.5 to +7 Volts
	Supply Voltages	-0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

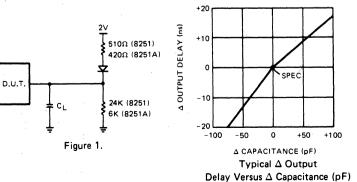
 $T_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5.0V \pm 10\%$; GND = 0V.

		LIMITS			5			
		μPD8251		µPD8251A				
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	MAX	UNIT	TEST CONDITIONS
Input Low Voltage	ViL	-0.5		0.8	0.5	0.8	v	
Input High Voltage	⊻ін	2.0		Vcc	2.0	Vcc	V	
	Ne			0.45		0.45	v	µPD8251: IOL = 1.7 mA
Output Low Voltage	VOL			0.45		0.45	v	µPD8251A: IOL = 2.2 mA
		2.4			2.4		v	μPD8251: I _{OH} = -100 μA
Output High Voltage	∨он	2.4			2.4		Ň	μPD8251A: I _{OH} = -400 μA
Data Bus Leakage	1-			-50		-10		VOUT = 0.45V
Data bus Leakage				10		10	μA	Vout = Vcc
Input Load Current	μL			10		10	μA	At 5.5V
Power Supply Current			45	80		100	-	µPD8251A: All Outputs =
rower supply current	'cc		45	00		100	mA	Logic 1

CAPACITANCE $T_a = 25^{\circ}C; V_{CC} = GND = 0V$

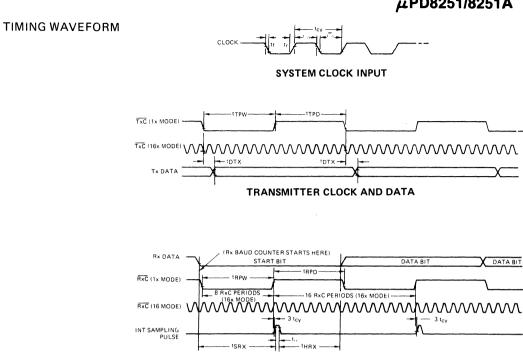
DC CHARACTERISTICS

			LIMITS			TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance	CIN			10	pF	fc = 1 MHz
I/O Capacitance	C1/O			20	pF	Unmeasured pins returned to GND

