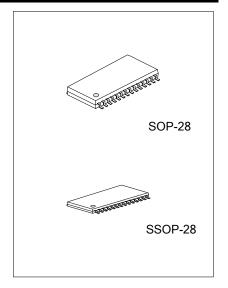


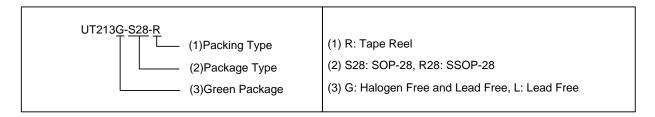
UT213 cmos ic


+3.0V TO +5.5V POWER SUPPLY, 120KBPS, MULTICHANNAEL RS-232 LINE DRIVERS/RECEIVERS

DESCRIPTION

The UTC **UT213** consists of 4 drivers and 5 receivers. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.0V~+5.5V power supply. A guaranteed data rate of 120kbps provides compatibility with popular software for communicating with PCs.

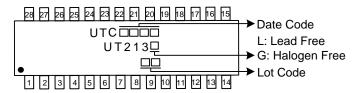
The UTC **UT213** requires only $0.1\mu F$ capacitors in 3.3V operation, and can operate from input voltages ranging from +3.0V ~+5.5V. It is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

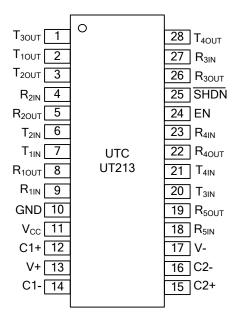


■ FEATURES

- * Operates With 3.0V~5.5V Power Supply
- * Four Drivers and Five Receivers
- * Operates Up To 120 kbps
- * Designed to Transmit at a Data Rate of 120 kbps
- * Low Standby Current (15µA Typical)
- * External Capacitors (4*0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- * Serial-Mouse Drivability
- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins

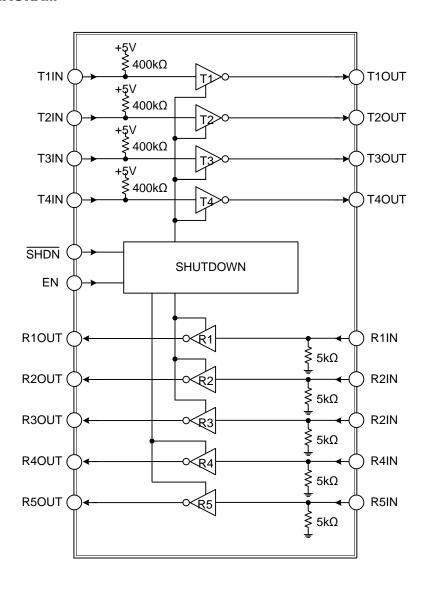
■ ORDERING INFORMATION


Ordering	Number	Deelsesse	Dooking	
Lead Free Halogen Free		Package	Packing	
UT213G-S28-R	UT213G-S28-R	SOP-28	Tape Reel	
UT213G-R28-R	UT213G-R28-R	SSOP-28	Tape Reel	


www.unisonic.com.tw 1 of 8

UT213 CMOS IC

MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1, 2, 3, 28	T_{XOUT}	RS-232 Transmitter Outputs	
4, 9, 27	$R_{1IN} \sim R_{3IN}$	RS-232 Receiver Inputs	
5, 8, 26	R _{10UT} ~ R _{30UT}	TTL/CMOS Receiver Outputs	
6, 7, 20, 21	T_{XIN}	TTL/CMOS Transmitter Inputs	
10	GND	Ground	
11	V_{CC}	+3.0V ~ +5.5V Supply Voltage	
12	C1+	Positive terminal of the voltage doubler charge-pump capacitor	
13	V+	+5.5V generated by the charge pump	
14	C1-	Negative terminal of the voltage doubler charge-pump capacitor	
15	C2+	Positive terminal of inverting charge-pump capacitor	
16	C2-	Negative terminal of inverting charge-pump capacitor	
17	V-	-5.5V generated by the charge pump	
18, 23	$R_{4IN} \sim R_{5IN}$	RS-232 Receiver Inputs (Active in shutdown)	
19, 22	R _{4OUT} ~ R _{5OUT}	TTL/CMOS Receiver Outputs (Active in shutdown)	
24	EN	Active high enable control	
25	SHDN	Active low shutdown control	

