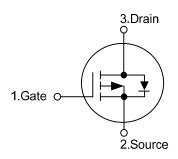
UTC UNISONIC TECHNOLOGIES CO., LTD

UT02P06 **POWER MOSFET**

-0.2A, -60V P-CHANNEL **POWER MOSFET**

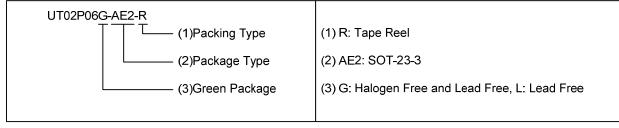
DESCRIPTION

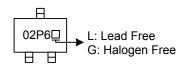

The UTC UT02P06 is a P-channel MOS Field Effect Transistor, it uses UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance.

The UTC UT02P06 is suitable for high voltage switching applications.

FEATURES

- * $R_{DS(ON)} \le 4.0 \Omega$ @ V_{GS} =-10V, I_D =-0.1A $R_{DS(ON)} \le 6.0 \Omega @ V_{GS} = -4.5 V, I_D = -0.1 A$
- * High switching speed
- * Low input capacitance


SYMBOL


ORDERING INFORMATION

Ordering Number		Daalaasa	Pin Assignment			Da aldia a	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT02P06L-AE2-R	UT02P06G-AE2-R	SOT-23-3	G	S	D	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

MARKING

SOT-23-3 (JEDEC TO-236)

www.unisonic.com.tw 1 of 7 UT02P06 POWER MOSFET

■ **ABSOLUTE MAXIMUM RATING** (T_C=25°C unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	-60	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	DC	I _D	-0.2	Α
	Pulsed (Note 2)	I _{DM}	-0.4	Α
Power Dissipation (T _A =25°C)		P_{D}	0.2	W
Junction Temperature		TJ	+150	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

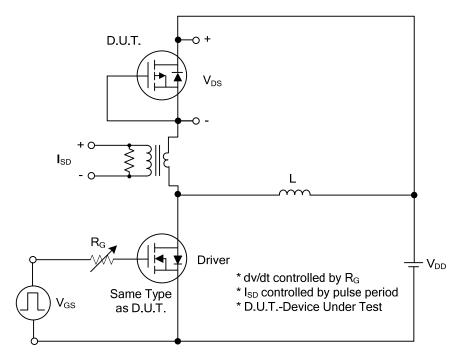
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

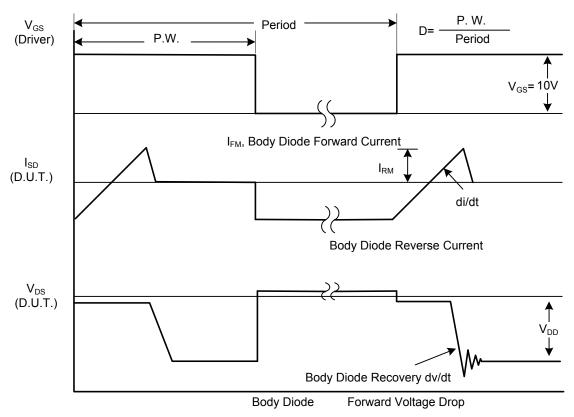
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	625	°C/W

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C unless otherwise specified)

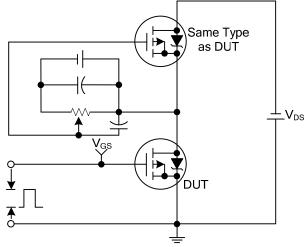

PARAMETER	SYMBOL	TEST CONDITIONS N		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250μA				V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-60V, V _{GS} =0V			-1	μΑ
Forward		V _{GS} =+20V, V _{DS} =0V			+10	μΑ
Gate-Source Leakage Current Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-10	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$			-3.0	V
Ctatia Dunin Caurea On State Desistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-0.1A			4.0	Ω
Static Drain-Source On-State Resistance		V _{GS} =-4.5V, I _D =-0.1A			6.0	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}			28		pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =-10V, f=1.0MHz		7		pF
Reverse Transfer Capacitance	C_{RSS}			4		pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_G	\\ - 40\\ \\ - 10\\ \\ - 0.24		7		nC
Gate to Source Charge	Q_GS	V_{DS} =-48V, V_{GS} =-10V, I_{D} =-0.2A, I_{D} =-1mA (Note 1, 2)		1		nC
Gate to Drain Charge	Q_GD	ID=-IIIIA (Note 1, 2)		0.6		nC
Turn-ON Delay Time	t _{D(ON)}			2		ns
Rise Time	t _R	V_{DS} =-30V, V_{GS} =-10V, I_{D} =-0.2A,		19		ns
Turn-OFF Delay Time	t _{D(OFF)}	R _G =3Ω (Note 1, 2)		7		ns
Fall-Time	t⊧			30		ns
SOURCE-DRAIN DIODE RATINGS AND	CHARACTER	ISTICS				
Maximum Continuous Drain-Source Diode	Is				-0.2	Α
Forward Current					-0.2	Α
Maximum Pulsed Drain-Source Diode	I _{SM}				-0.4	Α
Forward Current					-0.4	^
Diode Forward Voltage	V_{SD}	I _F =-0.2A, V _{GS} =0V			-1.4	V

