NEC Microcomputers, Inc.

PROGRAMMABLE DMA CONTROLLER

DESCRIPTION

ION The μPD8257-5 is a programmable four-channel Direct Memory Access (DMA) controller. It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the μPD8257-5 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the μPD8257-5 so that the system bus may be acquired by the generation of a single HOLD command to the 8080A. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other μPD8257-5 devices for systems requiring more than four DMA channels.

- FEATURES NEC Now Supplies µPD8257-5 to µPD8257 Requirements
 - Four Channel DMA Controller
 - Priority DMA Request Logic
 - Channel Inhibit Logic
 - Terminal Count and Modulo 128 Outputs
 - Automatic Load Mode
 - Single TTL Clock
 - Single +5V Supply ±10%
 - Expandable
 - 40 Pin Plastic Dual-In-Line Package

PIN CONFIGURATION

I/OR	q	1	\cup	40	
I/OW	q	2		39	
MEMR	q	3		38	
MEMW	q	4		37	
MARK	q	5		36	р тс
READY	d	6		35	
HLDA	q	7		34	
ADDSTB	d	8	_	33	
AEN	q	9	μPD	32	
HRQ	d	10	8257/	31	
cs l		11	8257-5	30	
CLK		12		29	
RESET	q	13		28	$\square D_2$
DACK2	q	14		27	
DACK3	q	15		26	
DRQ3		16		25	DACK0
DRQ2		17		24	DACK1
DRQ1		18		23	D D ₅
DRQ0		19		22	
GND		20		21	

	FIN NAMES
D ₇ -D ₀	Data Bus
A ₇ -A ₀	Address Bus
I/OR	I/O Read
I/OW	I/O Write
MEMR	Memory Read
MEMW	Memory Write
CLK	Clock Input
RESET	Reset Input
READY	Ready
HRQ	Hold Request (to 8080A)
HLDA	Hold Acknowledge (from 8080A)
AEN	Address Enable
ADSTB	Address Strobe
тс	Terminal Count
MARK	Modulo 128 Mark
DRQ3-DRQ0	DMA Request Input
DACK3-DACK0	DMA Acknowledge Out
CS	Chip Select
V _{CC}	+5 Volts
GND	Ground

DIAL NA MACO

Operating Temperature	0°C to +70°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin	-0.5 to +7 Volts ①
Power Dissipation	1 Watt

ABSOLUTE MAXIMUM RATINGS*

Note: 1 With Respect to Ground

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 25^{\circ}C$

$T_a = 0^{\circ}C \text{ to } +70^{\circ}$	°C; V _{CC} = +!	5V ± 10%	GND = 0V
--	--------------------------	----------	----------

DADAMETED	SAMBOI		LIMIT	s		TEST CONDITIONS	
FADAMETER	STIVIBUL	MIN.	TYP.	MAX.			
Input Low Voltage	VIL	-0.5		0.8	Voits		
Input High Voltage	v _{iH}	2.0		V _{CC} + 0.5	Volts		
Output Low Voltage	VOL			0.45	Volts	I _{OL} = 1.7 mA	
Output High Voltage	v _{он}	2.4		Vcc	Volts	$I_{OH} = -150 \ \mu A$ for AB, DB and AEN $I_{OH} = -80 \ \mu A$ for others	
HRQ Output High Voltage	∨ _{HH}	3.3		v _{cc}	Volts	^I OH ^{= -80} μA	
V _{CC} Current Drain	¹ cc			120	mA		
Input Leakage	ιι			10	μA	V _{IN} = V _{CC}	
Output Leakage During Float	IOFL			10	μA	v _{out} ®	

Note: (1) $V_{CC} > V_{OUT} > GND + 0.45V$

 $T_a = 25^{\circ}C; V_{CC} = GND = 0V$

			LIMITS			TEST CONDITIONS	
PARAMETER	STMBOL	MIN.	TYP.	MAX.		TEST CONDITIONS	
Input Capacitance	C _{IN}			10	pF	f _c = 1 MHz	
I/O Capacitance	CI/O		T I	20	pF	Unmeasured pins	
						returned to GND	

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS BUS PARAMETERS PERIPHERAL (SLAVE) MODE

$T_a = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 10\%$; GND = 0V (1)	
---	--

