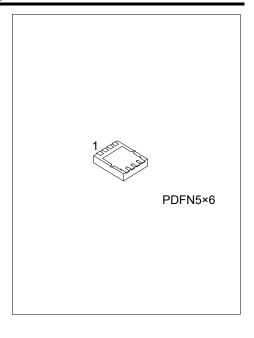
USG085R035H-T

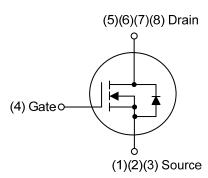
Preliminary

POWER MOSFET

100A, 85V N-CHANNEL POWER MOSFET

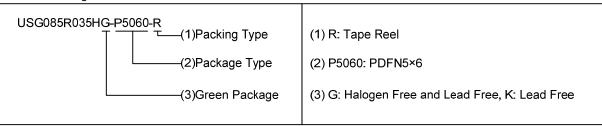

■ DESCRIPTION

The UTC ${\sf USG085R035H-T}$ is a N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with low ${\sf R}_{\sf DS(ON)}$ characteristic by high cell density trench technology.

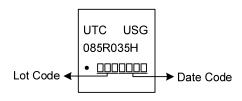

The UTC **USG085R035H-T** is suitable for high efficiency synchronous rectification in SMPS, UPS, hard switched and high frequency circuits.

■ FEATURES

- * $R_{DS(ON)} \le 3.5 \text{ m}\Omega$ @ $V_{GS}=10V$, $I_D=50A$
- * High Switching Speed



■ SYMBOL



■ ORDERING INFORMATION

	Ordering	Doolsogo	Pin Assignment							Dooking		
	Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
Ţ	JSG085R035HL-P5060-R	USG085R035HG-P5060-R	PDFN5×6	S	S	S	G	D	ם	D	D	Tape Reel
Note: Pin Assignment: S: Source G: Gate D: Drain								_				

MARKING

<u>www.unisonic.com.tw</u> 1 of 5

■ **ABSOLUTE MAXIMUM RATING** (T_C=25°C, unless otherwise specified)

PARAM	METER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	85	V
Gate-Source Voltage		V_{GSS}	±20	V
Dunin Commont	Continuous	I_D	100	Α
Drain Current	Pulsed (Note 2)	I _{DM}	200	Α
Single Pulsed Avalanche E	nergy (Note 3)	E _{AS}	118	mJ
Peak Diode Recovery dv/d	t (Note 4)	dv/dt	2.55	V/ns
Power Dissipation		P _D 100		
Junction Temperature		TJ	+150	°C
Storage Temperature Rang	je	T _{STG}	-20 ~ +150	°C

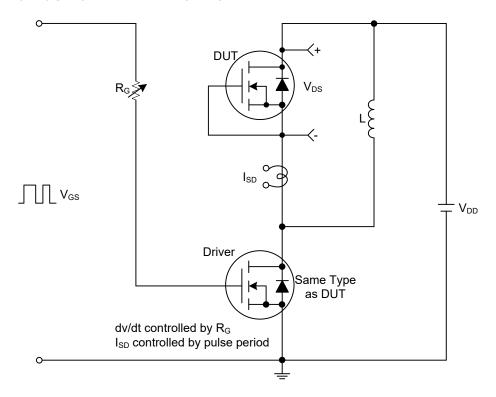
- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
 - 3. L= 0.1mH, I_{AS} = 49A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C
 - 4. $I_{SD} \le 50A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

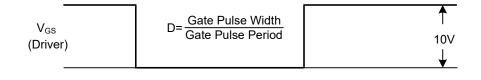
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θја	65	°C/W
Junction to Case	θјς	1.25	°C/W

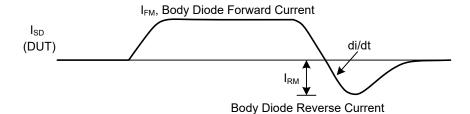
Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

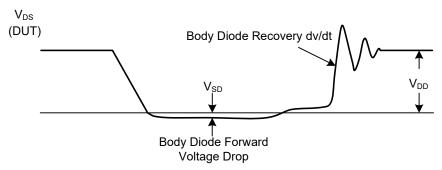
■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	85			V			
Drain-Source Leakage Current		I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	μΑ			
Cata Carras I aakana Crimant	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA			
Gate-Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA			
ON CHARACTERISTICS										
Gate Threshold Voltage		$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =250µA	2.0		4.0	V			
Static Drain-Source On-State Res	istance	R _{DS(ON)}	V _{GS} =10V, I _D =50A			3.5	mΩ			
DYNAMIC PARAMETERS										
Input Capacitance		C _{ISS}			5965		pF			
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		2155		pF			
Reverse Transfer Capacitance		C _{RSS}			106		pF			
SWITCHING PARAMETERS										
Total Gate Charge (Note 1)	Q_G	\/ -69\/ \/ -10\/ -100A		140		nC				
Gate to Source Charge		Q _{GS}	V _{DS} =68V, V _{GS} =10V, I _D =100A, (Note 1, 2)		40		nC			
Gate to Drain Charge		Q_GD	(Note 1, 2)		36		nC			
Turn-on Delay Time (Note 1)		$t_{D(ON)}$			23		ns			
Rise Time		t_R	V _{DD} =40V, V _{GS} =10V, I _D =100A,		21		ns			
Turn-off Delay Time		$t_{D(OFF)}$	R _G =3.3Ω (Note 1, 2)		55		ns			
Fall-Time		t _F			25		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Maximum Body-Diode Continuous	Is				100	Α				
Maximum Body-Diode Pulsed Cur	I _{SM}				200	Α				
Drain-Source Diode Forward Volta	ige (Note 1)	V_{SD}	I _S =100A, V _{GS} =0V			1.4	V			
Reverse Recovery Time (Note 1)	,	t _{rr}	I _S =30A, V _{GS} =0V,		66		nS			
Reverse Recovery Charge		Q_{rr}	dl _F /dt =85A/µs		125		nC			

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

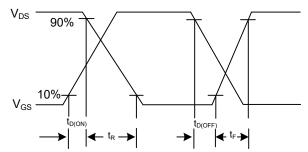

2. Essentially independent of operating ambient temperature.




■ TEST CIRCUITS AND WAVEFORMS

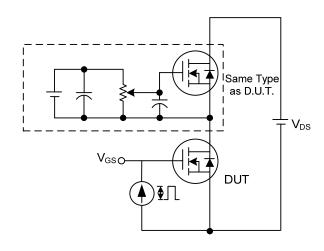
Peak Diode Recovery dv/dt Test Circuit

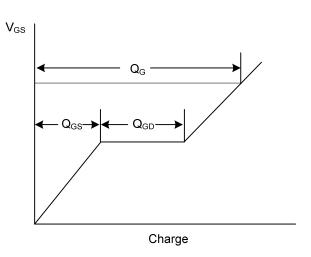




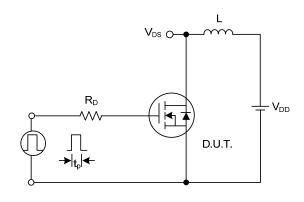
Peak Diode Recovery dv/dt Test Circuit and Waveforms

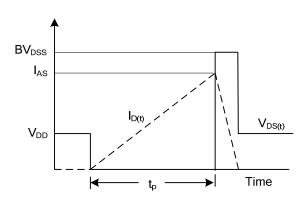
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