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
V _{cc}		V _{CC}	+6.0	V
V+ (Note 2)		V+	+7.0	V
V- (Note 2)		V-	-7.0	V
V+ + V- (Note 2)		V_{PUMP}	+13.0	V
Input Voltages	T_IN, SHDN, EN	V _{IN}	-0.3 ~ +6.0	V
input voitages	R_IN	VIN	±25	V
Output Valtages	T_OUT		±13.2	V
Output Voltages	R_OUT,	V _{OUT}	-0.3 ~ (V _{CC} +0.3)	V
Short-Circuit Duration T_OUT		SC	Continuous	
Power Dissipation(T _A =25°C)		P_{D}	870	mW
Operating Temperature		T _{OPR}	-40 ~ + 85	င့
Storage Temperature		T _{STG}	-65 ~ + 150	ů

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

(V _{CC} =+3.0V~+5.5V, C1	1~C4=0.1µ	F (Note 2),	$T_A = T_{MIN}$ to	T_{MAX} , unle	ess otherwise specified)				
PARAMETER SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT				
DC CHARACTERISTI	CS								
Supply Current, Shutd	ply Current, Shutdown I _{SHDN} V _{CC} =3.3V SHDN =0V, EN=0V or V _{CC}			15	50	μΑ			
V _{CC} Supply Current		Icc	or 5.0V, T _A = 25°C SHDN=		V _{CC} , EN=0V or V _{CC}		11	20	mA
LOGIC INPUTS									
	Low	V_{LGL}	T_IN, SHDN, EN				8.0	V	
Input Logic Threshold	High	V_{LGH}	T_IN, \overline{SHDN} , EN $\frac{V_{CC} = 3.3V}{V_{CC} = 5.0V}$		2.0			٧	
Logic Pullup Current		I _{Pullup}	T_IN=0V		1.00 0.01		15	200	μA
RECEIVER OUTPUTS	3	i uliup					-		
Output Leakage Curre	nt	I _{ROUT(LK)}	$EN=0V,0V \leq ROUT \leq V_{CC}$			0.05	±10	μA	
	Low	V_{ROUTL}	I _{OUT} = 1.6mA				0.4	V	
Output Voltage	High	V _{ROUTH}	I _{OUT} = -1.0mA		3.5			V	
RECEIVER INPUTS									
Input Voltage Range		V_{RR}				-30		30	V
			T _A =25°C V _{CC} =5.0V		Active mode	0.8	1.2		
Input Threshold Low		V_{RINL}			Shutdown mode R4,R5	0.6	1.5		V
			T 050C		Active mode		1.7	2.4	
Input Threshold High		V_{RINH}	T _A =25°C V _{CC} =5.0V		Shutdown mode R4,R5		1.5	2.4	V
Input Hysteresis		V _{RINHYS}	V _{CC} =5.0V,r	no Hyster	esis in shutdown	0.2	0.5	1.0	V
Input Resistance		V _{RINRES}	T _A =25°C,V _{CC} =5.0V		3	5	7	kΩ	
TRANSMITTER OUTF	PUTS								
Output Voltage Swing	ut Voltage Swing V_{TOUTSW} All transmitter outputs loaded with $3k\Omega$ to ground		±5.0	±5.4		V			
Output Resistance		V _{TOUTRES}	V _{CC} = V+=V-=0V, Transmitter output=±2V		300	10M		Ω	
Output Short-Circuit Current		I _{TSC}		•			±10	±60	mA
		I _{TOUT(L)}	V _{CC} =3.0V~5.0V, V _{OUT} =±12V, Transmitters disabled				±25	μΑ	

^{2.} V+ and V- can have maximum magnitudes of 7.0V, but their absolute difference cannot exceed 13.0V.

UT213 cmos ic

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
TIMING CHARACTERI	TIMING CHARACTERISTICS								
Maximum Data Rate		DR	V_{CC} =5V, R _L =3k Ω to 7k Ω C _L =50pf to 1000pF one transmitter switching		120			kbps	
Receiver Propagation Delay		T_{DR1}	SHDN=0V,R4,R5			4	40		
		T_{DR2}	SHDN=V _{CC}			0.5	10	μs	
Enable		t _{R(EN)}	Normal operation			600		ns	
Receiver Output Time	Disable	t _{R(DIS)}	Normal operation			200		ns	
Transmitter Skew		t _{TS}	tphl - tplh			300		ns	
Transition-Region Slew Rate		SR	V_{CC} =3.3V, T_A =25°C, R_L =3k Ω ~7k Ω , measured from +3V ~-3V or -3V~+3V	C _L =50pF~2500pF		15		V/µs	

Notes: 1. Typical values are at T_A=25°C.

