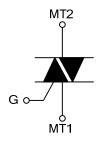


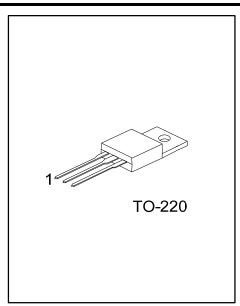
UNISONIC TECHNOLOGIES CO., LTD

UT139E TRIAC

TRIAC

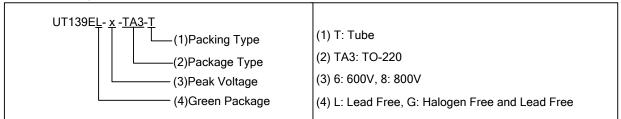
■ DESCRIPTION

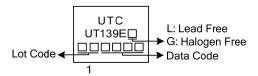

The UTC **UT139E** is a triacs, it uses UTC's advanced technology to provide customers with high bidirectional transient and high thermal cycling performance.


The UTC **UT139E** is suitable for motor control, heating and static switching, etc.

■ FEATURES

- * High bidirectional transient
- * High thermal cycling performance
- * Blocking voltage capability




ORDERING INFORMATION

Order Number		Deelsess	Pin Assignment			Doolsing	
Normal	Lead Free Plating	Package	1	2	3	Packing	
UT139EL-x-TA3-T	UT139EG-x-TA3-T	TO-220	MT1	MT2	G	Tube	

Note: Pin Assignment: G: Gate

MARKING

<u>www.unisonic.com.tw</u> 1 of 3

UT139E TRIAC

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT	
Popotitivo pook off state voltages	UT139E-6	V	600 (Note 2)	V
Repetitive peak off-state voltages	UT139E-8	V_{DRM}	800	V
RMS on-state current full sine wave; T _{mb} ≤99	I _{T(RMS)}	16	Α	
Non-repetitive peak on-state current	t = 20ms		140	^
(Full sine wave; T _J = 25°C prior to surge)	t = 16.7 ms	I _{TSM} 150		Α
I ² t for fusing	t = 10 ms	l ² t	21	A^2s
Repetitive rate of rise of on-state current after triggering	T2+ G+		50	A/µs
	T2+ G-	dl⊤ /dt	50	A/µs
	T2- G-		50	A/µs
I _{TM} =20A; I _G =0.2A; d _{IG} /dt=0.2A/μs	T2- G+		10	A/µs
Peak gate voltage		V_{GM}	5	V
Peak gate current	I_{GM}	2	Α	
Peak gate power	P_{GM}	5	W	
Average gate power (over any 20 ms period	$P_{G(AV)}$	0.5	W	
Junction Temperature	TJ	125	°C	
Storage Temperature	T_{STG}	-40 ~ +150	°C	

- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 6A/µs.

■ THERMAL RESISTANCES

PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
Thermal resistance Junction to Ambient	In Free Air	θ_{JA}		60		°C/W
Thermal resistance Junction to mounting	Full cycle	0			1.2	°C/W
base	Half cycle	$\theta_{ extsf{JC}}$			1.7	°C/W

■ STATIC CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	I _{GT}	V _D =12V, I _T =0.1A	T2+G+			10	mA
Cata Trianan Cumant			T2+G-			10	
Gate Trigger Current			T2-G-			10	
			T2-G+			25	
Latching Current	ΙL	V _D =12V, I _{GT} =0.1A	T2+G+		7	40	mA
			T2+G-		20	60	
			T2-G-		8	40	
			T2-G+		10	60	
Holding Current	Ι _Η	V _D =12V, I _{GT} =0.1A			6	30	mA
On-State Voltage	V_{T}	I _T =20A			1.2	1.6	V
Gate Trigger Voltage	V_{GT}	$V_D = 12V, I_T = 0.1A$			0.7	1.5	V
		V _D =400V, I _T =0.1A, T _J =125°C		0.25	0.40		V
Off-State Leakage Current	I_{D}	V _D =V _{DRM(max)} , T _J =125°C			0.1	0.5	mA

■ DYNAMIC CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Critical Rate Of Rise Of Off-State Voltage	dV _D /dt	V _{DM} =67% V _{DRM(max)} , T _J =125°C, Exponential waveform, gate open circuit	100	250		V/µs
Critical Rate Of Change Of Commutating Voltage	a\/ /at	V _{DM} =400V, T _J =95°C, I _{T(RMS)} =16A, dI _{com} /dt=7.2A/ms, gate open circuit		20		V/µs
Gate Controlled Turn-On Time	t _{gt}	I_{TM} =20A, V_D = $V_{DRM(max)}$, I_G =0.1A, dI_G/dt =5A/ μ s		2		μs

UT139E TRIAC

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.