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


2. Essentially independent of operating temperature.

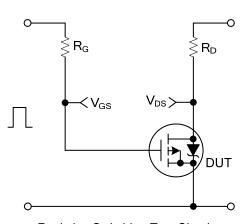
^{2.} Repetitive Rating: Pulse width limited by maximum junction temperature

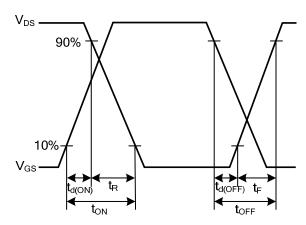
■ TEST CIRCUITS AND WAVEFORMS



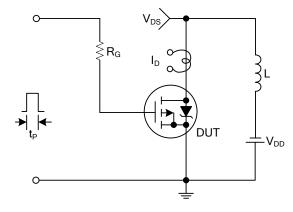
Peak Diode Recovery dv/dt Test Circuit

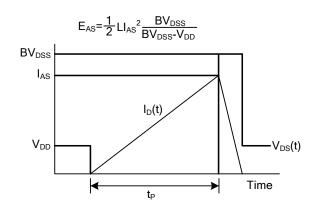
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS

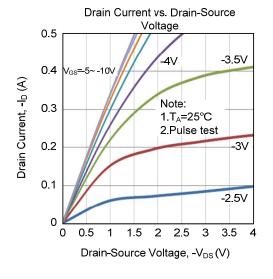

 $Q_{\rm G}$ $Q_{\rm G}$ $Q_{\rm GD}$ $Q_{\rm GD}$ $Q_{\rm GD}$

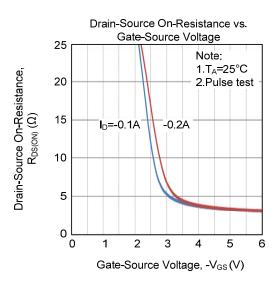
Gate Charge Test Circuit

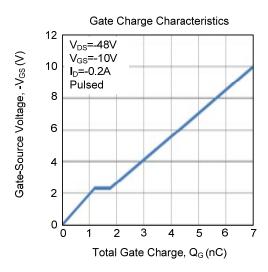

Gate Charge Waveforms

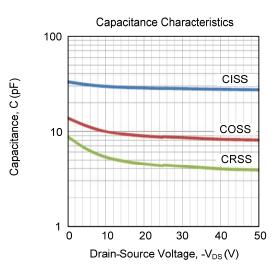

Resistive Switching Test Circuit

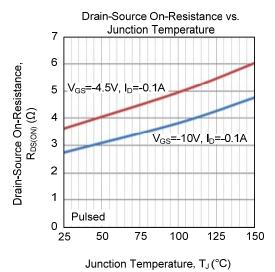
Resistive Switching Waveforms

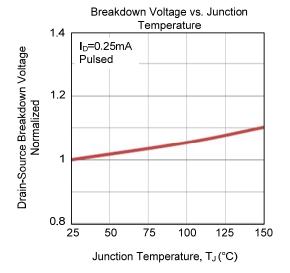


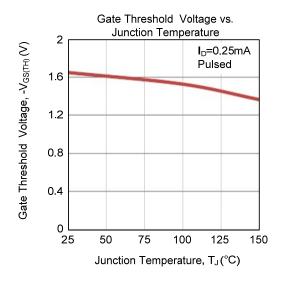

Unclamped Inductive Switching Test Circuit

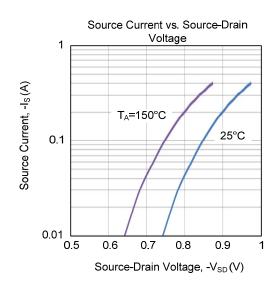


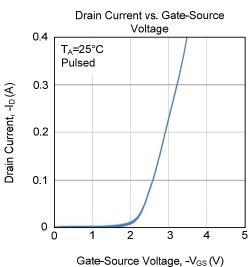

Unclamped Inductive Switching Waveforms

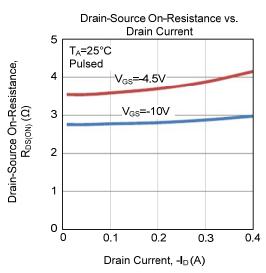

■ TYPICAL CHARACTERISTICS

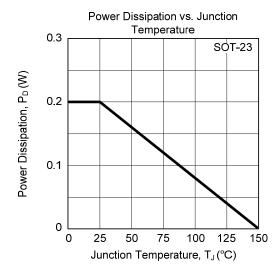


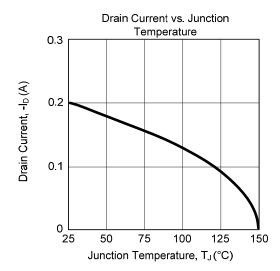


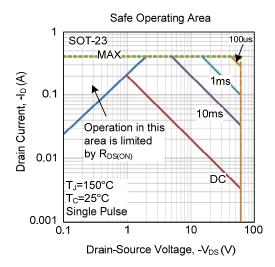







■ TYPICAL CHARACTERISTICS (Cont.)





■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.