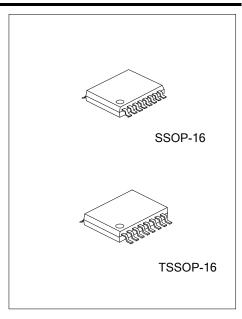


UTC UNISONIC TECHNOLOGIES CO., LTD

UT3221/E **CMOS IC**

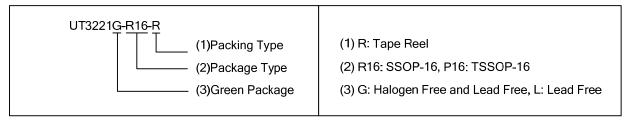

+3.0V TO +5.5V POWER SUPPLY, 250KBPS, **MULTICHANNAEL RS-232** LINE DRIVER/RECEIVER

DESCRIPTION

The UTC UT3221/E consists of 1 driver and 1 receiver. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.0V~+5.5V power supply. A guaranteed data rate of 250kbps provides compatibility with popular software for communicating with PCs.

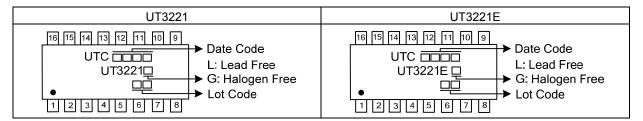
The UTC UT3221/E achieves 1µA supply current in shutdown condition. When the UT3221/E doesn't detect a valid signal level on its receiver input, the on-board power supply and driver will shutdown, and when a valid level is applied to RS-232 receiver input, then the system turns on again. Therefore, the system saves power without changes to the existing BIOS or operating system.

The UTC UT3221/E requires only 0.1µF capacitors in 3.3V operation, and can operate from input voltages ranging from +3.0V ~+5.5V. It is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

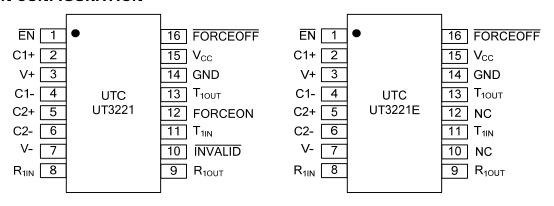

FEATURES

- * Operates With 3.0V to 5.5V Power Supply
- * One Driver and One Receiver
- * Operates Up To 250 kbps
- * Designed to Transmit at a Data Rate of 250 kbps
- * Low Standby Current (1µA Typical)

- * External Capacitors (4*0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- * Serial-Mouse Drivability
- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins

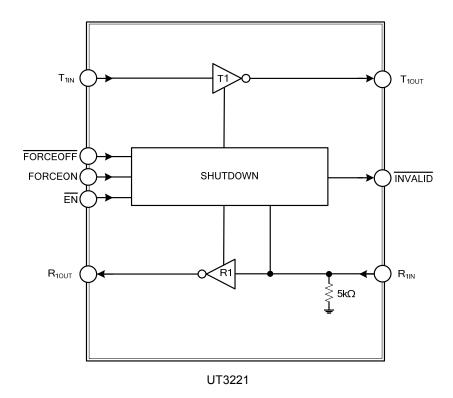

ORDERING INFORMATION

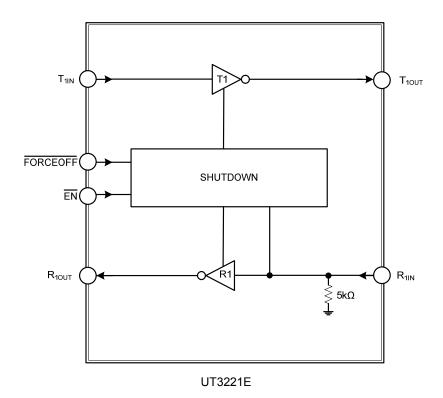
Ordering	Number	Dookogo	Dooking		
Lead Free	Halogen Free	Package	Packing		
UT3221L-R16-R	UT3221G-R16-R	SSOP-16	Tape Reel		
UT3221L-P16-R	UT3221G-P16-R	TSSOP-16	Tape Reel		
UR3221EL-R16-R	UR3221EG-R16-R	SSOP-16	Tape Reel		
UR3221EL-P16-R	UR3221EG-P16-R	TSSOP-16	Tape Reel		



