Description

The US5D304 is a 2.1-GHz,4-output differential high-performance clock fanout buffer.

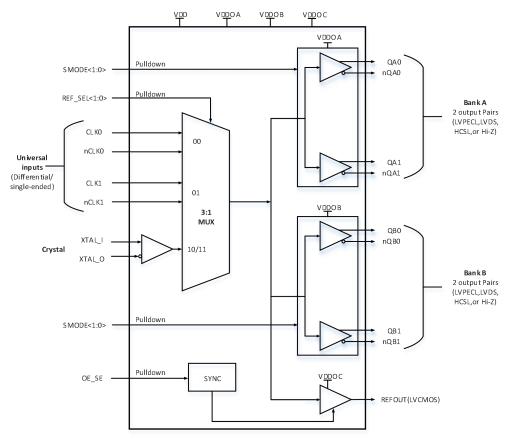
The input clock can be selected from two differential inputs or one crystal input. The selected input clock is distributed to two banks of 2 differential outputs and one LVCMOS output. Output banks can be configured as LVPECL,LVDS,or HCSL drivers,or disabled. The LVCMOS output has a synchronous enable input for runt-pulse-free operation when enabled or disabled. The outputs are at a defined level when inputs are open.

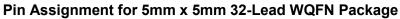
The internal oscillator circuit is automatically disabled if the crystal input is not selected. The crystal pin can be driven by a single-ended clock.

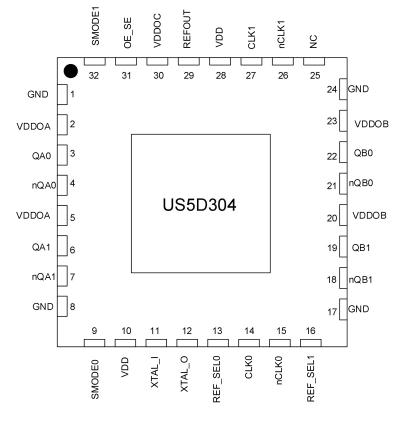
The device is designed for a signal fanout of high-frequency, low phase-noise clock and data signal. It is designed to operate from a 3.3V or 2.5V core power supply, and either a 3.3V or 2.5V output operating supply.

Applications

- Clock distribution and level translation for ADCs, DACs, Multi-Gigabit Elthernet, XAUI, Fibre channel, SATA/SAS, SONET/SDH,CPRI, High-Frequency Backplanes
- Switches, Routers, Line Cards, Timing Cards
- Servers, Computing, PCI Express(PCIe 3.0,4.0)
- Remote Radio Units and Baseband Units


Features


- Two differential reference clock input pairs
- Differential input pairs can accept the following differential input levels: LVPECL, LVDS, HCSL, HSTL or Single Ended
- Crystal Input accepts 10MHz to 40MHz Crystal or Single Ended Clock
- Maximum Output Frequency LVPECL - 2.1GHz
 LVDS - 2.1GHz
 HCSL - 250MHz
 LVCMOS - 250MHz
- Four differential output pairs that can be configured as LVPECL or LVDS or HCSL or HiZ
- One single-ended reference output with synchronous enable to avoid clock glitch
- Output skew: 20ps (typical)
- Part-to-part skew: 200ps (typical)
- Additive RMS phase jitter @ 156.25MHz: 12.5 fs RMS (10kHz - 1 MHz), typical @ 3.3V/ 3.3V 50.5 fs RMS (10kHz - 20MHz), typical @ 3.3V/ 3.3V
- Supply voltage modes: V_{DD}/V_{DDO} 3.3V/3.3V 3.3V/2.5V 2.5V/2.5V
- Industrial Temperature Range:-40°C to 85°C
- Pin-to-Pin compatible with Imk00304
- Available in a 32-pin,5mm*5mm WQFN package