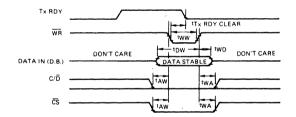

 $T_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5.0V \pm 10\%$; GND = 0V

	LIMITS			the second s			
			08251		8215A		TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
Address Stable before READ, (CS, C/D)	1	50 RE	AD	0			1
Address Hold Time for READ, (CS, CD)	IAR	50		0		ns	
READ Pulse Width	^t RA	430		250		ns	
	^t RR	430	350	250		ns	
Data Delay from READ	TRD				200	ns	μPD8251: CL = 100 pF μPD8251A: CL = 150 pf
READ to Data Floating	1DF	25	200	10	100	ns	μ PD8251 CL = 100 pF CL = 15 pF
		WR	TE				۰
Address Stable before WRITE	taw	20		0		ns	
Address Hold Time for WRITE	tWA	20		0		ns	
WRITE Pulse Width	tww	400		250		ns	
Data Set-Up Time for WRITE	tDW	200		150		ns	
Data Hold Time for WRITE	twp	40		0		ns	
Recovery Time Between WRITES 2	tRV	6		6		^t CY	
		OTHER	IMING				• • • • • • • • • • • • • • • • • • •
Clock Period (3)	1CY	0.420	1.35	0.32	1.35	μs	
Clock Pulse Width High	tφW	220	0.7tCY	120	tCY-90	ns	
Clock Pulse Width Low	t _Ø W			90		ns	
Clock Rise and Fall Time	tR,tF	0	50	5	20	ns	
TxD Delay from Falling Edge of TxC	^t DTx		1		1	μs	
Rx Data Set-Up Time to Sampling Pulse	^I SR x	2		2		μs	µPD8251: CL = 100 pF
Rx Data Hold Time to Sampling Pulse	^t HRx	2		2		μs	
Transmitter Input Clock Frequency	fTx						
1X Baud Rate 16X Baud Rate		DC	56 520		64	kHz	
64X Baud Rate		DC DC	520		310 615	kHz kHz	
Transmitter Input Clock Pulse Width	TPW						
1X Baud Rate		12		12		^t CY	
16X and 64X Baud Rate		1		1		1CY	
Transmitter Input Clock Pulse Delay 1X Baud Rate	TPD	15		15			
16X and 64X Baud Rate		3		3		1CY 1CY	
Receiver Input Clock Frequency	fBx						
1X Baud Rate 16X Baud Rate		DC	56		64	kHz	
64X Baud Rate		DC	520 520		310 615	kHz kHz	
Receiver Input Clock Pulse Width	TRPW						
1X Baud Rate		12		12		1CY	
16X and 64X Baud Rate		1		1		^t CY	
Receiver Input Clock Pulse Delay 1X Baud Rate	^t RPD	15		15			
16X and 64X Baud Rate		3		15 3		1CY	
TxRDY Delay from Center of Data Bit	tTx		16		8	ICY	µPD8251. CL = 50 pF
RxRDY Delay from Center of Data Bit	^t RX		20		24	4CY	······································
Internal SYNDET Delay from Center of Data Bit	tis		25		24	1CY	
External SYNDET Set-Up Time before Falling Edge of RxC	^t ES		16		16	1CY	
TXEMPTY Delay from Center of Data Bit	[†] T×E		16		20	¹ CY	µPD8251. CL = 50 pF
Control Delay from Rising Edge of WRITE (TxE, DTR, RTS)	twc		16		8	1CY	
	1						

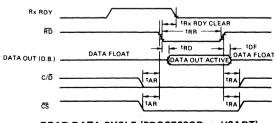
Notes: ① AC timings measured at VO_H = 2.0, VO_L = 0.8, and with load circuit of Figure 1. ② This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY = 1.

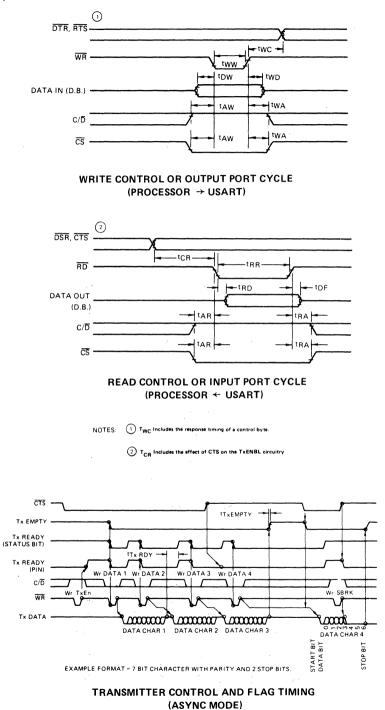

(3) The TAC and RAC frequencies have the following limitations with respect to CLK. For 1X Baud Rate, f_{TX} or $f_{RX} \le 1/(30 \text{ t}_{CY})$ For 16X and 64X Baud Rate, f_{TX} or $f_{RX} \le 1/(45 \text{ t}_{CY})$

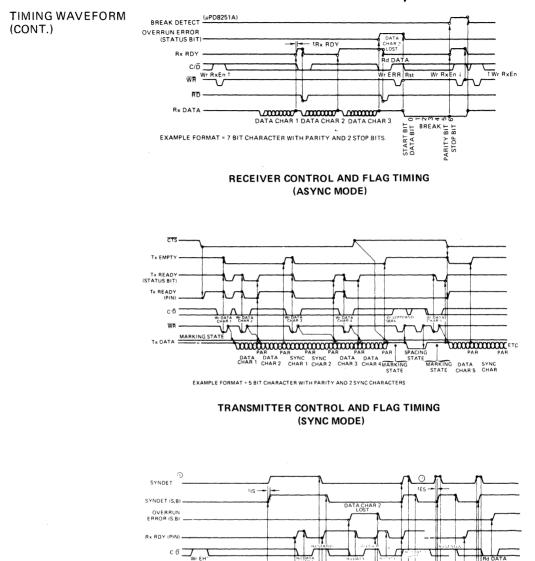
(4) Reset Pulse Width = 6 tCY minimum."