^{2.} $C1\sim C4=0.1\mu F$, measured at 3.3V±10%. $C1=0.047\mu F$, $C2\sim C4=0.33\mu F$, measured at 5.0V ±10%.

UT213 CMOS IC

■ DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC **UT213** consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.0V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitters

UTC **UT213**'s transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 120kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software.

Input thresholds are both CMOS and TTL compatible. The inputs of unused drivers can be left unconnected since $400k\Omega$ pullup resistors to V_{CC} are included on-chip. Since all drivers invert, the pullup resistors force the outputs of unused drivers low. The input pullup resistors typically source 15µA; therefore, the driver inputs should be driven high or open circuited to minimize power-supply current in shutdown mode.

RS-232 Receivers

The UTC **UT213**'s receivers convert RS-232 signals to CMOS logic output levels. Receiver outputs are inverting, maintaining compatibility with driver outputs. The guaranteed receiver input thresholds of +0.8V and +2.4V are significantly tighter than the Q3.0V threshold required by the EIA/TIA-232E specification. This allows receiver inputs to respond to TTL/CMOS logic levels and improves noise margin for RS-232 levels.

Receiver inputs have approximately +0.5V hysteresis. This provides clean output transitions, even with slow rise and fall time input signals with moderate amounts of noise and ringing. In shutdown, the UTC **UT213**'s receivers R4 and R5 have no hysteresis.

During normal operation, the UTC **UT213**'s receiver propagation delay is typically 1us. When entering shutdown with receivers active, R4 and R5 are not valid until 80Fs after SHDN is driven low. In shutdown mode, propagation delays increase to 4us for a high-to-low or a low-to-high transition.

Shutdown Function

In shutdown mode, the UTC **UT213**'s charge pumps are turned off, V+ is pulled down to V_{CC} , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 15 μ A. The time required to exit shutdown is 1ms, All receivers except R4 and R5 on the UTC **UT213** are put into a high-impedance state in shutdown mode. The UTC **UT213**'s R4 and R5 receivers still function in shutdown mode. These two receivers are useful for monitoring external activity while maintaining minimal power consumption.

The enable control is used to put the receiver outputs into a high-impedance state, so that the receivers can be connected directly to a three-state bus. It has no effect on the RS-232 drivers or on the charge pumps.

SHDN	EN	OPERATION STATUS	TRANSMITTERS T1-T4	R1, R2, R3	R4, R5
0	0	Shutdown	High-Z	High-Z	High-Z
0	1	Shutdown	High-Z	High-Z	Active*
1	0	Normal operation	Active	High-Z	High-Z
1	1	Normal operation	Active	Active	Active

Table 1. Shutdown Logic Control Truth Table

^{*} Active with reduced performance.

UT213

■ TYPICAL APPLICATION CIRCUIT

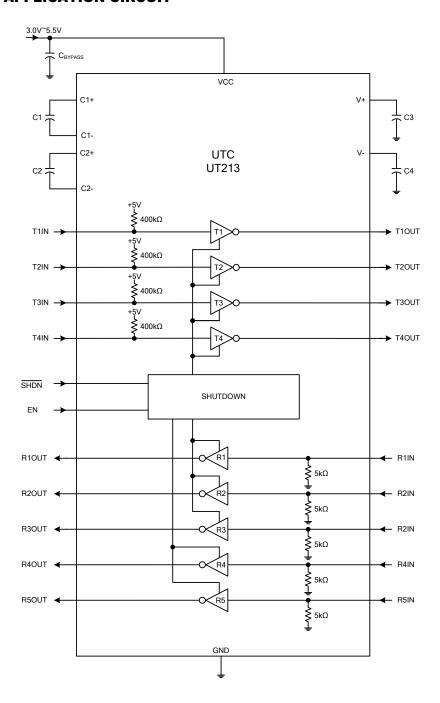


Table 2. Required Capacitor Value

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0~3.6	0.22	0.22	0.22
3.15~3.6	0.1	0.1	0.1
4.5~5.5	0.047	0.33	0.047
3.0~5.5	0.22	1.0	0.22

UT213

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

CMOS IC