www.unisonic.com.tw 1 of 10

■ MARKING


■ PIN CONFIGURATION



■ PIN DESCRIPTION

PIN NO.		DINIANAE			
UT3221	UT3221E	PIN NAME	DESCRIPTION		
1	1	ĒN	Receiver Enable Control. Drive low for normal operation. Drive high to force the receiver output (R_OUT) into a high-impedance state.		
2	2	C1+	Positive terminal of the voltage doubler charge-pump capacitor.		
3	3	V+	+5.5V generated by the charge pump.		
4	4	C1-	Negative terminal of the voltage doubler charge-pump capacitor.		
5	5	C2+	Positive terminal of inverting charge-pump capacitor.		
6	6	C2-	Negative terminal of inverting charge-pump capacitor.		
7	7	V-	-5.5V generated by the charge pump.		
8	8	R _{1IN}	RS-232 Receiver 1 Input.		
9	9	R _{10UT}	TTL/CMOS Receiver 1 Output.		
10	-	INVALID	Output of the valid signal detector. Indicates if a valid RS-232 level is present on receiver input logic "1".		
11	11	T _{1IN}	TTL/CMOS Transmitter 1 Input.		
12	-	FORCEON	Drive high to override automatic circuitry keeping transmitter on (FORCEOFF must be high) (Table 2).		
13	13	T _{1OUT}	RS-232 Transmitter 1 Output.		
14	14	GND	Ground.		
15	15	V _{CC}	+3.0V ~ +5.5V Supply Voltage.		
16	-	FORCEOFF	Drive low to shut down transmitter and on-board power supply. This over-rides all automatic circuitry and FORCEON (Table 2).		
-	10, 12	NC	No connect		
-	16	FORCEOFF	Shut off Pump Power and Transmitters. Active low.		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
V _{cc}		V_{CC}	6.0	V
V+ (Note 2)		V+	7.0	V
V- (Note 2)		V-	-7.0	V
V+ + V- (Note 2)		V_{PUMP}	+13.0	V
Input Voltages	T_IN, FORCEOFF, FORCEON, EN	V_{IN}	6.0	V
	R_IN		±25	V
T_OUT		.,	±13.2	V
Output Voltages	R_OUT, INVALID	V_{OUT}	-0.3 ~ (V _{CC} +0.3)	V
Short-Circuit Duration T_OUT		SC	Continuous	
Power Dissipation(T _A =25°C)		P_D	680	mW
Operating Temperature		T_{OPR}	-40 ~ +85	°C
Storage Temperature		T_{STG}	-65 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

 $(V_{CC}$ =+3.0V~+5.5V, C1~C4=0.1 μ F (Note 2), T_A = T_{MIN} to T_{MAX} , unless otherwise specified)

PARAMETEI	₹	SYMBOL	TEST CONDITIONS			MIN	TYP	MAX	UNIT	
DC CHARACTERISTI	cs									
Supply Current, Shutdown				All R_IN open, FORCEOFF =V _{CC} , FORCEON=GND			1.0	10	μΑ	
		I _{SHDN}	V _{CC} =3.3V or 5.0V, T _A = 25°C	All R_IN	FORCEOFF =GND, All R_IN=GND (FORCEOFF =GND,UT3221E)			1.0	10	μΑ
Supply Current, Shutdown Disabled		Icc		FORCEON= FORCEOFF =V _{CC} , no load (FORCEOFF =V _{CC} ,UT3221E)			0.3	1.0	mA	
LOGIC INPUTS										
	Low	V_{LGL}	EN ,T_IN,	FORCE	ON, FOF	RCEOFF			0.8	V
Input Logic Threshold	High	V_{LGH}	EN ,T_IN, FORCEOF	_	RCEON,	$V_{CC} = 3.3V$ $V_{CC} = 5.0V$	2.0			\ \
Input Leakage Current	t	I _{IN(LK)}	T_IN, EN, FORCEON, FORCEOFF			±0.01	±1.0	μA		
RECEIVER OUTPUT		(=,	1 - /	,	- ,			I		
Output Leakage Curre	nt	I _{ROUT(LK)}	Receiver d	lisabled				±0.05	±10	μA
	Low	V _{ROUTL}	I _{OUT} = 1.6n	nA					0.4	·V
Output Voltage	High	V_{ROUTH}	I _{OUT} = -1.0	I _{OUT} = -1.0mA		V _{CC} - 0.6	V _{CC} - 0.1		V	
AUTOSHUTDOWN (F	ORCEON=	GND , FOR	RCEOFF =V	cc , UT32	21)					
Receiver Input Thresholds to	Enabled	$V_{R(EN)}$	Fig.1			threshold threshold	-2.7		2.7	V
Transmitter	Disabled	V _{R(DIS)}	1μA supply current, Fig.1		-0.3		0.3	V		
INVALID Output	Low	V _{INVL}	I _{OUT} =1.6mA				0.4	V		
Voltage	High	V_{INVH}				V _{CC} - 0.6			V	
Receiver Threshold to Transmitter Enabled		t _{wu}	Fig.2			100		μs		

^{2.} V+ and V- can have maximum magnitudes of 7.0V, but their absolute difference cannot exceed 13.0V.