AC CHARACTERISTICS


TEST LOAD CIRCUIT


RECEIVER CLOCK AND DATA


WRITE DATA CYCLE (PROCESSOR → USART)

READ DATA CYCLE (PROCESSOR + USART)

TIMING WAVEFORM (CONT.)

NNN

EXIT HUNT MODE

WR RD

R× CLOCK

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

Notes: ① Internal sync, 2 sync characters, 5 bits, with parity. ② External sync, 5 bits, with parity. ານນັ້ນເ

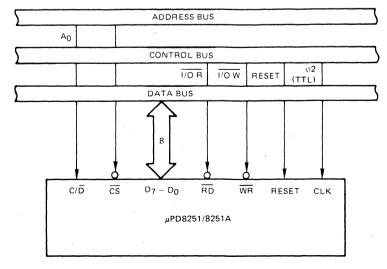
SET SYNDET (STATUS BIT)

ហរីហ

EXIT HUNT MODE

PIN		IN	
NO.	SYMBOL	NAME	FUNCTION
1, 2, 27, 28 5 – 8	D7 – D0	Data Bus Buffer	An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or Read/ Write instructions from the processor. The Data Bus Buffer also transfers Control words, Gommand words, and Status.
26	V _{CC}	V _{CC} Supply Voltage	+5 volt supply
4	GND	Ground	Ground
	Read/Write	e Control Logic	This logic block accepts inputs from the pro- cessor Control Bus and generates control signals for overall USART operation. The Mode Instruction and Command Instruction registers that store the control formats for device func- tional definition are located in the Read/ Write Control Logic.
21	RESET	Reset	A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitial- ized with a new set of control words. Minimum RESET pulse width is 6 t _{CY} .
20	CLK	Clock Pulse	The CLK input provides for internal device tim- ing and is usually connected to the Phase 2 (ITL) output of the μ PB8224 Clock Generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.
10	WR	Write Data	A "zero" on this input instructs the USART to accept the data or control word which the processor is writing out on the data bus.
13	RD	Read Data	A "zero" on this input instructs the USART to place the data or status information onto the Data Bus for the processor to read.
12	C/D	Control/Data	The Control/Data input, in conjunction with the WR and RD inputs, informs the USART to accept or provide either a data character, control word or status information via the Data Bus. 0 = Data; 1 = Control.
11	ĊŚ	Chip Select	A "zero" on this input enables the USART to read from or write to the processor.
	Mode	em Control	The µPD8251 and µPD8251A have a set of control inputs and outputs which may be used to simplify the interface to a Modem.
22	DSR	Data Set Ready	The Data Set Ready input can be tested by the processor via Status information. The DSR input is normally used to test Modem Data Set Ready condition.
24	DTR	Data Terminal Ready	The Data Terminal Ready output can be con- trolled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines.
23	RTS	Request to Send	The Request to Send output can be controlled via the Command word. The RTS output is normally used to drive the Modem Request to Send line.
17	CTS	Clear to Send	A "zero" on the Clear to Send input enables the USART to transmit serial data if the TxEN bit in the Command Instruction register is enabled (one).

PIN IDENTIFICATION


TRANSMIT BUFFER

The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

PIN IDENTIFICATION (CONT.)