PARAMETER	SYMBOL	BOL µPD825		7	μP	µPD8257-5		UNIT	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
			EAD						
Adr or CS1 Setup to Rd1	TAR	0			0			ns	
Adr or CSt Hold from Rdt	TRA	0			0			ns	
Data Access from Rdi	TRDE	0		300	0		170	ns	CL = 100 pF
DB→Float Delay from Rd1	TRDF	20		150	20		100	ns	CL = 100 pF
Rd Width	Tew	250			250			ns	CL - ISPF
		14	DITE						
CS; Setup to Wri	TCW	300			300			ns	
CSt Hold from Wrt	тwc	20			20			ns	
Adr Setup to Wri	TAW	20			20			ns	
Adr Hold from Wrt	TWA	0			0			QS	
Data Setup to Wr i	TDW	200			200			ns	
Data Hold from Wrt	TWD	0			0			ns	
Wr Width	Twws	200			200			ns	
		OTHE	R TIM	ING					
Reset Pulse Width	TRSTW	300			300			ns	
Power Supply †(VCC) Setup to Reset	TRSTD	500			500			μs	
Signal Rise Time	Tr			20			20	ns	
Signal Fall Time	Tf			20			20	ns	
Reset to First IOWR	TRSTS	2			2			^t CY	

Note: ① All timing measurements are made at the following reference voltages unless specified otherwise. Input "1" at 2.0V, "0" at 0.8V, Output "1" at 2.0V, "0" at 0.8V.

② Data for comparison only.

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE

WRITE TIMING

$T_a = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = +5V \pm 10\%$; GND = 0V

AC CHARACTERISTICS DMA (MASTER) MODE

			LI	MITS			TEST CONDITIONS	
PARAMETER	SYMBOL	(8) µPD82	257	μPD82	57-5	UNIT		
		MIN	MAX	MIN	MAX			
Cycle Time (Period)	TCY	0.320	4	0.250	4	μs		
Clock Active (High)	Τ _θ	120	.8TCY	30	.8TCY	ns		
DRQ↑ Setup to θ↓ (SI, S4)	TQS	120		120				
DRQ1 Hold from HLDA1	Тон	0		0			4	
HRQ↑ or ↓Delay from ∂↑ (SI, S4) (measured at 2.0V)	Τρα		160		160	ns	1	
HRQ↑ or ↓ Delay from ∂↑ (SI, S4) (measured at 3.3V)	T _{DQ1}		250		250	ns	3	
HLDA1 or \downarrow Setup to $\theta \downarrow$ (SI, S4)	т _{нs}	100		100		ns		
AEN↑ Delay from θ↓ (S1)	TAEL		300		250	ns	1	
AEN↓ Delay from θ↑ (SI)	TAET		200		200	ns	1	
Adr (AB) (Active) Delay from AEN1 (S1)	TAEA	20		20		ns	(4)	
Adr (AB) (Active) Delay from θ† (S1)	TFAAB		250		250	ns	2	
Adr (AB) (Float) Delay from θ↑ (SI)	TAFAB		150		150	ns	2	
Adr (AB) (Stable) Delay from θ↑ (S1)	TASM		250		250	ns	2	
Adr (AB) (Stable) Hold from #1 (S1)	ТАН	TASM-50		TASM-50			2	
Adr (AB) (Valid) Hold from Rdt (S1, SI)	TAHR	60		60		ns	4	
Adr (AB) (Valid) Hold from Wrt (S1, SI)	TAHW	300		300		ns	<u>(4)</u>	
Adr (DB) (Active) Delay from 01 (S1)	TEADB		300		250	ns	2	
Adr (DB) (Float) Delay from 01 (S2)	TAFDB	TSTT+20	250	TSTT+20	170	ns	2	
Adr (DB) Setup to Adr Stb1 (S1-S2)	TASS	100		100		ns	(4)	
Adr (DB) (Valid) Hold from Adr Stb1 (S2)	TAHS	50		50		ns	(4)	
Adr Stb† Delay from #† (S1)	TSTL		200		200	ns	 	
Adr Stb↓ Delay from ∂↑ (S2)	Т		140		140	ns	<u>(</u>)	
Adr Stb Width (S1-S2)	TSW	TCY-100		TCY-100		ns	(4)	
Rd∔ or ₩r (Ext)∔ Delay from Adr Stb∔ (S2)	TASC	70		70		ns	4	
Rd∔ or Wr (Ext)∔ Delay from Adr (DB) (Float) (S2)	т _{овс}	20		20		ns	4	
DACK↑ or ↓Delay from θ↓ (S2, S1) and TC/Mark ↑ Delay from θ↑ (S3) and TC/Mark ↓ Delay from θ↑ (S4)	так		250		250	ns	16	
Rd↓ or Wr (Ext)↓ Delay from ∂↑ (S2) and Wr↓ Delay from ∂↑ (S3)	TDCL		200		200	ns	26	
\overrightarrow{Rd} t Delay from $\theta \downarrow$ (S1, SI) and Wrt Delay from $\theta \uparrow$ (S4)	трст		200		200	ns	27	
Rd or Wr (Active) from 01 (S1)	TFAC		300		250	ns	2	
Rd or Wr (Float) from 0 t (SI)	TAFC		150		150	ns	Ô	
Rd Width (S2·S1 or SI)	TRWM	2Τ _{CY} + Τ _θ -50		2T _{CY} + Τ _θ -50		ns	4	
Wr Width (S3-S4)	TWWM	TCY-50		T _{CY} -50		ns	4	
Wr (Ext) Width (S2-S4)	TWWME	2TCY-50		2TCY-50		ns	4	
READY Set Up Time to #1 (S3, Sw)	TRS	30		30		ns		
READY Hold Time from #1 (S3, Sw)	тен	20		20		ns		