■ ELECTRICAL CHARACTERISTICS (Cont.)

 $(V_{CC}$ =+3.0V~+5.5V, C1~C4=0.1µF (Note 2), T_A = T_{MIN} to T_{MAX} , Unless Otherwise Specified)

			Other wise openie			1	
RAMETER SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT		
High	t _{INVH}				1.0		μs
OW	†INIVI	Fig.2			30		μs
	4IIVL					<u> </u>	μ.σ
	.,			0.5		0.5	
	V _{RR}					25	V
	V_{RINL}	T _A =25°C					V
		• • • • • • • • • • • • • • • • • • • •		8.0			
	VDINIL	T _^ =25°C				2.4	V
	FIXINIT	., 200	V _{CC} =5.0V		1.8	2.4	
	V _{RINHYS}				0.5		V
	V _{RINRES}	T _A =25°C		3	5	7	kΩ
	V _{TOUTSW}	· ·	loaded with 3kΩ to	±5.0	±5.4		V
	V _{TOUTRES}	V _{CC} = V+=V-=0V,		300	10M		Ω
Output Short-Circuit Current					±35	±60	mΑ
Output Leakage Current		V _{CC} =3.0V~5.0V, V _{OUT} =±12V, Transmitter disabled				±25	μΑ
ICS		1			l.	•	
	DR	$R_L=3k\Omega$, $C_L=1000pF$ switching	, one transmitter	250			kbps
	t _{PHL}	Receiver input to receiver output, $C_L=150pF$			0.15		
ıy	t _{PLH}				0.15		μs
Enable	t _{R(EN)}	Normal operation			200		ns
Disable					200		ns
Transmitter Skew		Itphl — tplhl			100		ns
					50		ns
		V _{CC} =3.3V, T _A =25°C,					
Transition-Region Slew Rate		P3k0~7k0	C _L =150pF~1000pF	4		35	V/µs
	nt CS Iy Enable Disable	Tigh	digh t_{INVL} Fig.2 VRINL $T_A=25^{\circ}C$ VRINH $T_A=25^{\circ}C$ VRINHYS V_{RINHYS} VRINHES $T_A=25^{\circ}C$ VTOUTSW The transmitter output ground VTOUTRES $V_{CC}=V+=V-=0V$, Transmitter output=±2 Int I_{TSC} ITOUT(LK) $V_{CC}=3.0V\sim5.0V$, $V_{OUT}=1000$ Transmitter disabled ICS DR $R_L=3k\Omega$, $C_L=1000$ pF switching IV T_{PHL} Receiver input to $T_{CL}=1000$ pF switching IN T_{PHL} Receiver input to $T_{CL}=1000$ pF switching IN T_{PHL} $T_{CL}=1000$ pF switching IN $T_{CL}=1000$ pF switching $T_{CL}=1000$ pF switching IN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The transmitter output loaded with $3kΩ$ to ground $V_{CC} = 3.0V = 5.0V = 1.0$ $V_{CC} = 3.0V = 1.0$ $V_{CC} = 1.0$

Notes: 1. Typical values are at T_A =25°C.

^{2.} C1~C4=0.1 μ F, measured at 3.3V±10%. C1=0.047 μ F, C2~C4=0.33 μ F, measured at 5.0V ±10%.

■ DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC **UT3221/E** consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.0V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitter

UTC **UT3221/E**'s transmitter is inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 250kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software.

Transmitter can be paralleled to drive multiple receiver or mouse. When FORCEOFF is driven to ground, or shutdown circuitry senses invalid voltage levels at the receiver input, the transmitter is disabled and the output is forced into a high-impedance state.

RS-232 Receiver

The UTC **UT3221/E**'s receiver convert RS-232 signals to CMOS-logic output levels. The receiver has one inverting three-state output. In shutdown or in autoshutdown, the **UT3221/E**'s receiver is active. Drive $\overline{\text{EN}}$ high to place the receiver in a high-impedance state.

 EN
 R_OUT

 0
 Active

 1
 High-Z

Table 1. EN Control Truth Table

Shutdown Function(UT3221E)

Supply current falls to less than $1\mu A$ in shutdown mode (FORCEOFF = GND). When shutdown, the device's charge pumps are shut off, V+ is pulled down to VCC, V- is pulled to ground, and the transmitter outputs are disabled (high impedance). Connect FORCEOFF to VCC if shutdown mode is not used. FORCEOFF has no effect on R_OUT.

Shutdown Function(UT3221)

 $\overline{\text{FORCEOFF}}$ is high. When the UTC **UT3221** senses no valid signal levels on the receiver input for 30µs, the on-board power supply and driver is shut off, reducing supply current to 1µA. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitter is turned off. The system turns on again when a valid level is applied to RS-232 receiver input. As a result, the system saves power without changes to the existing BIOS or operating system. $\overline{\text{INVALID}}$ indicates the receiver input' condition, when using shutdown function, the $\overline{\text{INVALID}}$ output is high when the device is on and low when the device is shut down.