		PIN	FUNCTION
NO.	SYMBOL	NAME	FUNCTION
	Transm	it Control Logic	The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.
15	TXRDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets TxRDY, on the leading edge.
18	ΤxΕ	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further char- acters to transmit. TxE is automatically reset upon receiving a data character from the pro- cessor. In half-duplex, TxE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TxE.
	\$		In the Synchronous mode, a "one" on this out- put indicates that a Sync character or charac- ters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.
9	TxC	Transmitter Clock	The Transmitter Clock controls the serial charac- ter transmission rate. In the Asynchronous mode, the \overline{TxC} frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruc- tion select the multiple to be 1x, 16x, or 64x the Baud Rate. In the Synchronous mode, the \overline{TxC} frequency is automatically selected to equal the actual Baud Rate. Note that for both Synchronous and Asynchro-
			nous modes, serial data is shifted out of the USART by the falling edge of \overline{TxC} .
19	T×D	Transmitter Data	The Transmit Control Logic outputs the composite serial data stream on this pin.

μPD8251 AND μPD8251A INTERFACE TO 8080 STANDARD SYSTEM BUS

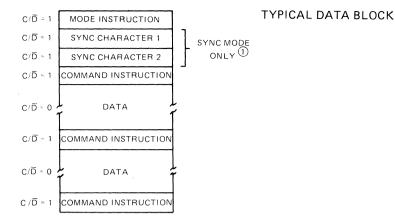
9

The Receive Buffer accepts serial data input at the RxD pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the μ PD8251 and μ PD8251A set the extra bits to "zero."

RECEIVE BUFFER

PIN IDENTIFICATION (CONT.)

	F	PIN	FUNCTION		
NO.	SYMBOL	NAME	TONCTION		
	Receiver C	ontrol Logic	This block manages all activities related to incoming data.		
14	RxRDY	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check RxRDY using a Status Read or RxRDY can be con- nected to the processor interrupt structure. Note that reading the character to the pro- cessor automatically resets RxRDY.		
25	R×C	Receiver Clock	The Receiver Clock determines the rate at which the incoming character is received. In the Asyn- chronous mode, the \overline{RxC} frequency may be 1.16 or 64 times the actual Baud Rate but in the Syn- chronous mode the \overline{RxC} frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at 1x, 16x or 64x or Syn- chronous operation at 1x the Baud Rate. Unlike \overline{TxC} , data is sampled by the μ PD8251 and μ PD8251A on the rising edge of \overline{RxC} .		
3	RxD	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin.		
	SYNDET (µPD8251)	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The μ PD8251 may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the μ PD8251 has located the SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mote, a "zero" to "one" transition on the SYNDET input will cause the μ PD8251 to start assembling data character on the next falling edge of RxC . The length of the SYNDET input should be at least one RxC period, but may be removed once the μ PD8251 is in SYNC.		
16	SYNDET/BD (µPD8251A)	Sync Detect/ Break Detect	The SYNDET/BD pin is used in both Synchron- ous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchron- ous mode, the Break Detect output will go high when an all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit.		


Note: (1) Since the µPD8251 and µPD8251A will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. \overline{RxC} and TxC then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.

If the Baud Rate equals 110 (Async): Examples: RxC or TxC equals 110 Hz (1x) RxC or TxC equals 1.76 KHz (16x) RxC or TxC equals 7.04 KHz (64x)

If the Baud Rate equals 300:

RxC or	TxC equals 300 Hz (1x) A or S
	TxC equals 4800 Hz (16x) A only
RxC or	TxC equals 19.2 KHz (64x) A only