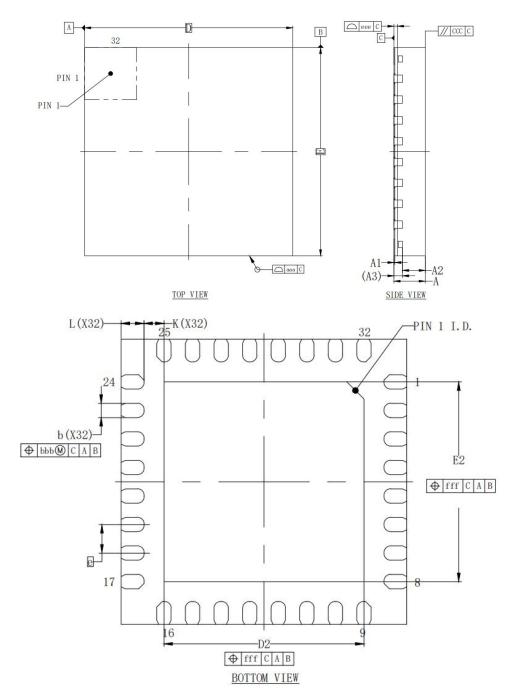


Block Diagram

极景微半导体

Pin Description and Pin Characteristic Tables

Table 1: Pin Descriptions¹

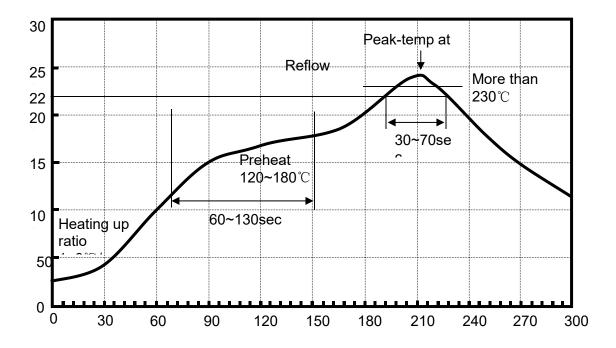

Number	Name	Туре		Description		
1	GND	Power		Ground.		
2	V _{DDOA}	Power		Output supply pins for Bank QA outputs. 3.3V or 2.5V.		
3	QA0	Output		Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface leve		
4	nQA0	Output		Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface leve		
5	V _{DDOA}	Power		Output supply pins for Bank QA outputs. 3.3V or 2.5V.		
6	QA1	Output		Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface level		
7	nQA1	Output		Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface level		
8	V _{DDOA}	Power		Output supply pins for Bank QA outputs. 3.3V or 2.5V.		
9	SMODE0	Input	Pulldown	Output driver select for Bank A outputs. See Table 8 for function. LVCMOS/LVTTL interface levels.		
10	V _{DD}	Power		Power supply for Core and input Buffer blocks, 3.3V or 2.5V.		
11	XTAL_I	Input		Crystal oscillator interface.		
12	XTAL_O	Input		Crystal oscillator interface.		
13	REF_SEL0	Input	Pulldown	Input clock selection. LVCMOS/LVTTL interface levels. See Table 3 for function.		
14	CLK0	Input	Pulldown	Non-inverting differential clock. Internally biased to ground		
15	nCLK0	Input	Pullup/ Pulldown	Inverting differential clock. Internally biased to 0.5V _{DD.}		
16	REF_SEL1	Input	Pulldown	Input clock selection. LVCMOS/LVTTL interface levels. See Table 3 for function.		
17	GND	Power		Ground.		
18	nQB1	Output		Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface level		
19	QB1	Output		Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface level		
20	V _{DDOB}	Power		Output supply pins for Bank QB outputs. 3.3V or 2.5V.		
21	nQB0	Output		Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface level		
22	QB0	Output		Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface level		
23	V _{DDOB}	Power		Output supply pins for Bank QB outputs. 3.3V or 2.5V.		
24	GND	Power		Ground.		
25	nc	Unused		No connect pin.		
26	nCLK1	Input	Pullup/ Pulldown	Inverting differential clock. Internally biased to 0.5V _{DD.}		
27	CLK1	Input	Pulldown	Non-inverting differential clock. Internally biased to ground		
28	V _{DD}	Power		Power supply for Core and input Buffer blocks, 3.3V or 2.5V.		
29	REFOUT	Output		Single-ended reference clock output. LVCMOS/LVTTL interface levels.		
30	VDDOC	Power		Output supply pin for REFOUT output.		
31	OE_SE	Input	Pulldown	REFOUT output enable. LVCMOS/LVTTL interface levels. See Table 4.		
32	SMODE1	Input	Pulldown	Output driver select for Bank A outputs. See Table 8 for function. LVCMOS/LVTTL interface levels.		

NOTE 1. Pulldown and Pullup refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table	2:	Pin	Chara	cteristics
-------	----	-----	-------	------------

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance	OE_SE, SMODE[1:0], REF_SEL[1:0]			2		pF
R _{PULLDOWN}	Input Pulldowr	Resistor			50		kΩ
R _{PULLUP}	Input Pullup/down Resistor	nCLK0			40/40		kΩ
		nCLK1			40/40		kΩ
C _{PD}	Power	REFOUT	VDDOC = 3.465V		5.3		pF
	Dissipation Capacitance	REFOUT	VDDOC = 2.625V		6.3		pF
R _{OUT}	Output Impedance	REFOUT	VDDOC = 3.3V		50		Ω
		REFOUT	VDDOC = 2.5V		60		Ω

PACKAGE DIMENSIONS



Item		Symbol	Minimum	Normal	Maximum	
De la Cinc		D	5.0 BSC			
Body Size	Y	E	5.0 BSC			
Exposed Pad Size	Х	D2	3.40	3.50	3.60	
Exposed rad Size	Y	E2	3.40	3.50	3.60	
Total Thickness	А	0.70	0.75	0.80		
Stand Off	A1	0	0.02	0.05		
Molding Thickness	A2		0.55			
LF Thickness	A3	0.203 REF				
Lead Width	b	0.20	0.25	0.30		
Lead Length	L	0.30	0.40	0.50		
Lead Pitch	е	0.50 BSC				
Lead tip to Expose	K	0.35 REF				
Package Edge Toler	aaa	0.10				
Lead Offset	<mark>bbb</mark>	0.10				
Molding Flatness	ссс	0.10				
Coplanarity	eee	0.08				
Exposed Pad Offset	fff	0.10				

Note:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- 4. The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refer to the number of terminals on D and E side respectively.
- 6. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.
- 7. Colanarity applies to the terminals and all other bottom surface metallization.

Reflow profile

Recommended Temperature Sn95.5Ag4.0Cu0.5