Table 2. Shutdown Logic Control Truth Table

OPERATION STATUS	FORCEOFF INPUT	FORCEON INPUT	INVALID OUTPUT	T_OUT
Normal Operation (Forced On)	Н	Н	X	Active
Normal Operation (AutoShutdown)	Н	L	Н	Active
Normal Operation (AutoShutdown)	Н	L	L	High-Z
Shutdown (Forced Off)	L	X	X	High-Z

■ DETAILED DESCRIPTION (Cont.)

Table 2 summarizes the UTC **UT3221** operating modes. FORCEON and FORCEOFF override the automatic circuitry and force the transmitter into its normal operating state or into its low-power standby state. When neither control is asserted, the IC selects between these states automatically based on receiver input levels.

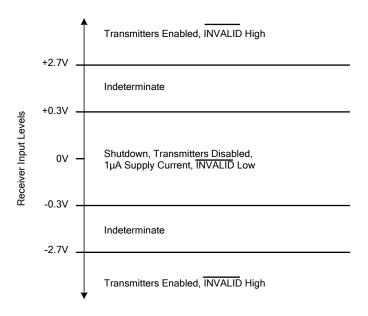


Fig.1 Shutdown Input Levels

When shutdown, the UTC **UT3221**'s charge pumps are turned off, V+ decays to V_{CC} , V- decays to ground, the transmitter output is disabled (high impedance). The time required to exit shutdown is typically 100 μ s.

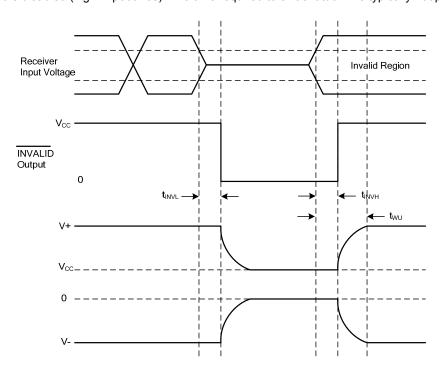
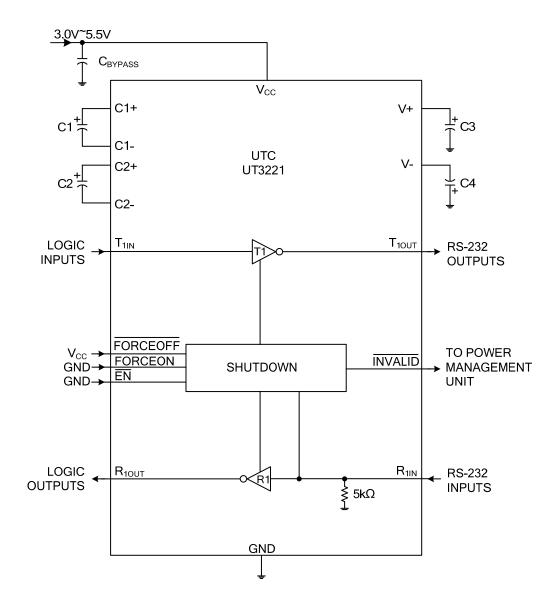



Fig.2 Shutdown Input Timing

■ TYPICAL APPLICATION CIRCUIT

■ TYPICAL APPLICATION CIRCUIT (Cont.)

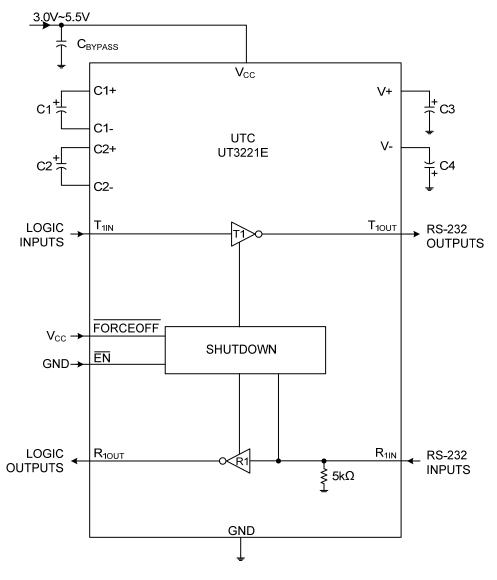


Fig.3 Application Circuit

Table 3. Required Capacitor Value

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0 ~ 3.6	0.22	0.22	0.22
3.15 ~ 3.6	0.1	0.1	0.1
4.5 ~ 5.5	0.047	0.33	0.047
3.0 ~ 5.5	0.22	1.0	0.22

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.