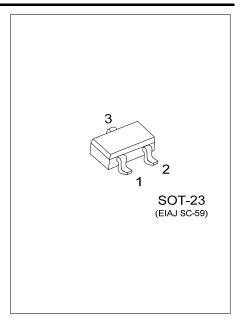
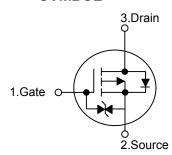
# UNISONIC TECHNOLOGIES CO., LTD

UT2301Z **Power MOSFET** 


# -2.8A, -20V P-CHANNEL **ENHANCEMENT MODE POWER MOSFET**

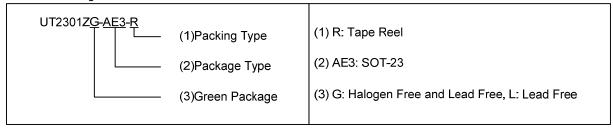
#### **DESCRIPTION**


The UTC UT2301Z is a P-channel enhancement mode power MOSFET with fast switching speed, low on-resistance and favorable stabilization. It can be used in commercial and industrial surface mount applications and suited for low voltage applications such as DC/DC converters.

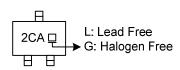
#### **FEATURES**

- \* Very High Density Cell Design for Low On-Resistance
- \* Very Good Thermal and Electrical Capabilities




#### **SYMBOL**




#### ORDERING INFORMATION

| Ordering Number |                | Daakana | Pin Assignment |   |   | Dooking   |  |
|-----------------|----------------|---------|----------------|---|---|-----------|--|
| Lead Free       | Halogen Free   | Package | 1              | 2 | 3 | Packing   |  |
| UT2301ZL-AE3-R  | UT2301ZG-AE3-R | SOT-23  | G              | S | D | Tape Reel |  |

Note: Pin Assignment: G: Gate S: Source D: Drain



#### **MARKING**



www.unisonic.com.tw 1 of 4 UT2301Z Power MOSFET

# ■ **ABSOLUTE MAXIMUM RATINGS** (T<sub>A</sub> = 25°C, unless otherwise specified)

| PARAMETER                        | SYMBOL           | RATING     | UNITS |
|----------------------------------|------------------|------------|-------|
| Drain-Source Voltage             | $V_{DS}$         | -20        | V     |
| Gate-Source Voltage              | $V_{GS}$         | ±8         | V     |
| Continuous Drain Current         | I <sub>D</sub>   | -2.8       | Α     |
| Pulsed Drain Current (Note 2, 3) | I <sub>DM</sub>  | -10        | Α     |
| Total Power Dissipation (Note 4) | $P_D$            | 1.25       | W     |
| Junction Temperature             | TJ               | +150       | °C    |
| Storage Temperature              | T <sub>STG</sub> | -55 ~ +150 | °C    |

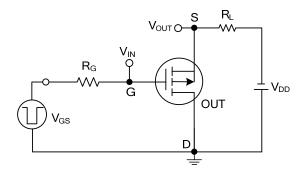
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

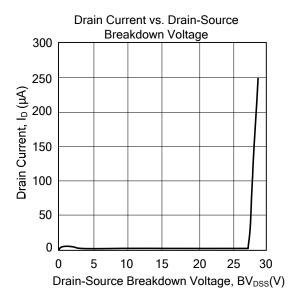
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. Pulse width ≤300µs, duty cycle ≤ 2 %.
- 4. Surface mounted on 1 in 2 copper pad of FR4 board.

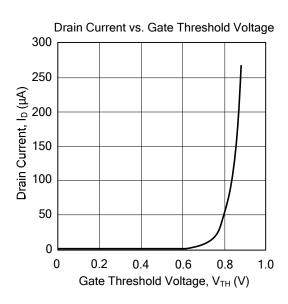
## ■ THERMAL CHARACTERISTICS

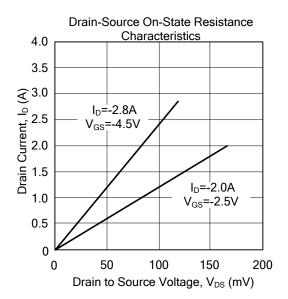
| PARAMETER           | SYMBOL        | RATING | UNIT |
|---------------------|---------------|--------|------|
| Junction to Ambient | $\theta_{JA}$ | 100    | °C/W |

