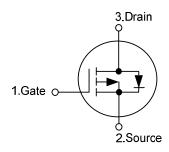


UTC UNISONIC TECHNOLOGIES CO., LTD

UT2315-H **Preliminary** Power MOSFET

-3.3A, -20V P-CHANNEL **ENHANCEMENT MODE POWER MOSFET**


DESCRIPTION

The UTC UT2315-H is P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

FEATURES

- * Extremely low on-resistance due to high density cell
- * Perfect thermal performance and electrical capability with advanced technology of trench process

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking
Lead Free	Halogen Free	Package	1	2	3	Packing
UT2315L-AE2-R	UT2315G-AE2-R	SOT-23-3	G	S	D	Tape Reel

Note: Pin Assignment: G: Gate S: Source D: Drain

MARKING

www.unisonic.com.tw 1 of 6

SOT-23-3

(JEDEC TO-236)

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage	V_{DSS}	-20	V	
Gate-Source Voltage	V _{GSS}	±10	V	
Continuous Drain Current	I _D	-3.3	Α	
Pulsed Drain Current	I _{DM}	-13.2	Α	
Peak Diode Recovery dv/dt (Note 4)	dv/dt	2.5	V/ns	
Power Dissipation (T _C =25°C) (Note 3)	P _D	1.56	W	
Junction Temperature	TJ	+150	°C	
Storage Temperature	T _{STG}	-55 ~ +150	°C	

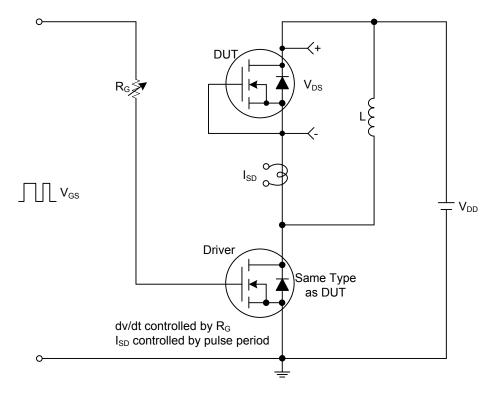
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. Surface mounted on 1 in 2 copper pad of FR4 board.
- 4. $I_{SD} \le 3.3 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

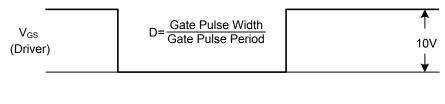
■ THERMAL CHARACTERISTICS

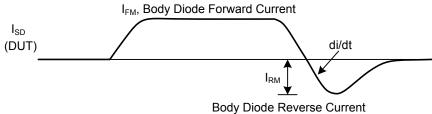
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (PCB mounted)	θ_{JA}	80	°C/W

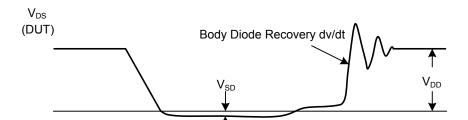
Note: Surface Mounted on FR4 board t ≤ 5 sec.


■ **ELECTRICAL CHARACTERISTICS** (T_J = 25°C, unless otherwise specified)

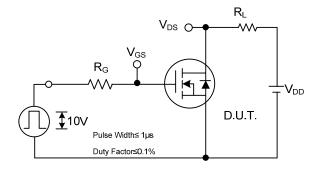
DADAMETED	OVARDOL	TEGT COMPLETIONS	MIN	TVD	N 4 A 3 /	LINIT		
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNII		
OFF CHARACTERISTICS		1	l	1	1			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250μA	-20			V		
Drain-Source Leakage Current	I _{DSS}	$V_{DS} = -20V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			-1	μΑ		
Brain Course Edukage Carrent		$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$			-10	μΑ		
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 10V, V_{DS} = 0V$			±100	nΑ		
Breakdown Voltage Temperature Coefficient	ΔBV _{DSS} /ΔT _J	Reference to 25°C, I _D =-1mA		-0.01		V/°C		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-0.3	-0.6	-1.0	V		
	R _{DS(ON)}	V_{GS} =-4.5V, I_D =-3.0A		77	85	mΩ		
Static Drain-Source On-State Resistance		V_{GS} =-2.5V, I_D =-2.0A		103	120	mΩ		
		V _{GS} =-1.8V, I _D =-1.0A		138	170	mΩ		
DYNAMIC PARAMETERS ^b								
Input Capacitance	C _{ISS}			350		pF		
Output Capacitance	Coss	V _{DS} =-15V, V _{GS} =0V, f =1.0MHz		65		рF		
Reverse Transfer Capacitance	C _{RSS}			50		pF		
SWITCHING PARAMETERS ^b								
Total Gate Charge (Note 1)	Q_{G}			4.8		nC		
Gate Source Charge	Q_{GS}	V_{GS} =-10V, V_{GS} =-4.5V, I_{D} =-3.0A		0.5		nC		
Gate Drain Charge	Q_{GD}			1.9		nC		
Turn-ON Delay Time (Note 1)	t _{D(ON)}			3.5		ns		
Turn-ON Rise Time	t _R	$V_{DD} = -10V$, $V_{GS} = -4.5V$, $I_{D} = -1.0A$		12.6		ns		
Turn-OFF Delay Time	t _{D(OFF)}	$R_G = 25\Omega$		32.6		ns		
Turn-OFF Fall-Time	t _F	7		8.4		ns		
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS						
Maximum Body-Diode Continuous					2.2	_		
Current	I _S	V _G =V _D =0V , Force Current			-3.3	Α		
Maximum Body-Diode Pulsed Current	I _{SM}				-13.2	Α		
Drain-Source Diode Forward Voltage	V_{SD}	I _S =-1.0A, V _{GS} =0V, T _J = 25°C			-1.0	V		
Reverse Recovery Time (Note 1)	t _{rr}			3140		ns		
Reverse Recovery Charge	Q _{rr}	I_S =-1.0A, V_{GS} =0V, dI_F/dt =100A/ μ s		20		μC		
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· ·		· · · · · · · · · · · · · · · · · · ·			

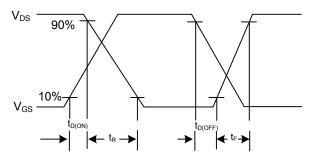

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤2%.


^{2.} Essentially independent of operating temperature.


■ TEST CIRCUITS AND WAVEFORMS

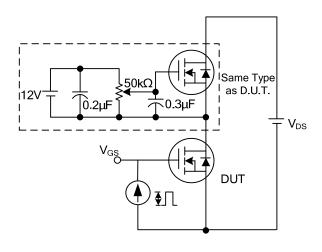
Peak Diode Recovery dv/dt Test Circuit

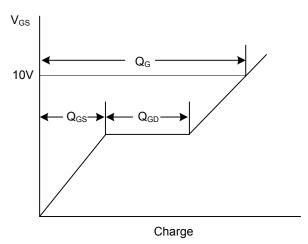

Voltage Drop
Peak Diode Recovery dv/dt Test Circuit and Waveforms


Body Diode Forward

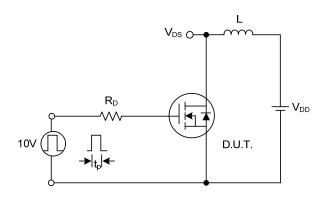
Peak Diode Recovery dv/dt Waveforms

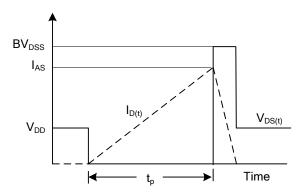
Preliminary


TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