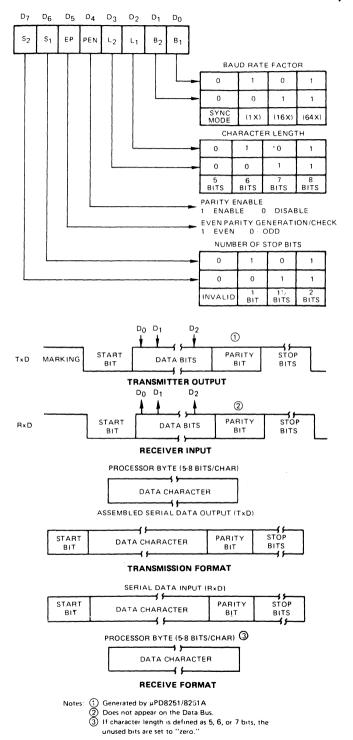
OPERATIONAL DESCRIPTION	A set of control words must be sent to the μ PD8251 and μ PD8251A to define the desired mode and communications format. The control words will specify the BAUD rate factor (1x, 16x, 64x), character length (5 to 8), number of STOP bits (1, 1-1/2, 2) Asynchronous or Synchronous mode, SYNDET (IN or OUT), parity, etc.
	After receiving the control words, the μ PD8251 and μ PD8251A are ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.
	Concurrently, the μ PD8251 and μ PD8251A may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset RxRDY.
	Note: The μ PD8251 and μ PD8251A may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction (RxE). A dummy read is recommended to clear faulty RxRDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.
	The μ PD8251 and μ PD8251A cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the $\overline{\text{CTS}}$ (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new control words.
USART PROGRAMMING	The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A RESET (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C/\overline{D} = 1$) followed by a software reset command instruction (40 Hex) can be used to initialize the μ PD8251 and μ PD8251A.
	There are two control word formats:
	 Mode Instruction Command Instruction
MODE INSTRUCTION	This control word specifies the general characteristics of the interface regarding the Synchronous or Asynchronous mode, BAUD rate factor, character length, parity, and number of stop bits. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.
COMMAND INSTRUCTION	This control word will be interpreted as a SYNC character definition if immediately preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character(s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

NOTE (1)

The second SYNC character is skipped if MODE instruction has programmed the µPD8251 and µP08251A to single character Internal SYNC Mode. Both SYNC characters are skipped if MODE instruction has programmed the µPD8251 and µPD8251A to ASYNC mode.

The μ PD8251 and μ PD8251A can operate in either Asynchronous or Synchronous communication modes. Understanding how the Mode Instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components (one asynchronous and the other synchronous) which share the same support circuits and package. Although the format definition can be changed at will or "on the fly", the two modes will be explained separately for clarity.

When a data character is written into the μ PD8251 and μ PD8251A, the USART automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bit(s), as specified by the Mode Instruction. Then, depending on CTS and TxEN, the character may be transmitted as a serial data stream at the TxD output. Data is shifted out by the falling edge of TxC at TxC, TxC/16 or TxC/64, as defined by the Mode Instruction.


If no data characters have been loaded into the μ PD8251 and μ PD8251A, or if all available characters have been transmitted, the TxD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TxD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

The RxD input line is normally held "high" (marking) by the transmitting device. A falling edge at RxD signals the possible beginning of a START bit and a new character. The START bit is checked by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the RxD pin with the rising edge of RxC. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid STOP bit, the input character is loaded into the parallel Data Bus Buffer of the μ PD8251 and μ PD8251A and the RxRDY signal is raised to indicate to the processor that a character, is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.

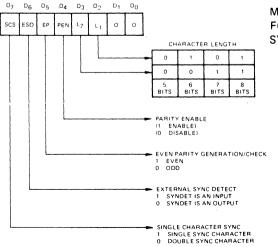
MODE INSTRUCTION DEFINITION

ASYNCHRONOUS TRANSMISSION

ASYNCHRONOUS RECEIVE

As in Asynchronous transmission, the TxD output remains "high" (marking) until the μ PD8251 and μ PD8251A receive the first character (usually a SYNC character) from the processor. After a Command Instruction has set TxEN and after Clear to Send (CTS) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of TxC and the same rate as TxC.

Once transmission has started, Synchronous Mode format requires that the serial data stream at TxD continue at the TxC rate or SYNC will be lost. If a data character is not provided by the processor before the μ PD8251 and μ PD8251A Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the μ PD8251 and μ PD8251A become empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC character from the processor.

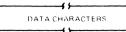

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit has been set by a Command Instruction, the receiver goes into the HUNT mode.