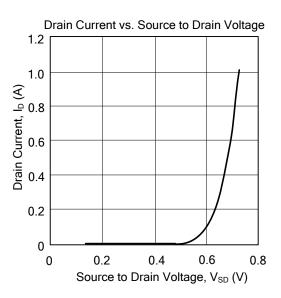

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

### ■ **ELECTRICAL CHARACTERISTICS** (I<sub>D</sub>=-2.3A , T<sub>A</sub>=25°C, unless otherwise specified)


| PARAMETER                                       | SYMBOL                                 | TEST CONDITIONS                                                        | MIN   | TYP  | MAX  | UNITS |  |  |
|-------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|-------|------|------|-------|--|--|
| OFF CHARACTERISTICS                             |                                        |                                                                        |       |      |      |       |  |  |
| Drain-Source Breakdown Voltage                  | $BV_{DSS}$ $V_{GS}$ =0V, $I_D$ =-250uA |                                                                        | -20   |      |      | V     |  |  |
| Zero Gate Voltage Drain Current                 | $I_{DSS}$ $V_{DS}$ =-16V, $V_{GS}$ =0V |                                                                        |       |      | -1.0 | μΑ    |  |  |
| Gate-Source Leakage Current                     | I <sub>GSS</sub>                       | $V_{GS}$ =±8V, $V_{DS}$ =0V                                            |       |      | ±5   | μΑ    |  |  |
| ON CHARACTERISTICS                              |                                        |                                                                        |       |      |      |       |  |  |
| Gate Threshold Voltage                          | $V_{GS(TH)}$                           | $V_{DS}=V_{GS}$ , $I_{D}=-250uA$                                       | -0.45 |      |      | V     |  |  |
| Static Drain-Source On-State Resistance         | Passau                                 | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-2.8A                          |       | 95   | 130  | mΩ    |  |  |
| Static Diain-Source On-State Nesistance         | R <sub>DS(ON)</sub>                    | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-2.0A                          |       | 122  | 190  | mΩ    |  |  |
| On-State Drain Current                          | I <sub>D(ON)</sub>                     | V <sub>DS</sub> =-5 V, V <sub>GS</sub> =-10V                           | -6    |      |      | Α     |  |  |
| Forward Tran conductance                        | <b>g</b> FS                            | $V_{DS}$ =-5 V, $I_{D}$ =-2.8A                                         |       | 6.5  |      | S     |  |  |
| DYNAMIC CHARACTERISTICS                         |                                        |                                                                        |       |      |      |       |  |  |
| Input Capacitance                               | C <sub>ISS</sub>                       |                                                                        |       | 447  |      | pF    |  |  |
| Output Capacitance                              | Coss                                   | $V_{GS}$ =0V, $V_{DS}$ =-6V, f=1.0MHz                                  |       | 127  |      | pF    |  |  |
| Reverse Transfer Capacitance                    | C <sub>RSS</sub>                       |                                                                        |       | 80   |      | pF    |  |  |
| SWITCHING CHARACTERISTICS                       |                                        |                                                                        |       |      |      |       |  |  |
| Total Gate Charge (Note)                        | $Q_G$                                  | \                                                                      |       | 5.4  | 10   | nC    |  |  |
| Gate-Source Charge                              | $Q_GS$                                 | V <sub>DS</sub> =-6V, V <sub>GS</sub> =-4.5V,<br>I <sub>D</sub> =-2.8A |       | 8.0  |      | nC    |  |  |
| Gate-Drain Charge                               | $Q_GD$                                 | ID2.8A                                                                 |       | 1.1  |      | nC    |  |  |
| Turn-ON Delay Time (Note)                       | t <sub>D(ON)</sub>                     |                                                                        |       | 5    | 25   | ns    |  |  |
| Turn-ON Rise Time                               | $t_R$                                  | $V_{DD}$ =-6V, $V_{GEN}$ =-4.5V,                                       |       | 19   | 60   | ns    |  |  |
| Turn-OFF Delay Time                             | t <sub>D(OFF)</sub>                    | $I_D$ =-1A, $R_G$ =6 $\Omega$ , $R_L$ =6 $\Omega$                      |       | 95   | 110  | ns    |  |  |
| Turn-OFF Fall Time                              | t <sub>F</sub>                         |                                                                        |       | 65   | 80   | ns    |  |  |
| SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS |                                        |                                                                        |       |      |      |       |  |  |
| Maximum Diode Forward Current                   | Is                                     |                                                                        |       |      | -1.6 | Α     |  |  |
| Diode Forward Voltage (Note)                    | $V_{SD}$                               | I <sub>S</sub> =-1.6 A, V <sub>GS</sub> =0 V                           |       | -0.8 | -1.2 | V     |  |  |


Notes: Pulse width ≤300µs, Duty Cycle ≤2%


# SWITCHING TEST CIRCUIT




#### ■ TYPITAL CHARACTERISTICS









UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.