Notes: 1 Load = 1 TTL

2 Load = 1 TTL + 50 pF

(3) Load = 1 TTL + ($R_L = 3.3K$), $V_{OH} = 3.3V$

(4) Tracking Specification

⑤ ∆T_{AK} <50 ns</p>

⑥ △T_{DGL} <50 ns</p>

⑦ ΔT_{DCT} <50 ns</p>

8 Data for comparison only

DMA (MASTER) MODE TROL OVERRIDE SEQUENCE • \$2 \$2 CLOC Tas-0 Tev DBOo 2 τ... Tue HLDA TAEL AFN TEAAB ADD0.7 (LOWER ADR) ADD0.7 TEADB TAHS AFDE DATA0.7 DATA0.7 (UPPER ADR) тѕт TASS ADDSTR -TASC DACK0.3 DACK0.3 TEAC **୶**⊧ -тост TOWN ТАНЯ MEMRD/I/O RD MEMBD/I/O BD Трст TARC - T MEMWR/I/O WR www TRS READY -TC/MARK TOMAR

FUNCTIONAL DESCRIPTION

TIMING WAVEFORMS

The μ PD8257-5 is a programmable, Direct Memory Address (DMA) device. When used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080A/8085A based systems. Once initialized by an 8080A/8085A CPU, the μ PD8257-5 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occurs within the μ PD8257-5.

- It acquires control of the system bus (placing 8080A/8085A in hold mode).
- Resolves priority conflicts if multiple DMA requests are made.
- A 16-bit memory address word is generated with the aid of an 8212 in the following manner:
 - The $\mu PD8257{-}5$ outputs the least significant eight bits (A0-A7) which go directly onto the address bus.
 - The μ PD8257-5 outputs the most significant eight bits (A8-A15) onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.
- The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.

Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request (DRQ_n). The μ PD8257-5 retains control of the system bus as long as DRQ_n remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.

There are three different modes of operation:

- DMA read, which causes data to be transferred from memory to a peripheral;
- DMA write, which causes data to be transferred from a peripheral to memory; and
- DMA verify, which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the μ PD8257-5. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control signals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cyclic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.

Internally the µPD8257-5 contains six different states (S0, S1, S2, S3, S4 and SW). The DMA OPERATION duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests (DRQ_n), then the μ PD8257-5 enters the S0 state. During state S0 a Hold Request (HRQ) is sent to the 8080A/8085A and the μ PD8257-5 waits in S0 until the 8080A/8085A issues a Hold Acknowledge (HLDA) back. During S0, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line (DACKn) with the highest priority is driven low, selecting that particular peripheral for the DMA cycle. The DMA Request line (DRQn) must remain high until either a DMA Acknowledge (DACK_n) or both DACK_n and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst model).

The DMA cycle consists of four internal states; S1, S2, S3 and S4. If the access time of the memory or I/O device is not fast enough to return a Ready command to the μ PD8257-5 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs until a Ready signal is received, and the μ PD8257-5 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state.

If the μ PD8257-5 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (tRS), write setup, time (t_{DW}), read data access time (t_{RD}) and HLDA setup time (t_{QS}) should all be carefully observed during the handshaking mode between the μ PD8257-5 and the 8080A/8085A.

During DMA write cycles, the I/O Read (I/O R) output is generated at the beginning of state S2 and the Memory Write ($\overline{\text{MEMW}}$) output is generated at the beginning of S3. During DMA read cycles, the Memory Read (MEMR) output is generated at the beginning of state S2 and the I/O Write $(\overline{I/O W})$ goes low at the beginning of state S3. No Read or Write control signals are generated during DMA verify cycles.

DMA OPERATION STATE DIAGRAM

TYPICAL µPD8257-5 SYSTEM INTERFACE SCHEMATIC

623

PACKAGE OUTLINE

μPD8257C μPD8257C-5

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
В	1.62	0.064
С	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
н	0.5 MIN	0.019 MIN
I	5.22 MAX	0,206 MAX
J	5.72 MAX	0.225 MAX
к	15.24	0.600
L	13.2	0.520
м	0.25 ^{+0.1} -0.05	0.010 ⁺ 0.004 - 0.002