Incoming data on the RxD input is sampled on the rising edge of \overline{RxC} , and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the μ PD8251 and μ PD8251A leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

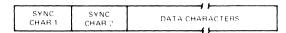
If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one \overline{RxC} cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

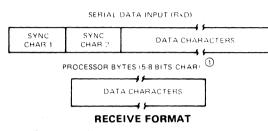
The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.


SYNCHRONOUS TRANSMISSION

SYNCHRONOUS RECEIVE


MODE INSTRUCTION FORMAT SYNCHRONOUS MODE

TRANSMIT/RECEIVE FORMAT SYNCHRONOUS MODE


PROCESSOR BYTES (5-8 BITS CHAR)

ASSEMBLED SERIAL DATA OUTPUT (TND)

TRANSMIT FORMAT

Note ① If character length is defined as 5, 6 or 7 bits, the unused bits are set to "zero."

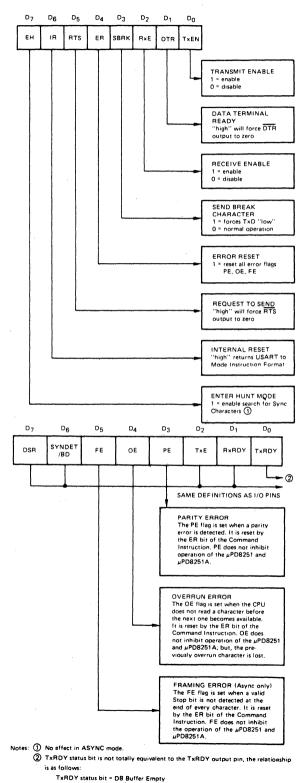
COMMAND INSTRUCTION A FORMAT ti

After the functional definition of the μ PD8251 and μ PD8251A has been specified by the Mode Instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.

After the Mode Instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" ($C/\overline{D} = 1$) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the μ PD8251 and μ PD8251A to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.

STATUS READ FORMAT It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The μ PD8251 and μ PD8251A have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the C/D input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the μ PD8251 and μ PD8251A to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of 16 clock periods in the μ PD8251 and 28 clock periods in the μ PD8251A.

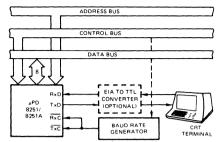
PARITY ERROR When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.


OVERRUN ERROR

If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

FRAMING ERROR (1)

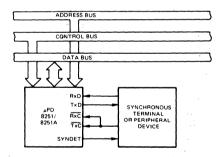
If a valid STOP bit is not detected at the end of a character, the FE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.


Note: 1 ASYNC mode only.

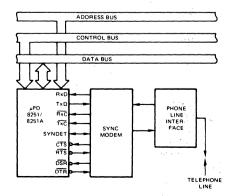
COMMAND INSTRUCTION FORMAT

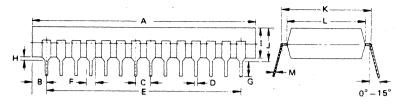
STATUS READ FORMAT

TxRDY (pin 15) = DB Buffer Empty • CTS • TxEn

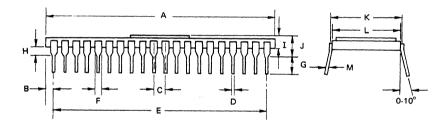


APPLICATION OF THE µPD8251 AND µPD8251A


ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD


ASYNCHRONOUS INTERFACE TO TELEPHONE LINES

SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE


SYNCHRONOUS INTERFACE TO TELEPHONE LINES

PACKAGE OUTLINES µPD8251C μPD8251AC

Plastic

s	1 103010	
ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
в	2.49	0.098
с	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
к	15.24	0.6
L	13.2	0.52
м	0.25 ^{+0.10} 0.05	0.01 + 0.004 0.002

μPD8251D μPD8251AD

Ceramic		
ITEM	MILLIMETERS	INCHES
А	51.5 MAX.	2.03 MAX.
В	1.62 MAX.	0.06 MAX.
C ,	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0,004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
н	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
ĸ	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019